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Abstract

Metric learning methods for dimensionality re-
duction in combination with k-Nearest Neighbors
(kNN) have been extensively deployed in many clas-
sification, data embedding, and information retrieval
applications. However, most of these approaches
involve pairwise training data comparisons, and thus
have quadratic computational complexity with re-
spect to the size of training set, preventing them
from scaling to fairly big datasets. Moreover, during
testing, comparing test data against all the train-
ing data points is also expensive in terms of both
computational cost and resources required. Further-
more, previous metrics are either too constrained
or too expressive to be well learned. To effec-
tively solve these issues, we present an exemplar-
centered supervised shallow parametric data embed-
ding model, using a Maximally Collapsing Metric
Learning (MCML) objective. Our strategy learns a
shallow high-order parametric embedding function
and compares training/test data only with learned or
precomputed exemplars, resulting in a cost function
with linear computational complexity for both train-
ing and testing. We also empirically demonstrate,
using several benchmark datasets, that for classi-
fication in two-dimensional embedding space, our
approach not only gains speedup of kNN by hun-
dreds of times, but also outperforms state-of-the-art
supervised embedding approaches.

1 Introduction
Given the class information of training data, metric learning
methods for dimensionality reduction and data visualization
essentially learn a linear or nonlinear transformation from a
high-dimensional input feature space to a low-dimensional
embedding space, aiming at increasing the similarity between
pairwise data points from the same class while decreasing the
similarity between pairwise data points from different classes
in the embedding space. These methods in combination with
kNN have been widely used in many applications including
computer vision, information retrieval, and bioinformatics. Re-
cent surveys on metric learning can be found in [Kulis, 2013;

Bellet et al., 2013]. However, most of these approaches, in-
cluding the popular Maximally Collapsing Metric Learning
(MCML) [Globerson and Roweis, 2006], Neighborhood Com-
ponent Analysis (NCA) [Goldberger et al., 2004], and Large-
Margin Nearest Neighbor (LMNN) [Weinberger and Saul,
2009], need to model neighborhood structures by comparing
pairwise training data points either for learning parameters
or for constructing target neighborhoods in the input feature
space, which results in quadratic computational complexity
requiring careful tuning and heuristics to get approximate so-
lutions in practice and thus limits the methods’ scalability.
Moreover, during testing, kNN is often employed to compare
each test data point against all training data points in the input
feature or embedding space, which is also expensive in terms
of both computational cost and resources required. In addi-
tion, a lot of previous methods, e.g., MCML, on one extreme,
focus on learning a Mahalanobis metric that is equivalent to
learning a linear feature transformation matrix and thus in-
capable of achieving the goal of collapsing classes. On the
other extreme, nonlinear metric learning methods based on
deep neural networks such as dt-MCML and dt-NCA [Min
et al., 2010] are powerful but very hard to learn and require
complicated procedures such as tuning network architectures
and tuning many hyperparameters. For data embedding and
visualization purposes, most users are reluctant to go through
these complicated procedures, which explains why dt-MCML
and dt-NCA were not widely used although they are much
more powerful than simpler MCML, NCA, and LMNN.

To address the aforementioned issues of previous metric
learning methods for dimensionality reduction and data vi-
sualization, in this paper, we present an exemplar-centered
supervised shallow parametric data embedding model based
on a Maximally Collapsing Metric Learning objective and
Student t-distributions. Our model learns a shallow high-order
parametric embedding function that is as powerful as a deep
neural network but much easier to learn. Moreover, during
training, our model avoids pairwise training data comparisons
and compares training data only with some jointly learned ex-
emplars or precomputed exemplars from supervised k-means
centers, resulting in an objective function with linear compu-
tational complexity with respect to the size of training set. In
addition, during testing, our model only compares each test
data point against a very small number of exemplars. As a
result, our model in combination with kNN accelerates kNN
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using high-dimensional input features by hundreds of times
owing to the benefits of both dimensionality reduction and
sample size reduction, and achieves much better performance.
Even surprisingly, in terms of both accuracy and testing speed,
our shallow model based on pre-computed exemplars signifi-
cantly outperforms state-of-the-art deep embedding method
dt-MCML. We also empirically observe that, using a very
small number of randomly sampled exemplars from training
data, our model can also achieve competitive classification
performance. We call our proposed model exemplar-centered
High Order Parametric Embedding (en-HOPE).

