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Abstract
We study a transfer learning framework where
source and target datasets are heterogeneous in both
feature and label spaces. Specifically, we do not
assume explicit relations between source and tar-
get tasks a priori, and thus it is crucial to deter-
mine what and what not to transfer from source
knowledge. Towards this goal, we define a new
heterogeneous transfer learning approach that (1)
selects and attends to an optimized subset of source
samples to transfer knowledge from, and (2) builds
a unified transfer network that learns from both
source and target knowledge. This method, termed
“Attentional Heterogeneous Transfer”, along with
a newly proposed unsupervised transfer loss, im-
prove upon the previous state-of-the-art approaches
on extensive simulations as well as a challenging
hetero-lingual text classification task.

1 Introduction
Humans learn from heterogeneous knowledge sources and
modalities, and given a novel task humans are able to make
inferences by leveraging the combined knowledge base. In-
spired by this observation, recent work [Moon and Carbonell,
2016] investigates a completely heterogeneous transfer learn-
ing (CHTL) scenario, where source and target tasks are het-
erogeneous in both feature and label spaces (e.g. document
classification tasks in different languages and with different
categories). In their work, CHTL is formulated as a subspace
learning problem in which heterogeneous source and target
knowledge are combined in a common latent space by the
learned projection. To ground heterogeneous source and tar-
get label terms into a common distributed label space, they
use word embeddings obtained from a language model.

However, most of the previous approaches on transfer
learning do not take into account different instance-level
heterogeneity within a source dataset, often leading to un-
desirable negative transfer. Specifically, CHTL can suffer
from brute-force merge of heterogeneous sources because it
does not assume explicit relations between source and target
knowledge in both instance and dataset-level.

To this end, we propose a new transfer method called “At-
tentional Heterogeneous Transfer”, with the aim of determin-

ing what to transfer and what not to transfer from hetero-
geneous source knowledge. The proposed joint optimization
problem learns the parameters for transfer network as well
as an optimized subset of source dataset, ignoring unneces-
sary or confounding source instances that exhibit a negative
impact in learning the target task.

In addition, we propose a new joint unsupervised optimiza-
tion for heterogeneous transfer network which leverages both
unlabeled source and target data, leading to enhanced dis-
criminative power in both tasks. Unsupervised training also
allows for more tractable learning of deep transfer networks,
whereas the previous literature was confined to linear transfer
models due to a small number of labeled target data.

Note that CHTL tackles a broader range of problems than
prior transfer learning approaches in that they often require
parallel datasets with source-target correspondent instances
(e.g. Hybrid Heterogeneous Transfer Learning (HHTL)
[Zhou et al., 2014] or CCA-based methods for a multi-view
learning problem [Wang et al., 2015]), and that they require
either homogeneous feature spaces [Kodirov et al., 2015;
Long and Wang, 2015] or label spaces [Dai et al., 2008;
Duan et al., 2012; Sun et al., 2015]. We provide a compre-
hensive list of related work in the later section.

Our contributions are three-fold: we propose (1) a novel
transfer learning algorithm that attends selectively to a subset
of samples from a heterogeneous source to allow for a more
tractable and accurate knowledge transfer, and (2) an un-
supervised transfer with denoising auto-encoder loss unique
to the heterogeneous transfer network, allowing for training
deeper layers. (3) We show the efficacy of the proposed ap-
proaches on extensive simulation studies as well as a novel
real-world transfer learning task.

2 Background: Completely Heterogeneous
Transfer Learning (CHTL)

We begin by describing the completely heterogeneous trans-
fer learning (CHTL) setting, where the target multiclass clas-
sification task is learned from both a target dataset and a
source dataset with heterogeneous feature and label spaces.
Figure 1 illustrates the overall pipeline.
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Figure 1: Completely Heterogeneous Transfer Learning
(CHTL). Source and target lie in heterogeneous feature
spaces (xS ∈ RMS , xT ∈ RMT ), and describe heterogeneous
labels (ZS 6= ZT ). Heterogeneous source and target labels
are first embedded into the joint label space via e.g. word
embeddings from language models. CHTL learns projections
f , g, and h simultaneously such that the shared projection f
is trained with both source and target, thus leveraging knowl-
edge from source in prediction of target tasks.

