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Abstract
Support Vector Machines (SVM) are among the
best-known machine learning methods, with broad
use in different scientific areas. However, one nec-
essary pre-processing phase for SVM is normal-
ization (scaling) of features, since SVM is not in-
variant to the scales of the features’ spaces, i.e.,
different ways of scaling may lead to different re-
sults. We define a more robust decision-making ap-
proach for binary classification, in which one sam-
ple strongly belongs to a class if it belongs to that
class for all possible rescalings of features. We de-
rive a way of characterising the approach for binary
SVM that allows determining when an instance
strongly belongs to a class and when the classifi-
cation is invariant to rescaling. The characterisa-
tion leads to a computational method to determine
whether one sample is strongly positive, strongly
negative or neither. Our experimental results back
up the intuition that being strongly positive sug-
gests stronger confidence that an instance really is
positive.

1 Introduction
Among the wide spectrum of (supervised) machine learning
techniques, the Support Vector Machine approach [Burges,
1998] is one of the best-known. It is widely used in a vari-
ety of application domains from text classification [Tong and
Koller, 2001] to biological sciences [Byvatov and Schneider,
2002].

However, scaling of features is a crucial requirement for
SVM because, for example, a particular feature with very
large values, compared with the other features, might ef-
fectively veto the effect of other features on the SVM ob-
jective function. Therefore, SVM is clearly sensitive to the
way features are scaled [Stolcke et al., 2008; Ben-Hur and
Weston, 2010]. The common practice for scalings is based
on the properties of input instances [Jain and Dubes, 1988;
Aksoy and Haralick, 2001; Tax and Duin, 2000]; as an exam-
ple of a scaling method, the value of a feature is subtracted by
the minimum of all values of that feature in the dataset and di-
vided by the difference between the maximum and minimum.
So, the scaling can make the learnt model sometimes highly

sensitive to precisely which instances are received. There can
also be subjective, and even rather arbitrary, choices in the
scaling of the feature spaces; different ways lead to different
results.

It is therefore natural to consider a more cautious classi-
fication in which an instance is positively (negatively) clas-
sified if it is labeled as positive (negative) for all choices of
scaling; the other instances, whose classification can depend
on the choice of scaling, are labelled as neutral. Thus, this
method refines the set of positively (negatively) classified in-
stances by SVM in order to improve the level of confidence in
the classification decisions. This could be helpful in certain
sensitive decision making applications such as disease diag-
nosis; e.g., the test for presence of a particular disease would
fall into three categories, positive, negative, and requires fur-
ther examination.

There are some studies attempting to account for the de-
pendence on feature scaling in margin-based optimisation
methods from a different perspective, see e.g., [Jebara and
Shivaswamy, 2009; Dorkó and Schmid, 2003]. Also, note
that the motivation behind this paper is different from stud-
ies, like [Xu et al., ], which are concerned with improving the
robustness of SVM against outliers and noise, since we are
specifically focusing on the uncertainty caused by rescaling
of features.

The rest of the paper is organised as follows. In Section 2,
we rephrase conventional binary SVM to facilitate our exten-
sion. Section 3 considers the effect of rescaling and defines
strong classification. In Section 4, we characterise rescale-
optimality, where the rescale-optimal vectors are those that
can be made optimal in the SVM objective function for some
rescaling. This characterisation leads to a method for com-
puting strong classification, as described in Section 5. In
Section 6, the presented approach is evaluated with 18 bench-
marks, which are derived from six real data sets.1

1Because of the space restrictions, it was not possible to in-
clude all the proofs. See http://ucc.insight-centre.
org/nwilson/RescaleInvarSVMClassLonger.pdf for
the missing proofs. The longer document also contains a glossary
of symbols.
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Figure 1: (a) The input samples discussed in Example 1 are shown
as black (positive class) and white (negative class) circles. (b) The
shaded region shows G(X), with every element of the line segment
between (3, 2) and (2, 3) being rescale-optimal in G(X).