Our contributions in this paper are summarized as follows:
(1) We propose a salable metric learning strategy for data em-
bedding with an objective function of linear computational
complexity, avoiding pairwise training data comparisons; (2)
Our method compares test data only with a small number of
exemplars and gains speedup of kNN by hundreds of times;
(3) Our approach learns a simple shallow high-order paramet-
ric embedding function, beating state-of-the-art embedding
models on several benchmark datasets in term of both speed
and accuracy.

2 Related Work
Metric learning methods and their applications have been
comprehensively surveyed in [Kulis, 2013; Bellet et al., 2013].
Among them, our proposed method en-HOPE is closely related
to the ones that can be used for dimensionality reduction and
data visualization, including MCML [Globerson and Roweis,
2006], NCA [Goldberger et al., 2004], LMNN [Weinberger
and Saul, 2009], nonlinear LMNN [Kedem et al., 2012], and
their deep learning extensions such as dt-MCML [Min et al.,
2010], dt-NCA [Min et al., 2010], and DNet-kNN [Min et al.,
2009]. en-HOPE is also related to neighborhood-modeling di-
mensionality reduction methods such as LPP [He and Niyogi,
2003], t-SNE [van der Maaten and Hinton, 2008], its para-
metric implementation SNE-encoder [Min, 2005] and deep
parametric implementation pt-SNE [van der Maaten, 2009].
The objective functions of all these related methods have at
least quadratic computational complexity with respect to the
size of training set due to pairwise training data comparisons
required for either loss evaluations or target neighborhood
constructions. Our work is also closely related to the RVML
method [Perrot and Habrard, 2015], which suffers scalability
issues as MCML does.

en-HOPE is closely related to a recent sample compression
method called Stochastic Neighbor Compression (SNC) [Kus-
ner et al., 2014] for accelerating kNN classification in a high-
dimensional input feature space. SNC learns a set of high-
dimensional exemplars by optimizing a modified objective
function of NCA. en-HOPE differs from SNC in several as-
pects: First, their objective functions are different; Second,
en-HOPE learns a nonlinear metric based on a shallow model
for dimensionality reduction and data visualization, but SNC
does not have such capabilities; Third, en-HOPE does not
necessarily learn exemplars, instead, which can be precom-
puted. We will compare en-HOPE to SNC in the experiments
to evaluate the compression ability of en-HOPE, however, the
focus of en-HOPE is for data embedding and visualization but

not for sample compression in a high-dimensional space.
en-HOPE learns a shallow parametric embedding function

by considering high-order feature interactions. High-order
feature interactions have been studied for learning Boltzmann
Machines, autoencoders, structured outputs, feature selections,
and biological sequence classification [Memisevic, 2011; Min
et al., 2014b; 2014a; Ranzato and Hinton, 2010; Ranzato et al.,
2010; Guo et al., 2015; Purushotham et al., 2014; Kuksa et al.,
2015]. To the best of our knowledge, our work here is the first
successful one to model input high-order feature interactions
for supervised data embedding and exemplar learning.

3 Method
In this section, we introduce MCML and dt-MCML at first.
Then we describe our shallow parametric embedding function
based on high-order feature interactions. Finally, we present
our scalable model en-HOPE.

3.1 A Shallow Parametric Embedding Model for
Maximally Collapsing Metric Learning

Given a set of data points D = {x(i), L(i) : i = 1, . . . , n},
where x(i) ∈ RH is the input feature vector, L(i) ∈ {1, . . . , c}
is the class label of a labeled data point, and c is the total
number of classes. MCML learns a Mahalanobis distance
metric to collapse all data points in the same class to a single
point and push data points from different classes infinitely
farther apart. Learning a Mahalanobis distance metric can
be thought of as learning a linear feature transformation y =
f(x) = Ax from the high-dimensional input feature space to
a low-dimensional latent embedding space, where A ∈ Rh×H ,
and h < H . For data visualization, we often set h = 2.