2.1 Notations
Let the target task T = {XT,YT,ZT} be defined with the
target samples XT = {x(i)

T }
NT
i=1 for xT ∈ RMT , where NT

is the target sample size and MT is the target feature dimen-
sion, the corresponding ground-truth labels ZT = {z(i)T }

NT
i=1,

where zT ∈ ZT for the categorical target label space ZT .
and the parallel high-dimensional label representation YT =

{y(i)
T }

NT
i=1 for yT ∈ RME , where ME is the dimension of

the embedded labels. Let LT and ULT be a set of indices
of labeled and unlabeled target instances, respectively, for
|LT | + |ULT | = NT . Only a few labels are available
for a novel target task, thus |LT | � NT . Similarly, de-
fine the heterogeneous source dataset S = {XS,YS,ZS}
with XS = {x(i)

S }
NS
i=1 for xS ∈ RMS , ZS = {z(i)S }

NS
i=1

for zS ∈ ZS , YS = {y(i)
S }

NS
i=1 for yS ∈ RME , and LS

for |LS | = NS (fully labeled source dataset), accordingly.
The CHTL settings allow for MT 6= MS (heterogeneous
feature space) and ZT 6= ZS (heterogeneous label space).
CHTL aims at building a robust classifier for the target task
(XT → ZT ), trained with {x(i)

T ,y
(i)
T , z

(i)
T }i∈LT

as well as
transferred knowledge from {x(i)

S ,y
(i)
S , z

(i)
S }i∈LS

.

2.2 Distributed Representation for Label
Embeddings

In order to relax heterogeneity between source and target la-
bel spaces, it is important to obtain a common distributed la-
bel space where all of the source and target class categories
can be mapped into.

In cases where source and target class categories are repre-
sented with label terms (“names”), we can effectively encode
semantic information of words in distributed representations
using (1) the skip-gram based language model [Mikolov et
al., 2013] trained from unsupervised text, or (2) the entity

embeddings induced from a knowledge graph [Bordes et al.,
2013; Wang et al., 2014; Nickel et al., 2015] with WordNet
[Miller, 1995]. The obtained label term embeddings YS and
YT can be used as anchors for source and target, allowing for
the target model to transfer knowledge from source instances
with semantically similar categories.

2.3 Transfer Network
CHTL [Moon and Carbonell, 2016] builds a transfer net-
work with three main transformation layers: f , g, and h.
g : RMS → RMC and h : RMT → RMC first project
MS-dimensional source features and MT -dimensional target
features into a MC-dimensional joint latent space via linear
transformation, respectively. Once source and target sam-
ples are projected onto the common latent space, the trans-
fer network maps the projected source and target samples via
a shared transformation f : RMC → RME onto the em-
bedded label space. f , g, and h are learned simultaneously
by solving the joint optimization objective with hinge rank
losses for both source and target. While [Moon and Car-
bonell, 2016] only considers linear transformation layers, we
provide a more generalized objective form where f , g, and h
denote mappings implemented with DNNs.

min
Wf ,Wg,Wh

LHR(S;Wg,Wf ) + LHR(T;Wh,Wf ) +R(W)

where

LHR(S)=
1

|LS |

|LS |∑
i=1

∑
ỹ 6=y

(i)
S

max[0, ε−f(g(x(i)
S )) · (y(i)

S − ỹ)>]

LHR(T)=
1

|LT |

|LT |∑
j=1

∑
ỹ 6=y

(j)
T

max[0, ε−f(h(x(i)
T )) · (y(j)

T − ỹ)>]

R(W) = λf‖Wf‖2 + λg‖Wg‖2 + λh‖Wh‖2 (1)

where LHR(·) is the hinge rank loss for source and target,
W = {Wf ,Wg,Wh} are the learnable parameters for f , g,
and h respectively, ỹ refers to the embeddings of other la-
bel terms in the source and the target label space except the
ground truth label of the instance, ε is a fixed margin which
we set as 0.1, R(W) is a weight decay regularization term,
and λf , λg, λh ≥ 0 are regularization constants.