2 Standard SVM for Binary Classification
In this section, we introduce some notation, and express stan-
dard SVM using that notation, along with some relevant re-
sults. This enables easy generalisation to the rescale-invariant
case. In this paper, as an initial step, we just consider the case
when the training set is consistent (i.e., the instances are lin-
early separable).

We define the input set X for a binary classification task
to be set of samples where each sample is characterised by
n features. A sample is expressed as a pair of (x, y), where
x ∈ IRn is the feature vector (i.e., x(k) being the score for x
regarding the kth feature2), and y ∈ {+1,−1} indicates the
class label for that sample. So, X ⊆ IRn × {+1,−1}. The
input set can be also represented by two disjoint sets:

• X+ = {x+ : (x+,+1) ∈ X}
• X− = {x− : (x−,−1) ∈ X}

We say that X is non-trivial if both X+ and X− are non-
empty. We define the following terms for any X ⊆ IRn ×
{+1,−1} which are used throughout the paper, and illus-
trated in Example 1 below.

• Λ(X) = {x
+−x−

2 : x+ ∈ X+, x− ∈ X−}

• I(X) = {1, . . . , |X+||X−|}
• G(X) = {w ∈ IRn : ∀λ ∈ Λ(X), w · λ ≥ 1}
• MPw = minx+∈X+ w · x+

• MNw = minx−∈X− w · (−x−)

The dot product u · v is equal to
∑n
j=1 u(j)v(j) for vectors

u, v ∈ IRn.

Example 1. Suppose that n = 2, X+ = {(−1, 5), (5,−1),
(7/5, 7/5)} and X− = {(1, 1)}, with the points marked in
Figure 1(a). Then, Λ(X) is {(−1, 2), (2,−1), (1/5, 1/5)},

2Features are assumed to be numeric. However, for ordinal fea-
tures each value can be replaced by a number, maintaining the or-
der of values. For categorical features one might use the one-hot
encoding (a.k.a. 1-of-k coding scheme) to convert a feature with k
categories to k Boolean features.

I(X) = {1, 2, 3}, and G(X) is the shaded region in Fig-
ure 1(b). For w = (2.5, 2.5) (which is in G(X)), MPw and
MNw are 7 and −5 respectively.

By assuming a linear relationship between the feature vec-
tor and the class label, each input point (x, y) ∈ X expresses
a linear constraint y(w · x+ b) ≥ 1 with an unknown weight
vector w ∈ IRn and intercept term b ∈ IR. Thus, the feasible
set C(X) is defined as:
{(w, b) ∈ (IRn, IR) : ∀(x, y) ∈ X, y(w · x+ b) ≥ 1}

The linearity assumption of the model is less restrictive
than it sounds; for instance, we could form additional fea-
tures representing e.g., pairwise products of the basic fea-
tures, transforming x from IRn to a bigger space (say H).
However, in this paper, we assume this transformation has
been explicitly defined; we do not consider making use of
(non-linear) kernels [Aiserman et al., 1964]. For certain prob-
lems the linear kernel works sufficiently well, for instance,
when the number of features is large [Hsu et al., 2003] (Ap-
pendix C).

The principal idea in SVM [Cortes and Vapnik, 1995] is
that from the feasible set C(X) a pair (w, b) is chosen that
maximises the margin; this corresponds to the situation when
w has the minimum (Euclidean) norm in π(C(X)), where
π is the projection function π : (IRn, IR) → IRn given by
π(w, b) = w. We use ‖w‖ as the notation for Euclidean norm.

We will see in Proposition 1 below thatG(X) = π(C(X)).
This fact allows us to make use of general mathematical re-
sults from [Wilson and Montazery, 2016a], which considers
rescaling in preference learning.
Proposition 1. Consider any finite and non-trivial X ⊆
IRn × {+1,−1} and w ∈ IRn. Then, w ∈ π(C(X)) if and
only if w ∈ G(X). Thus, π(C(X)) = G(X).