MCML assumes, qj|i, the probability of each data point i
chooses every other data point j as its nearest neighbor in the
latent embedding space follows a Gaussian distribution,

qj|i =
exp(−dij)∑

k:k 6=i exp(−dik)
, qi|i = 0. (1)

and
dij = ||f(x(i))− f(x(j))||2. (2)

To maximally collapse classes, MCML minimizes the sum
of the Kullback-Leibler divergence between the conditional
probabilities qj|i computed in the embedding space and the
“ground-truth” probabilities pj|i calculated based on the class
labels of training data. Specifically, pj|i ∝ 1 iff L(i) = L(j)

and pj|i = 0 iff L(i) 6= L(j). Formally, the objective function
of the MCML is as follows:

` =
∑

ij:i6=j

pj|i log
pj|i
qj|i
∝ −

∑
ij:i 6=j

[L(i) = L(j)] log qj|i + const,

(3)
where [·] is an indicator function.

However, learning a Mahalanobis metric requires solving
a positive semidefinite programming problem, which is com-
putationally prohibitive and prevents MCML from scaling to
a fairly big dataset. Moreover, a linear feature transforma-
tion is very constrained and makes it impossible for MCML
to achieve its goal of collapsing classes. dt-MCML extends
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MCML in two aspects: (1) it learns a powerful deep neural
network to parameterize the feature transformation function
y = f(x); (2) it uses a symmetric heavy-tailed t-distribution
to compute qj|i for supervised embedding due to its capabil-
ities of reducing overfitting, creating tight clusters, increas-
ing class separation, and easing gradient optimization. For-
mally, this stochastic neighborhood metric first centers a t-
distribution over y(i), and then computes the density of y(j)

under the distribution as follows.

qj|i =
(1 + dij)

−1∑
kl:k 6=l(1 + dkl)−1

, qii = 0, (4)

Although dt-MCML based on a deep neural network has a
powerful nonlinear feature transformation, parameter learning
is hard and requires complicated procedures such as tuning
network architectures and tuning many hyperparameters. Most
users who are only interested in data embedding and visualiza-
tion are reluctant to go through these complicated procedures.
Here we propose to use high-order feature interactions, which
often capture structural knowledge of input data, to learn a
shallow parametric embedding model instead of a deep model.
The shallow model is much easier to train and does not have
many hyperparameters. In the following, the shallow high-
order parametric embedding function will be presented. We
expand each input feature vector x to have an additional com-
ponent of 1 for absorbing bias terms, that is, x′ = [x; 1], where
x′ ∈ RH+1. The O-order feature interaction is the product of
all possible O features {xi1 × . . .× xit × . . .× xiO} where,
t ∈ {1, . . . , O}, and {i1, . . . , it, . . . , iO} ∈ {1, . . . ,H}. Ide-
ally, we want to use each O-order feature interaction as a
coordinate and then learn a linear transformation to map all
these high-order feature interactions to a low-dimensional
embedding space. However, it’s very expensive to enumer-
ate all possible O-order feature interactions. For example, if
H = 1000, O = 3, we must deal with a 109-dimensional
vector of high-order features. We approximate a Sigmoid-
transformed high-order feature mapping y = f(x) by con-
strained tensor factorization as follows (derivations omitted
due to space constraint),

ys =
m∑

k=1

Vskσ(
F∑

f=1

Wfk(Cf
Tx′)O + bk), (5)

where bk is a bias term, C ∈ R(H+1)×F is a factorization
matrix, Cf is the f -th column of C, W ∈ RF×m and
V ∈ Rh×m are projection matrices, ys is the s-th compo-
nent of y, F is the number of factors, m is the number of
high-order hidden units, and σ(x) = 1

1+e−x . Because the
last component of x′ is 1 for absorbing bias terms, the full
polynomial expansion of (Cf

Tx′)O essentially captures all
orders of input feature interactions up to order O. Empirically,
we find that O = 2 works best for all datasets we have and set
O = 2 for all our experiments. The hyperparameters F and
m are set by users.

Combining Equation 3, Equation 4 and the feature transfor-
mation function in Equation 5 leads to a method called High
Order Parametric Embedding (HOPE). As MCML and dt-
MCML, the objective function of HOPE involves comparing

pairwise training data and thus has quadratic computational
complexity with respect to the sample size. The parameters of
HOPE are learned by Conjugate Gradient Descent.