Intuitively, the weight parameters are trained to produce a
higher dot product similarity between the projected source or
target instance and the word embedding representation of its
correct label than between the projected instance and other
incorrect label term embeddings. Note that f is trained and
shared by both source and target samples, thus capable of
leveraging knowledge learned from a source dataset for a tar-
get task. At test time, the following label-producing nearest
neighbor (1-NN) classifier is used for the target task:

1-NN(xT) = argmax
z∈ZT

f(h(xT)) · yz
> (2)

where yz maps a categorical label term z into its word em-
beddings space. A 1-NN classifier for the source task can
be defined similarly, using the projection f(g(·)) instead of
f(h(·)).
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Figure 2: An illustration of CHTL with the proposed ap-
proach. The attention mechanism a filters and suppresses ir-
relevant source samples, and the denoising auto-encoders g′
and h′ improve robustness with unsupervised training.

3 Proposed Approaches
Figure 2 illustrates the proposed approaches.

3.1 Attentional Transfer - What And What Not To
Transfer

While CHTL does not assume any explicit relations between
source and target tasks, we speculate that there are certain
instances within the source task that are more likely to be
transferable than other samples. Inspired by successes of at-
tention mechanism from recent literature [Xu et al., 2015;
Chan et al., 2015], we propose an approach that selectively
transfers useful knowledge by focusing only on a subset of
source knowledge while avoiding others that may have a
harmful impact on target learning. Specifically, the attention
mechanism learns a set of parameters that specify a weight
vector over a discrete subset of data, determining its relative
importance or relevance in transfer. To enhance computa-
tional tractability we first pre-cluster the source dataset into
K number of clusters S1, · · · ,SK, and formulate the follow-
ing joint optimization problem that learns the parameters for
the transfer network as well as a weight vector {αk}k=1..K :

min
a,Wf ,Wg,Wh

µ
K∑

k=1

αk

|LSk
|
· LHR:K(Sk) + LHR(T) +R(W)

where

αk =
exp(ak)∑K
k=1 exp(ak)

, 0 < αk < 1

LHR:K(Sk)=
∑

i∈LSk

∑
ỹ 6=y

(i)
S

max[0, ε−f(g(x(i)
S )) · (y(i)

S − ỹ)>]

(3)

where a is a learnable parameter that determines the weight
for each cluster, LHR:K(Sk) is a cluster-level hinge loss for
source, LSk

is a set of source indices that belong to a cluster
Sk, and µ is a hyperparameter that penalizes a and f for sim-
ply optimizing for the source task only. Note that f is shared
by both source and target networks, and thus the choice of
a affects both g and h. Essentially, the attention mechanism
works as a regularization over source, suppressing the loss
values for non-attended samples in knowledge transfer. In
our experiments we use K-means clustering algorithm.

Optimization: We solve Eq.3 with a two-step alternating
descent optimization. The first step involves optimizing for
the source network parameters Wg,a,Wf while the rest are
fixed, and the second step optimizes for the target network
parameters Wh,Wf while others are fixed.