As is well-known, the solution that is picked by SVM from
C(X) is unique (see e.g., [Burges and Crisp, 1999]). The fol-
lowing theorem restates this fact, making use of our notation.
Theorem 2. Consider any non-trivial finite X ⊆ IRn ×
{+1,−1}. If C(X) is non-empty then there exists a unique
element (w, b) ∈ C(X) such that w has minimal norm in
π(C(X)). For that unique element, b = 1 − MPw =
−1 + MNw.

In Example 1, (2.5, 2.5) clearly is the unique element with
minimal norm in G(X), and the corresponding b is −6 (=
1−MP = −1+MN). Thus, its associated hyperplane 2.5x1+
2.5x2 − 6 = 0, the dotted line in Figure 1(a), produces the
maximum margin.

Let us denote the solution of SVM, which by Theorem 2 is
unique, by (w∗, b∗), where b∗ = 1 −MPw∗ = −1 + MNw∗ .
Thereafter, the feature vector α ∈ IRn with unknown class
label is classified as the positive (+1) class label if w∗ · α +
b∗ ≥ 0, and as the negative (−1) class label otherwise. From
now on, we just work with the positive class; the results can
be easily applied for the negative class as well.

Theorem 2 leads easily to the following characterisation
of positive classification, which is of a form that makes our
extension in the following sections more straight-forward.
Proposition 3. Consider any non-trivial finite X ⊆ IRn ×
{+1,−1} and any α ∈ IRn. Then, vector α is positively
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classified if and only if there exists x+ ∈ X+ such that w∗ ·
(x+ − α) ≤ 1.

Proof: Vector α is positively classified if and only if w∗ ·α+
b∗ ≥ 0, which is, by Theorem 2, iff w∗ · α+ 1−MPw∗ ≥ 0,
i.e., MPw∗ ≤ w∗ · α + 1. This holds, from the definition of
MPw∗ , if and only if minx+∈X+ w∗ ·x+ ≤ w∗ ·α+ 1, which
is if and only if there exists x+ ∈ X+ such that w∗ · x+ ≤
w∗ · α+ 1. This immediately leads to the result. 2

3 Rescaling SVM
In this section we consider how performing certain affine
transformations, i.e., translations and rescalings, on the do-
main of each feature, affect the result of SVM. We define a
vector as being strongly positively classified, if it is positively
classified under all affine transformations of each feature do-
main.

It is a known fact that the maximum margin hyperplane is
essentially unaffected by a translation of feature space (see
e.g., [Meila, 2003]); i.e., by moving the origin, the normal
vector to the separating hyperplane and hence the result of
SVM does not change. Lemma 4 states this formally.
Lemma 4. Consider any finite and non-trivial X ⊆
IRn × {+1,−1}, any α, δ ∈ IRn, and let Xδ =
{(x+ δ, y) : (x, y) ∈ X}. Then, α is positively classified
with respect to X if and only if the vector α + δ is positively
classified with respect to Xδ .

In contrast with translations, changing the scales of fea-
tures may significantly affect the result of SVM. Firstly, we
define u � v to be the vector in IRn given by pointwise mul-
tiplication of u, v ∈ IRn, and thus, for all j = 1, . . . , n,
(u � v)(j) = u(j)v(j). Operation � is commutative, asso-
ciative and distributes over addition of vectors, and satisfies
the property (u� v) ·w = v · (u�w), for any u, v, w ∈ IRn.
Also, let IRn+ be the set of strictly positive elements in IRn,
i.e., v ∈ IRn such that v(j) > 0 for all j = 1, . . . , n.

Now, consider the effect of a rescaling τ ∈ IRn+, so that a
feature vector x ∈ IRn is transformed into x� τ . Therefore,
X becomes Xτ = {(x� τ, y) : (x, y) ∈ X}. We write the
element of G(Xτ ) with minimal norm as w∗τ .
Example 2. If we rescale X in Example 1 by
τ = (5, 1) then X+

τ will be {(−5, 5), (25,−1), (7, 7/5)},
X−τ becomes {(5, 1)}, and consequently, Λ(Xτ ) =
{(−5, 2), (10,−1), (1, 1/5)}. It can be shown that w∗τ
equals (3/5, 2) and b∗τ = −6. Now, let α = (−1, 4) and so
α � τ = (−5, 4). Clearly, when there is no scaling, α is
positively classified since (2.5, 2.5) · (−1, 4)− 6 = 1.5 > 0,
but under scaling τ , α � τ is negatively classified because
(3/5, 2) · (−5, 4)− 6 = −1 < 0.