3.2 en-HOPE for Data Embedding and Fast kNN
Classification

Building upon HOPE for data embedding and visualization
described earlier, we present two related approaches to imple-
ment en-HOPE, resulting in an objective function with linear
computational complexity with respect to the size of training
set. The underlying intuition is that, instead of comparing
pairwise training data points, we compare training data only
with a small number of exemplars in the training set to achieve
the goal of collapsing classes, collapsing all training data to
the points defined by exemplars. In the first approach, we
simply precompute the exemplars by supervised k-means and
only update the parameters of the embedding function during
training. In the second approach, we simultaneously learn
exemplars and embedding parameters during training. During
testing, fast kNN classification can be efficiently performed
in the embedding space against a small number of exemplars
especially when the dataset is huge.

Given the same dataset D with formal descriptions as in-
troduced in Section 3.1, we aim to obtain z exemplars from
the whole dataset with their designated class labels uniformly
sampled from the training set to account for data label distribu-
tions, where z is a user-specified free parameter and z << n.
We denote these exemplars by {e(j) : j = 1, . . . , z}. In the
first approach, we perform k-means on the training data to
identify the same number of exemplars as in the sampling step
for each class (please note that k-means often converges within
a dozen iterations and shows linear computational cost in prac-
tice). Then we minimize the following objective function to
learn high-order embedding parameters Θ while keeping the
exemplars {e(j)} fixed,

min `(Θ, {e(j)}) =
∑n

i=1

∑z
j=1 pj|i log

pj|i
qj|i

∝ −
∑n

i=1

∑z
j=1[L

(i) = L(j)] log qj|i + const (6)

where i indexes training data points, j indexes exem-
plars, Θ denotes the high-order embedding parameters
{{bk}mk=1,C,W,V} in Equation 5, pj|i is calculated in the
same way as in the previous description, but qj|i is calculated
with respect to exemplars,

qj|i =
(1 + dij)

−1∑n
i=1

∑z
k=1(1 + dik)−1

, (7)

dij = ||f(x(i))− f(e(j))||2, (8)

where f(·) denotes the high-order embedding function as de-
scribed in Equation 5. Note that unlike the probability dis-
tribution in Equation 4, qj|i here is computed only using the
pairwise distances between training data points and exem-
plars. This small modification has significant benefits. Be-
cause z << n, compared to the quadratic computational
complexity with respect to n of Equation 3, the objective
function in Equation 6 has a linear computational complexity
with respect to n. In the second approach, we jointly learn
the high-order embedding parameters Θ and the exemplars
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{e(j)} simultaneously by optimizing the objective function
in Equation 6. The derivative of the above objective function
with respect to exemplar e(j) is as follows,

∂`(Θ, {e(j)})
∂e(j)

=
n∑

i=1

2(1 + dij)
−1(pj|i − qj|i)

(f(e(j))− f(x(i)))
∂f(e(j))

∂e(j)
(9)

In both approaches to implementing en-HOPE, all the model
parameters are learned using Conjugate Gradient Descent. We
call the first approach en-HOPE (k-means exemplars) and the
second approach en-HOPE (learned exemplars).

4 Experiments
In this section, we evaluate the effectiveness of HOPE and en-
HOPE by comparing them against several baseline methods
based upon three datasets, i.e., MNIST, USPS, and 20 News-
groups. The MNIST dataset contains 60,000 training and
10,000 test gray-level 784-dimensional images. The USPS
data set contains 11,000 256-pixel gray-level images, with
8,000 for training and 3,000 for test. The 20 Newsgroups
dataset is a collection of 16,242 newsgroup documents among
which we use 15,000 for training and the rest for test as
in [van der Maaten, 2009].

To evaluate whether our proposed shallow high-order para-
metric embedding function is powerful enough, we first com-
pare HOPE with four linear metric learning methods, includ-
ing LPP, LMNN, NCA, and MCML, and three deep learn-
ing methods without convolutions, including a deep unsuper-
vised model pt-SNE, as well as two deep supervised models,
i.e., dt-NCA and dt-MCML. To make computational proce-
dures and tuning procedures for data visualization simpler,
none of these models was pre-trained using any unsupervised
learning strategy, although HOPE, en-HOPE, dt-NCA, and
dt-MCML could all be pre-trained by autoencoders or vari-
ants of Restricted Boltzmann Machines [Min et al., 2010;
Kuksa et al., 2015].