3.2 Unsupervised Transfer Learning with
Denoising Auto-encoder

We formulate unsupervised transfer learning with the CHTL
architecture for added robustness, which is especially benefi-
cial when labeled target data is scarce. Specifically, we add
denoising auto-encoders where the pathway for predictions,
f , is shared and trained by both source and target through
the joint subspace, thus benefiting from unlabelled source and
target data. Finally, we formulate the CHTL learning problem
with both supervised and unsupervised losses as follows:

min
a,W

µ
K∑

k=1

αk

|LSk
|
· LHR:K(Sk) + LHR(T) + LAE(S,T;W)

where

LAE(S,T;W)=
1

|ULS |

|ULS |∑
i=1

‖g′(f(g(x(i)
S )))− x

(i)
S ‖

2

+
1

|ULT |

|ULT |∑
j=1

‖h′(f(h(x(j)
T )))− x

(j)
T ‖

2 (4)

where LAE is the denoising auto-encoder loss for both source
and target data (unlabelled), g′ and h′ reconstruct input
source and target respectively, and the learnable weight pa-
rameters are defined as W = {Wf ,Wg,Wh,W

′
g,W

′
h}.

4 Empirical Evaluation
We validate the effectiveness of the proposed approaches via
extensive simulations as well as a real-world application.

4.1 Baselines
Note that very few previous studies have addressed the trans-
fer learning settings where both feature and label spaces are
heterogeneous. The following baselines are considered.

• CHTL:ATT+AE (proposed approach; completely het-
erogeneous transfer learning (CHTL) network with at-
tention and auto-encoder loss): the model is trained with
the joint optimization problem in Eq.4.
• CHTL:ATT (CHTL with attention only): the model is

trained with Eq.3. We evaluate this baseline to isolate
the effectiveness of the attention mechanism.
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(a) (b) (c)

Figure 3: Dataset generation process. (a) Draw a pair of source and target label embeddings (yS,m,yT,m) from each of M
Gaussian distributions, all with σ = σlabel (source-target label heterogeneity). For a random projection PS,PT, (b) Draw
synthetic source samples from new Gaussian distributions with N (PSyS,m, σdiff), ∀m ∈ {1, · · · ,M}. (c) Draw synthetic
target samples from N (PTyT,m, σdiff), ∀m. The resulting source and target datasets have heterogeneous label spaces (each
class randomly drawn from a Gaussian with σlabel), as well as heterogeneous feature spaces (PS 6= PT).

• CHTL (CHTL without attention or auto-encoder; [Moon
and Carbonell, 2016]): the model is trained with Eq.1.

• ZSL (Zero-shot learning networks with word embed-
dings; [Frome et al., 2013]): the model is trained
for target dataset only with label embeddings YT ob-
tained from a language model. The model thus lever-
ages knowledge from unsupervised text corpus, and is
reported to be robust for low-resourced classification
tasks. We solve the following optimization problem:

min
WT

1

|LT |

|LT |∑
j=1

l(T(j)) (5)

where the loss function is defined as follows:

l(T(j))=
∑

ỹ 6=y
(j)
T

max[0, ε−h(x(j)
T ) · y(j)

T

>
+h(x

(j)
T ) · ỹ>]]

• ZSL:AE (ZSL with autoencoder loss): we add the au-
toencoder loss to the objective to Eq.5.

• MLP (A feedforward multi-layer perceptron): the model
is trained for a target dataset only with categorical labels.

For each of the CHTL variations, we vary the number
of fully connected (FC) layers (e.g. 1fc,2fc,· · · ) as well
as the label embedding methods as described in Section 2.2
(word embeddings (W2V), knowledge graph-induced embed-
dings (G2V), and random embeddings (RAND) as a reference).

4.2 Synthetic Datasets
We generate multiple pairs of source and target synthetic
datasets and evaluate the performance with average classifi-
cation accuracies on target tasks. Specifically, we aim to an-
alyze the performance of the proposed approaches with vary-
ing source-target heterogeneity at varying task difficulty.