For a rescaling vector τ ∈ IRn+, we say that α ∈ IRn is
positively classified under rescaling τ iff α � τ is positively
classified with respect to Xτ , which, by using Proposition 3,
is if and only if there exists x+τ ∈ X+

τ such that w∗τ · (x+τ −
(α � τ)) ≤ 1. This holds iff there exists x+ ∈ X+ such that
w∗τ · ((x+� τ)− (α� τ)) ≤ 1, i.e., (w∗τ � τ) · (x+−α) ≤ 1.

Let us say that α ∈ IRn is strongly positively classified
if and only if it is positively classified under any rescaling

τ ∈ IRn+ and any shift δ ∈ IRn. This is if and only if it is
positively classified under any rescaling and no shift (i.e., a
shift of δ = 0, the zero vector).

Definition 1. For α ∈ IRn, we define YX(α) = 1 if and only
if α is strongly positively classified; i.e., for all τ ∈ IRn+ there
exists x+ ∈ X+ such that (w∗τ � τ) · (x+ − α) ≤ 1.

4 Characterisations Using Rescale Optimality
Here we borrow the notion of rescale-optimality from [Wil-
son and Montazery, 2016a], and make use of general math-
ematical results from there. This leads to the computational
technique in Section 5 for testing if a vector is strongly posi-
tively classified.

We define RO(X) to be {w∗τ � τ : τ ∈ IRn+}. Hence, it is
clear, from Definition 1, that YX(α) = 1 if and only if
∀w ∈ RO(X), ∃x+ ∈ X+, s.t. w · (x+ − α) ≤ 1.

Definition 2 (rescale-optimal). For any non-trivial finiteX ⊆
IRn × {+1,−1}, and w ∈ G(X), let us say that w is
rescale-optimal in G(X) if there exists τ ∈ IRn+ such that
for all u ∈ G(X), ‖u� τ‖2 ≥ ‖w � τ‖2.

It can be seen intuitively that every element of the
line segment between (3, 2) and (2, 3) in Figure 1(b) is
rescale-optimal; if τ(1) > τ(2) (i.e., with the ratio τ(1)

τ(2) being
increased) then w∗τ � τ moves from (2.5, 2.5) towards (3, 2).
Similarly, increasing the ratio τ(2)

τ(1) from 1 moves w∗τ � τ

from (2.5, 2.5) towards (2, 3). For instance, in Example 2,
τ(1) = 5τ(2) leads to w∗τ � τ = (3, 2).

The following proposition, which follows immediately
from Proposition 1 in [Wilson and Montazery, 2016a], states
that the set of all rescale-optimal elements of G(X) is
RO(X). As a result of this equivalence, we can say YX(α) =
1 if and only if for every rescale-optimal element w in G(X),
there exists x+ ∈ X+ such that w · (x+ − α) ≤ 1.

Proposition 5. Consider any non-trivial finite X ⊆ IRn ×
{+1,−1}, and any w ∈ IRn. Then, w is rescale-optimal in
G(X) if and only if w is in RO(X).

In Section 4.2 below we characterise the rescale-optimal
elements, which leads to a computational procedure for
strong classification. First, in Section 4.1, we characterise the
situations in which rescaling the values of the features makes
no difference to the result of the classification, in which case
strong classification is the same as the standard classification.

4.1 Determining Invariance to Rescaling
Theorem 6 below shows that rescaling the features vector
makes no difference in the classification when there is a
unique rescale-optimal vector in G(X) (and the vector thus
has minimal norm in G(X)).