We set the number of exemplars used to 10 and 20 in all
our experiments. When 10 exemplars are used, k = 1 for
kNN, otherwise, k = 5. We used 10% of training data as
validation set to tune the number of factors (F ), the number of
high-order units (m), and batch size. For HOPE and en-HOPE,
we set F = 800 and m = 400 for all the datasets used. In
practice, we find that the feature interaction order O = 2 often
works best for all applications. The parameters for all baseline
methods were carefully tuned to achieve the best results.

4.1 Classification Performance of High-order
Parametric Embedding

Table 1 presents the test error rates of 5-nearest neighbor clas-
sifier on 2-dimensional embedding generated by HOPE and
some baseline methods. The error rate is calculated by the
number of misclassified test data points divided by the to-
tal number of test data points. We chose 2D as in pt-SNE
because we can effectively visualize and intuitively under-
stand the quality of the constructed embeddings as will be
presented and discussed later in this section. The results in

Table 1 indicate that HOPE significantly outperforms its lin-
ear and nonlinear competitors on three datasets. Due to the
nonscalability issue of the original MCML, it fails to run on
the MNIST dataset. We implemented an improved version of
MCML called MCML+ by directly learning a linear feature
transformation matrix based on conjugate gradient descent.

Promisingly, results in Table 1 suggest that our shallow
model HOPE even outperforms deep embedding models based
on deep neural networks, in terms of accuracy obtained on
the 2-dimensional embedding for visualization. For example,
on MNIST, the error rate (3.20%) of HOPE is lower than the
ones of the pt-SNE, dt-NCA, and dt-MCML methods. These
results clearly demonstrate the representational efficiency and
power of supervised shallow models with high-order feature
interactions.

To further confirm the representation power of HOPE, we
extracted the 512-dimensional features of MNIST digits below
the softmax layer learned by a well-known deep convolutional
architecture VGG [Simonyan and Zisserman, 2015], which
currently holds the-state-of-the-art classification performance
through a softmax layer on MNIST. Next, we ran HOPE based
on these features to generate 2D embedding. As is shown
in the top part of Table 2, VGG+HOPE can achieve an error
of 0.65%. In contrast, NCA and LMNN on top of VGG,
respectively, produces test error rate of 1.83% and 1.75%.
This error rate of HOPE represents the historically low test
error rate in two-dimensional space on MNIST, which implies
that even on top of a powerful deep convolutional network,
modeling explicit high-order feature interactions can further
improve accuracy and outperform all other models without
feature interactions.

4.2 Experimental Results for Different Methods
with Exemplar Learning

In this section, we evaluate the performance of en-HOPE
for data embedding, data visualization, and fast kNN clas-
sification. Table 3 presents the classification error rates of
kNN on 2-dimensional embeddings generated by en-HOPE
with the two proposed exemplar learning. Exemplar-based
en-HOPE consistently achieves better performance than the
ones of HOPE in Table 1. To construct stronger baselines,
we run supervised k-means to get exemplars and train each
baseline method independently. During testing, we only use
these k-means centers for comparisons with test data. We
call these experiments "s-kmeans+methods". Please note that
"s-kmeans+methods" heuristics have objective functions with
quadratic computational complexity as the original baseline
methods and thus are not scalable to big datasets. To test
whether en-HOPE can indeed effectively collapse classes, we
also randomly select data points from each class as fixed ex-
emplars and then learn the high-order embedding function of
en-HOPE. The results in Table 3 suggest the following: when
coupled with exemplars, en-HOPE significantly outperforms
other baseline methods including the deep embedding mod-
els; even with randomly sampled exemplars, for example, one
exemplar per class on MNIST and USPS, en-HOPE with an
objective function of linear computational complexity can still
achieve very competitive performance compared to baseline
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Table 1: Error rates (%) obtained by 5NN on the 2-dimensional representations produced by different dimensionality reduction methods on the
MNIST, USPS, and 20Newsgroups datasets. Due to the nonscalability issue of the original MCML, it fails to run on the MNIST dataset. The
results demonstrate the effectiveness of the shallow high-order parametric embedding.