Datasets generation process is described in Figure 3. We
generate synthetic source and target datasets each withM dif-
ferent classes, S = {XS,YS}, and T = {XT,YT}, such
that their embedded label space are heterogeneous with a con-
trollable hyperparameter σlabel. We first generate M isotropic

Gaussian distributions N (µm, σlabel) for m ∈ {1, · · · ,M}.
From each distribution we draw a pair of source and target
label embeddings yS,m,yT,m ∈ RME . Intuitively, source
and target datasets are more heterogeneous with a higher
σlabel, as the drawn pair of source and target embeddings
is farther apart from each other. We then generate source
and target samples each with a random projection PS ∈
RMS×ME ,PT ∈ RMT×ME as follows:

XS,m ∼ N (PSyS,m, σdiff), XS = {XS,m}1≤m≤M
XT,m ∼ N (PTyT,m, σdiff), XT = {XT,m}1≤m≤M

where σdiff affects the label distribution classification diffi-
culty. We denote %LT

as the percentage of target samples
labeled, and assume that only a small fraction of target sam-
ples is labeled (%LT

� 1).
For the following experiments, we set NS = NT = 4000

(number of samples), M = 4 (number of source and tar-
get dataset classes), MS = MT = 20 (original feature di-
mension), ME = 15 (embedded label space dimension),
K = 12 (number of attention clusters), σdiff = 0.5, σlabel ∈
{0.05, 0.1, 0.2, 0.3}, and %LT

∈ {0.005, 0.01, 0.02, 0.05}.
We repeat the dataset generation process 10 times for each
parameter set. We obtain 5-fold results for each dataset gen-
eration, and report the overall average accuracy in Figure 4.

Sensitivity to source-target heterogeneity: each subfig-
ure in Figure 4 shows the performance of the baselines with
varying σlabel (source-target heterogeneity). In general, CHTL
baselines outperforms ZSL, but the performance degrades as
heterogeneity increases. However, the attention mechanism
(CHTL:ATT) is generally effective with higher source-target
heterogeneity, suppressing the performance drop. Note that
the performance improves in most cases when the attention
mechanism is combined with the auto-encoder loss (+AE).

Sensitivity to target label Scarcity: we evaluate the tol-
erance of the algorithm at varying target task difficulty, mea-
sured with varying percentage of target labels given. When a
small number of labels are given (Figure 4(a)), the improve-
ment due to CHTL algorithms is weak, indicating that CHTL
requires a sufficient number of target labels to build proper
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(a) %LT= 0.5% (b) %LT= 1% (c) %LT= 2% (d) %LT= 5%

Figure 4: Simulation results with varying source-target heterogeneity (X-axis: σlabel, Y-axis: accuracy) at different %L. Base-
lines: CHTL:ATT+LD (black solid; proposed approach), CHTL:ATT (red dashes), CHTL (green dash-dots), ZSL (blue dots).

anchors with source knowledge. Note also that while the per-
formance gain of CHTL algorithms begins to degrade as the
target task approaches the saturation error rate (Figure 4(d)),
the attention mechanism (CHTL:ATT) is more robust to this
degradation and avoids negative transfer.

4.3 Hetero-lingual Text Classification
We apply the proposed methods on a hetero-lingual text clas-
sification task, where the objective is to learn a target task
given a source data with heterogeneous feature space (differ-
ent language) and heterogeneous labels (different categories).

Datasets: we use the RCV-1 dataset (English: 804,414
document; 116 classes) [Lewis et al., 2004], the 20 News-
groups1 (English: 18,846 documents; 20 classes), the Reuters
Multilingual [Amini et al., 2009] (French (FR): 26,648, Span-
ish (SP): 12,342, German (GR): 24,039, Italian (IT): 12,342
documents; 6 classes), and the R8 2 (English: 7,674 docu-
ments; 8 classes) datasets.