Theorem 6. Consider any non-trivial finite X ⊆ IRn ×
{+1,−1}. Let Pos(X) be the set of all α ∈ IRn that are
positively classified, and let SPos(X) be the set of α that are
strongly positively classified. Then Pos(X) = SPos(X) if
and only if there exists a unique rescale-optimal element in
G(X), i.e., RO(X) is a singleton set.
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Proof: For w ∈ IRn, let Posw be the set of all α ∈ IRn such
that there exists x+ ∈ X+ such that w · (x+−α) ≤ 1. Then,
by Proposition 3, Pos(X) = Posw∗ , and using Proposition 5,
SPos(X) is the intersection of Posw over all rescale-optimal
w in G(X). Note that w∗ is rescale optimal in G(X) (us-
ing the identity rescaling). Thus, if there is a single rescale-
optimal w then w = w∗ and so Pos(X) = SPos(X).

To prove the converse, suppose that Pos(X) = SPos(X),
which implies that for all rescale-optimal w in G(X),
Posw contains Posw∗ . Now, we can write Posw as
{α ∈ IRn : α · w ≥ MPw − 1}, and thus Posw is a half-
space with normal vector w. Hence, since Posw contains
Posw∗ , there exists real scalar q > 0 with w∗ = qw. Then for
any τ ∈ IRn+, ‖w∗ � τ‖2 = q2‖w � τ‖2. By Definition 2,
q = 1, since both w and w∗ are rescale-optimal, and hence
w = w∗. This shows that there is a unique rescale-optimal
element in G(X). 2

Definition 3 (pointwise dominance). For u,w ∈ IRn, w
pointwise dominates u if u 6= w and for all j ∈ {1, . . . , n},
either 0 ≤ w(j) ≤ u(j) or 0 ≥ w(j) ≥ u(j) (i.e., w(j) is
closer to zero than u(j)).

Example 3. Consider modifying Example 1 by just remov-
ing (7/5, 7/5) from X+. Then, Λ(X) = {(−1, 2), (2,−1)},
and G(X) becomes the intersection of the half-spaces−x1 +
2x2 ≥ 1 and 2x1 − x2 ≥ 1, with a single extremal point
(1, 1). This point pointwise dominates every other element
in G(X) (see Figure 1(b)). Pointwise dominating every other
element, from Theorem 7 below, means that (1, 1) will be the
unique element of G(X) that is rescale-optimal. Using The-
orem 6, this implies that the classification is invariant to the
rescaling (in this example).

Theorem 7 below characterises when there is a unique
rescale-optimal element, and Corollary 8 leads to a polyno-
mial algorithm to determine that unique element. These re-
sults follow from Theorem 2 and Corollary 1 in [Wilson and
Montazery, 2016a; 2016b].

Theorem 7. Consider any non-trivial finite X ⊆ IRn ×
{+1,−1} and any w ∈ G(X). Then, w is the unique ele-
ment of G(X) that is rescale-optimal if and only if w point-
wise dominates every element in G(X) \ {w}.
Corollary 8. Consider any non-trivial finite X ⊆ IRn ×
{+1,−1} and any v ∈ G(X). Define w ∈ IRn as fol-
lows. For each j ∈ {1, . . . , n}: (i) If v(j) = 0 then
define w(j) = 0. (ii) If v(j) > 0 then define w(j) =
inf {u(j) : u ∈ G(X), u(j) ≥ 0}. (iii) If v(j) < 0 then
define w(j) = sup {u(j) : u ∈ G(X), u(j) ≤ 0}. If w ∈
G(X) then w is uniquely rescale-optimal in G(X). Also,
there exists a uniquely rescale-optimal element in G(X) if
and only if w ∈ G(X).

4.2 Characterising Rescale-Optimality
Here, we characterise the set of rescale-optimal elements in
G(X), which leads to a computational method for strong
classification.

Definition 4 (agreeing on signs). Forw, µ ∈ IRn, we say that
w and µ agree on signs if for all j = 1, . . . , n, (i) w(j) = 0

⇐⇒ µ(j) = 0; (ii) w(j) > 0 ⇐⇒ µ(j) > 0; and thus also:
(iii) w(j) < 0 ⇐⇒ µ(j) < 0.