MINIST USPS 20 Newsgroups
Linear Methods Non-Linear Methods Linear Methods Non-Linear Methods Linear Methods Non-Linear Methods

LPP 47.20 pt-SNE 9.90 LPP 34.77 pt-SNE 17.90 LPP 24.64 pt-SNE 28.90
NCA 45.91 dt-NCA 3.48 NCA 37.17 dt-NCA 5.11 NCA 30.84 dt-NCA 25.85
MCML+ 35.67 dt-MCML 3.35 MCML 44.60 dt-MCML 4.07 MCML 26.65 dt-MCML 21.10
LMNN 56.28 LMNN 48.40 LMNN 29.15

HOPE 3.20 HOPE 3.03 HOPE 20.05

Table 2: Error rates (%) by kNN on the 2-dimensional representations
produced by HOPE and en-HOPE and other methods on top of VGG
features of MNIST data. The kNN error rate in the original 512-
dimensional space generated by VGG is 0.62, which is comparable to
the kNN performance on the 2-dimensional representations produced
by HOPE and en-HOPE.

Methods Error Rates
VGG + LMNN 1.75

VGG+ NCA 1.83
VGG + MCML+ 0.80

VGG + HOPE 0.65
VGG + LMNN (s-kmeans) 2.22
VGG + NCA (s-kmeans) 2.18

VGG + en-HOPE (10 k-means exemplars) 0.67
VGG + en-HOPE (10 learned exemplars) 0.66
VGG + en-HOPE (20 k-means exemplars) 0.64
VGG + en-HOPE (20 learned exemplars) 0.68
VGG + en-HOPE (10 random exemplars) 0.68

methods, demonstrating the effectiveness of our proposed shal-
low high-order model coupled with exemplars for collapsing
classes. The bottom part of Table 2 again verifies the addi-
tional gain of our shallow high-order model en-HOPE on top
of an established deep convolutional neural network.

Two-dimensional Data Embedding Visualization
Figure 1 shows the test data embeddings of MINST by dif-
ferent methods. These embeddings were constructed by, re-
spectively, MCML+, dt-MCML, en-HOPE with 20 learned
exemplars, and en-HOPE with 10 learned exemplars. The
20 learned exemplars overlap in the two-dimensional space.
en-HOPE produced the best visualization, collapsed all the
data points in the same class close to each other, and generated
large separations between class clusters. Furthermore, the
embeddings of the learned exemplars created during training
(depicted as red empty circles in subfigure (c) and (d)) are
located almost at the centers of all the clusters.

Computational Efficiency of en-HOPE for Sample
Compression
en-HOPE speeds up computational efficiency of fast infor-
mation retrieval such as kNN classification used in the above
experiments by hundreds of times. Table 4 shows the experi-
mentally observed computational speedup of en-HOPE over
standard kNN on our desktop with Intel Xeon 2.60GHz CPU
and 48GB memory on different datasets. The test error rates

Table 3: Error rates (%) obtained by kNN on the two-dimensional
representations created by different testing methods with different
exemplar learning methods on, respectively, MNIST (top), USPS
(middle), and 20 Newsgroups(bottom).

s-kmeans+methods en-HOPE
LPP 45.13 en-HOPE (10 k-means exemplars) 2.86
NCA 50.67 en-HOPE (10 learned exemplars) 2.80
LMNN 59.67 en-HOPE (20 k-means exemplars) 2.72
pt-SNE 18.86 en-HOPE (20 learned exemplars) 2.66
dt-MCML 3.17 en-HOPE (10 random exemplars) 3.19
LPP 33.23 en-HOPE (10 k-means exemplars) 2.96
NCA 35.13 en-HOPE (10 learned exemplars) 2.67
LMNN 59.67 en-HOPE (20 k-means exemplars) 2.83
pt-SNE 29.47 en-HOPE (20 learned exemplars) 3.03
dt-MCML 4.27 en-HOPE (10 random exemplars) 3.10
LPP 33.09 en-HOPE (10 k-means exemplars) 18.27
NCA 36.71 en-HOPE (10 learned exemplars) 18.84
LMNN 38.24 en-HOPE (20 k-means exemplars) 19.64
pt-SNE 33.17 en-HOPE (20 learned exemplars) 18.44
dt-MCML 21.90 en-HOPE (10 random exemplars) 18.84

Table 4: Observed computational speedup of en-HOPE with 20
learned exemplars over standard kNN on different datasets.