Main results (Table 1): all of the CHTL variations
outperform the ZSL and MLP baselines, which indicates
that knowledge from heterogeneous source domain does
benefit target task. In addition, the proposed approach
(CHTL:2fc+ATT+AE) outperforms other baselines in most
of the cases, showing that the attention mechanism (K =
40) as well as the denoising autoencoder loss improve the
transfer performance (MC = 320, ME = 300, label:
word embeddings). While having two fully connected layers
(CHTL:2fc) does not necessarily help CHTL performance
by itself due to a small number of labels available for target
data, it ultimately performs better when combined with the
auto-encoder loss (CHTL:2fc+ATT+AE). Note that while
both ZSL and MLP do not utilize source knowledge, ZSL
with word embeddings shows a huge improvement over MLP,
showing that ZSL is robust to low-resourced classification
tasks. ZSL benefits from autoencoder loss as well, but the im-
provement is not as significant as in CHTL. Most of the results
parallel the simulation results with the synthetic datasets, au-
guring well for the generality of our proposed approach.

1http://qwone.com/j̃ason/20Newsgroups/
2http://csmining.org/index.php/

r52-and-r8-of-reuters-21578.html

Table 1: Hetero-lingual text classification test accuracy (%)
on the target task, given a fully labeled source dataset and a
partially labeled target dataset (%LT

= 0.1), averaged over
10-fold runs. Label embeddings with W2V.

Datasets Target Task Accuracy (%)

S T MLP ZSL (:AE) CHTL (:ATT +AE) (:2fc +ATT+AE)

RCV1

FR 39.4 55.7 56.5 57.5 58.9 58.9 58.7 59.0
SP 43.8 46.6 50.7 52.3 53.4 53.5 52.8 54.2
GR 37.7 51.1 52.0 56.4 57.3 58.0 57.3 58.4
IT 31.8 46.2 46.9 49.1 50.6 51.2 49.5 51.0

FR 39.4 55.7 56.5 57.7 58.2 58.4 57.0 58.6
20 SP 43.8 46.6 50.7 52.1 52.8 52.3 52.3 53.1

NEWS GR 37.7 51.1 52.0 56.2 56.9 57.5 55.9 57.0
IT 31.8 46.2 46.9 47.3 48.0 48.1 47.3 47.7

R8

FR 39.4 55.7 56.5 56.5 56.4 57.2 55.9 57.7
SP 43.8 46.6 50.7 50.6 51.3 51.8 50.8 51.2
GR 37.7 51.1 52.0 57.8 56.5 56.4 57.0 58.0
IT 31.8 46.2 46.9 49.7 50.4 50.5 49.4 50.5

FR

R8 48.1 62.8 63.5

61.8 62.6 62.8 61.5 62.3
SP 67.3 66.7 67.1 67.4 67.7
GR 64.1 65.1 65.5 64.4 65.3
IT 62.0 63.4 64.1 61.6 63.0

Table 2: CHTL with attention test accuracy (%) on the tar-
get task, at varying K (number of clusters for attention), av-
eraged over 10-fold runs. %LT

= 0.1, Method: CHTL:ATT.
Datasets Accuracy (%)

S T K = 10 K = 20 K = 40 K = 80

RCV1 FR 57.9 58.1 58.9 58.5
20NEWS FR 57.7 58.0 58.2 58.3

R8 FR 57.0 57.3 56.4 56.6

Sensitivity to attention size K (Table 2): intuitively, K ≈
NS leads to a potentially intractable training while K ≈ 1
limits the ability to attend to subsets of source dataset, and
thus an optimal value of K may exist. We set K = 40 for all
experiments, which yields the highest average accuracy.

Visualization of attention: Figure 5 illustrates the ef-
fectiveness of the attention mechanism with an exemplary
transfer learning task (source: R8, target: GR, method:
CHTL:ATT,K = 40, %LT

= 0.1). The source instances that
overlap with some of the target instances in the label space
(near source label terms ‘interest’ and ‘trade’ and target label
term ‘finance’) are given the most attention, which thus serve
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Figure 5: Visualization of attention (source: R8, target:
GR). Shown in the figure is the 2-D PCA representation of
source instances (blue circles), source instances with atten-
tion: top 5 source clusters with the highest weights (black
circles), and target instances (red triangles) projected in the
embedded label space (RME ). Mostly the source instances
that overlap with the target instances in the embedded label
space are given attention during training.