Theorem 9. Consider any finite non-trivial X ⊆ IRn ×
{+1,−1}, and any non-zero vector w ∈ G(X). Then, w
is rescale-optimal in G(X) if and only if there exists µ ∈ IRn
and non-negative reals ri, for each i ∈ I(X), such that (a) µ
agrees on signs with w; (b) µ =

∑
i∈I riλi; and (c), for each

i ∈ I(X) either ri = 0 or λi · w = 1, where λi is the ith
element of Λ(X).

Proof: Theorem 5 of [Wilson and Montazery, 2016a] implies
that w is rescale-optimal in G(X) if and only if there exists
µ ∈ IRn and non-negative reals ri (for each i ∈ I(X)) such
that conditions (a), (b), (c) and (d) hold, where (a), (b) and (c)
are the conditions above, and (d) is the condition that w ·µ =
1.
⇒: this follows immediately from Theorem 5 of [Wilson and
Montazery, 2016a].
⇐: Assume that there exists µ ∈ IRn and non-negative reals
ri (for each i ∈ I(X)) such that conditions (a), (b), (c) hold.
w is not the zero vector, since w ∈ G(X). Condition (a),
that µ agrees on signs with w, implies that µ · w > 0. Let
µ′ = µ

µ·w , and for each i ∈ I(X) define r′i = ri
µ·w . Then, (a)

µ′ agrees on signs with w, (b) µ′ =
∑
i∈I r

′
iλi, (c) for each

i ∈ I(X) either r′i = 0 or λi · w = 1, and (d) w · µ′ = 1.
Theorem 5 of [Wilson and Montazery, 2016a] then implies
that w is rescale-optimal in G(X). 2

5 Computation of Strong Classification
Here we express if an instance is strongly positively classified
in terms of a set of constraints.

For a set X ⊆ IRn × {+1,−1} and arbitrary α ∈ IRn, we
would like to determine if YX(α) = 1, i.e., if α is strongly
positively classified. We can infer from Propositions 3 and 5
that YX(α) 6= 1 if and only if there exists a rescale-optimal
element w in G(X) such that for all x+ ∈ X+, w · (x+ −
α) > 1. By taking into account Theorem 9 for characterising
rescale optimality, we obtain a set of inequalities to determine
if YX(α) 6= 1 as follows.

Let λi be the ith element of Λ(X) where i ∈ I(X). Now,
YX(α) 6= 1 if and only if there exists w ∈ IRn and µ ∈ IRn,
and non-negative reals ri for each i ∈ I(X) such that

• ∀x+ ∈ X+, w · (x+ − α) > 1;

• ∀i ∈ I(X), w · λi ≥ 1; (i.e., w ∈ G(X))

• ∀i ∈ I(X), w · λi = 1 or ri = 0;

• ∀j = 1, . . . , n, w(j) = 0 ⇐⇒ µ(j) = 0,
and w(j) > 0 ⇐⇒ µ(j) > 0; (i.e., agreeing on signs);

• µ =
∑
i∈I(X) riλi.

In CPLEX, a disjunctive constraint such as [w · λi = 0
or ri = 0] can be expressed as (w · λi == 0) + (ri ==
0) ≥ 1 (each logical proposition is treated as an integer; 0
for false and 1 for true). The number of constraints here is
2|X+||X−|+ |X+|+ n+ 2.
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Bench. |X| |I(X)| Data Set Features (n)
1. 16 63

Breast Cancer Wisconsin 92. 20 84
3. 25 126
4. 22 72

Pima Indians Diabetes 85. 28 171
6. 18 65
7. 20 64

Blood Transfusion 48. 25 46
9. 25 144

10. 25 84
Indian Liver Patient 1011. 15 36

12. 21 108
13. 30 104

Fertility 914. 20 81
15. 15 14
16. 25 156

Banknote Authentication 417. 20 100
18. 15 50

Table 1: The specifications of 18 benchmarks which are used for the
experiments; these are derived from six real data sets.