Datasets MNIST USPS 20 Newsgroups
Speedup (times) 463 × 28 × 101×
Error rates of en-

HOPE in 2D space 2.66 3.03 18.44
Error rates of kNN

in high-D space 3.05 4.77 25.12

by kNN in high-dimensional feature space are much worse
than the ones produced by en-HOPE even in a much lower
feature dimension, i.e., the two-dimensional latent space. In
detail, on our desktop, for classifying 10000 MNIST test data,
standard kNN takes 124.97 seconds, but our method en-HOPE
with 20 learned exemplars only takes 0.24 seconds including
the time for computing the two-dimensional embedding of
test data. In other words, our method en-HOPE has 463 times
speedup over standard kNN along with much better classifica-
tion performance. This computational speedup will be more
pronounced on massive datasets.

Comparisons of en-HOPE with SNC and dt-MCML
Stochastic neighbor compression (SNC) [Kusner et al., 2014]
is a leading sample compression method in high-dimensional
input feature space. In contrast, SNC can only achieve up to
136 times speedup over kNN with comparable performance
on MNIST with at least 600 learned exemplars [Kusner et al.,
2014]. That is, it only achieves a compression ratio as high as
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(c) en-HOPE with 20 learned exemplars
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(d) en-HOPE with 10 learned exemplars

Figure 1: 2-dimensional embeddings of 10000 MNIST test data points constructed by MCML+, dt-MCML, en-HOPE (20 learned exemplars),
and en-HOPE (10 learned exemplars); the red empty circles are the learned exemplars.

30 times of that of en-HOPE. Part of the reason here is that it
is not designed for data embedding and visualization and thus
unable to compress dataset from the aspect of dimensionality
reduction. This assumption is further verified by the following
experimental observations. When using 20 learned exemplars
in the high-dimensional input feature space, SNC produced
test error rates of 6.31% on MNIST and 17.50% on USPS,
which are much higher than those of en-HOPE. Also, if we
pre-project data to two-dimensional space by other methods
such as PCA or LMNN and then run SNC, the results of SNC
should be much worse than the ones in the high-dimensional
input feature space. Although the focus of en-HOPE is not for
sample compression but for data embedding and visualization
by collapsing classes, when we embed MNIST data to a 10-
dimensional latent space using en-HOPE with 20 exemplars,
we can further reduce the test error rate from 2.66% to 2.31%.

We also further evaluate the performance of our shallow
model en-HOPE with 20 learned exemplars against deep
method dt-MCML on the MNIST data. When compared to
dt-MCML, en-HOPE achieves 316 times speedup for classi-
fying MNIST test data in 2D owing to its proposed exemplar
learning functionality. It is also worth mentioning that, al-
though both methods have the overhead of computing the 2D
embedding of test data, en-HOPE has 2 times speedup over

dt-MCML on this burden owing to its shallow architecture.

5 Conclusion and Future Work

In this paper, we present an exemplar-centered supervised shal-
low parametric data embedding model en-HOPE by collapsing
classes for data visualization and fast kNN classification. Ow-
ing to the benefit of a small number of precomputed or learned
exemplars, en-HOPE avoids pairwise training data compar-
isons and only has linear computational cost for both training
and testing. Experimental results demonstrate that en-HOPE
accelerates kNN classification by hundreds of times, outper-
forms state-of-the-art supervised embedding methods, and
effectively collapses classes for impressive two-dimensional
data visualizations in terms of both classification performance
and visual effects.

In the future, we aim to extend our method to an unsuper-
vised learning setting to increase the scalability of traditional
t-SNE, for which we just need to compute the pairwise proba-
bility p(j|i) using high-dimensional feature vectors instead of
class labels and optimize exemplars accordingly.
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