6 Experimental Results
The experiments make use of the UCI machine learning
repository3 from which six real data sets are chosen, namely
Breast Cancer Wisconsin [Street et al., 1993], Pima Indi-
ans Diabetes, Blood Transfusion Service Center [Yeh et al.,
2009], Indian Liver Patient, Fertility [Méndez et al., 2012],
and Banknote Authentication. In fact, we include data sets
that meet three criteria: (i) the data set has only two classes,
(ii) the data set consists of only numeric features, and (iii)
number of features is at most 10. The first two criteria en-
sure that the data set complies with the proposed method in
this paper, and the third made the computation especially fast.
Thereafter, 18 benchmarks are derived from those data sets.
Table 1 contains specifications of these benchmarks.

For constructing a benchmark, a random selector creates
two disjoint sets from a data set, one for learning (i.e., X)
and one for testing. However, a pre-processing phase deletes
some elements of the learning set in order to make it consis-
tent (i.e., C(X) 6= ∅), since in this paper we consider only
the consistent case.

For each instance in the testing set (let’s say α), the rescal-
ing method determines—based on the learning setX— either
(i) it is strongly positive (YX(α) = 1), or (ii) it is strongly
negative (YX(α) = −1), or (iii) it is neutral (YX(α) 6= 1 and
YX(α) 6= −1).

The number and percentage of neutral instances for each
benchmark can be found in Table 2. The ratio of neutral in-
stances for the benchmarks (i.e., those instances being clas-
sified differently under different rescaling) varies from 6%
to 95% with a mean of 55.9%. For more than half of the
instances, rescaling the feature values can change the result
of the SVM classification. That points out the unreliability
of standard SVM–specifically for larger numbers like 95%-
– with respect to being sensitive to the way the features are
scaled.

3http://archive.ics.uci.edu/ml/

Benchmark Neutral # Total # Ratio(%)

1. 261 683 38
2. 53 100 53
3. 53 100 53
4. 186 200 93
5. 168 200 84
6. 91 100 91
7. 35 100 35
8. 6 100 6
9. 9 100 9
10. 72 100 72
11. 93 100 93
12. 191 200 95
13. 46 70 66
14. 56 81 69
15. 79 85 93
16. 14 100 14
17. 12 100 12
18. 30 100 30

Avg. 55.9

Table 2: The number and ratio of instances labelled as neutral by the
rescaling method are shown for each benchmark.

In a testing set, among the non-neutral instances, we can
also count:

1. The number of negative instances improperly strongly
classified as positive (False Positive).

2. The number of positive instances properly strongly clas-
sified as positive (True Positive).

3. The number of positive instances improperly strongly
classified as negative (False Negative).

4. The number of negative instances properly strongly clas-
sified as negative (True Negative).

Conventional SVM can also predict a class label for each in-
stance, positive or negative. As a result, we have False Pos-
itive (FP), True Positive (TP), False Negative (FN) and True
Negative (TN) for SVM as well. Tables 3 and 4 compare
these measures between the two methods. Note that the value
of FP + TN (resp. FN + TP) for the rescaling method is not
(necessarily) equal to the total number of testing instances
with real negative (resp. positive) class label because some
instances are classified as neutral.

In Tables 3 and 4, we also compare the Positive Predic-
tive Value (PPV) and Negative Predictive Value (NPV) of the
two methods. PPV is the fraction of truly positive instances
among positively classified ones. Similarly, NPV is the frac-
tion of truly negative instances among negatively classified
ones. Thus, PPV equals TP

FP+TP and NPV equals TN
FN+TN . The

measures PPV and NPV are widely used in medical contexts
in order to validate a disease diagnostic test [Parikh et al.,
2008]. To illustrate, PPV expresses that if a patient’s test is
positive how likely it is that he really has the disease. Simi-
larly, NPV means that if a patient’s test is negative how likely
it is that she really doesn’t have the disease. The results show
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Bench.
SVM Rescaling Method

FP TP PPV(%) FP TP PPV(%)

1. 15 439 97 0 333 100
2. 3 71 96 0 46 100
3. 9 64 88 0 47 100
4. 25 48 66 1 1 50
5. 38 53 58 1 2 67
6. 8 15 65 0 0 -
7. 25 6 19 5 4 44
8. 7 4 43 4 3 36
9. 27 9 25 25 8 24
10. 15 13 46 0 2 100
11. 35 15 30 1 0 0
12. 44 23 34 3 4 57
13. 15 2 12 1 0 0
14. 19 1 5 3 1 25
15. 11 3 21 0 0 -
16. 3 45 94 3 38 93
17. 1 42 98 1 38 97
18. 3 44 94 0 32 100

Avg. 56.56 62.06

Table 3: A comparison, using 18 benchmarks, between the PPV of
SVM and the rescaling method. The undefined values, labelled -,
are excluded from the mean.

Bench.
SVM Rescaling Method

FN TN NPV(%) FN TN NPV(%)

1. 10 219 96 3 86 97
2. 1 25 96 0 1 100
3. 0 27 100 0 0 -
4. 22 105 83 0 12 100
5. 14 95 87 0 29 100
6. 21 56 73 0 9 100
7. 17 52 75 11 45 80
8. 18 71 80 18 69 79
9. 9 55 86 8 50 86
10. 19 53 74 9 17 65
11. 13 37 74 2 4 67
12. 27 106 80 3 4 100
13. 6 47 89 1 22 96
14. 6 55 90 1 20 95
15. 8 63 89 0 6 100
16. 2 50 96 0 45 100
17. 1 56 98 0 49 100
18. 2 51 96 0 38 100

Avg. 86.00 91.47

Table 4: A comparison, using 18 benchmarks, between the NPV of
SVM and the rescaling method. The undefined values, labelled -,
are excluded from the mean.

an increase of 5.5% in PPV and NPV for the benchmarks on
average.

Note that our approach is not intended to be a competitor
of SVM in terms of classification accuracy. What it does is
to highlight certain instances where we can have greater con-
fidence, with the other instances having reduced confidence
because the result of the classification could be changed if a
different scaling of the features were used. This is why PPV
and NPV are appropriate measures for the experimental re-
sults.

The approach discussed in Section 5 was implemented us-
ing the solver CPLEX 12.6.2. Determining whether an in-
stance is strongly positive or strongly negative or neutral for
any of benchmarks takes less than a couple of seconds, mak-
ing use of a computer facilitated by a Core i7 2.60 GHz pro-
cessor and 8 GB RAM memory.

7 Discussion
The scaling of individual features, before applying an SVM
method, can be subjective and arbitrary. However, the way
features are scaled can make a difference; in fact, for a little
more than half of the instances in our experiments, rescaling
the feature values can change the result of the SVM classifica-
tion. Based on this fact, we say an instance strongly belongs
to a class if it belongs to that class for all rescalings of fea-
tures. This new definition boosts the confidence of labeling
instances by excluding those instances which are classified
differently under different scalings.

Building on the general mathematical results of [Wilson
and Montazery, 2016a], we have developed a computational
procedure that can test if an instance is strongly positive, i.e.,
labelled positive for every affine way of rescaling the values
of each feature (and similarly for the negative case). We also
have a polynomial algorithm for determining when rescal-
ing makes no difference, i.e., when, for a given training set,
the classification of any possible instance is not affected by
rescaling. Our experiments also showed a slight improve-
ment in the value of prediction, i.e., the likelihood that if an
instance is classified as a particular class, it truly belongs to
that class.

There are many potential future directions following from
this work; for instance, extending the method to the case
when there is inconsistency in the input data (i.e., soft mar-
gin SVM); attempting to develop the computational method
for certain kernels; performing multi-class classification by
making use of repeated binary-class classification (e.g., using
one-vs-all or one-vs-one approaches); and computing vari-
ations of the method where the user can limit the rescaling
range for different features.
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