Table 3: CHTL with varying label embedding methods
(W2V: word embeddings, G2V: knowledge graph embed-
dings, Rand: random vector embeddings): test accuracy (%)
on the target task averaged over 10-fold runs. %LT

= 0.1.
Method: CHTL:2fc+ATT+AE.

Datasets Accuracy (%)

S T W2V G2V Rand

RCV1 FR 59.0 59.4 48.7
20NEWS FR 58.6 58.9 51.8

R8 FR 57.7 57.0 52.1

as an anchor for knowledge transfer. Some of the source in-
stances that are far from other target instances (near source
label term ‘crude’) are also given high attention, which may
be chosen to reduce the source task loss which is averaged
over the attended instances. It can be seen that other hetero-
geneous source instances that may yield negative impact to
knowledge transfer are effectively suppressed.

Choice of label embedding methods (Table 3): While
W2V and G2V embeddings result in comparable performance
with no significant difference, Rand embeddings perform
much poorly. This shows that the quality of label embeddings
is crucial in transfer of knowledge through CHTL.

5 Related Work
Attention-based learning: The proposed approach is largely
inspired by the attention mechanism widely adapted in the
recent deep neural network literature for various applications
[Xu et al., 2015; Sukhbaatar et al., 2015]. The typical ap-
proaches learn parameters for recurrent neural networks (e.g.
LSTM) which during the decoding step determines a weight
over annotation vectors, or a relative importance vector over
discrete subsets of input. The attention mechanism can be
seen as a regularization preventing overfitting during training,
and in our case avoiding negative transfer.

Limited studies have investigated negative transfer, most
of which propose to prevent negative effects of transfer by
measuring dataset- or task-level relatedness via parameter

comparison in Bayesian models [Rosenstein et al., 2005].
Our approach practically avoids instance-level negative trans-
fer, by determining which knowledge within a source dataset
to suppress or attend in learning of a transfer network.

Transfer learning with a heterogeneous label space:
Zero-shot learning approaches train a model with distributed
vector labels transferred from other domains, thus are more
robust for unseen categories. Transfer sources include image
co-occurrence statistics for image classification [Mensink et
al., 2014], text embeddings learned from auxiliary text doc-
uments [Weston et al., 2011; Frome et al., 2013; Socher et
al., 2013; Hendricks et al., 2016], or other class-independent
similarity functions [Zhang and Saligrama, 2015].

Transfer learning with heterogeneous feature spaces:
Multi-view representation learning approaches aim at learn-
ing from heterogeneous “views” (feature sets) of multi-modal
parallel datasets. The previous literature in this line of work
include Canonical Correlation Analysis (CCA) based meth-
ods [Dhillon et al., 2011] with an autoencoder regularization
in deep nets [Wang et al., 2015], translated learning [Dai et
al., 2008], Hybrid Heterogeneous Transfer Learning (HHTL)
[Zhou et al., 2014], [Gupta and Ratinov, 2008], etc., all of
which require source-target correspondent parallel instances.
When parallel datasets are not given initially, [Zhou et al.,
2016] propose an active learning scheme for iteratively find-
ing optimal correspondences, or for text domain [Sun et al.,
2015] propose to generate correspondent samples through
a machine translation system despite noise from imperfect
translation. The Heterogeneous Feature Augmentation (HFA)
method [Duan et al., 2012] relaxes this limitation for a shared
homogeneous binary classification task.

Domain adaptation with homogeneous feature and la-
bel spaces often assumes a homogeneous class conditional
distribution between source and target, and aims to mini-
mize the difference in their marginal distribution. The previ-
ous approaches include distribution analysis and instance re-
weighting or re-scaling [Huang et al., 2007], subspace map-
ping [Xiao and Guo, 2015], basis vector identification via
sparse coding [Kodirov et al., 2015], or via layerwise deep
adaptation [Long and Wang, 2015].

CHTL differs from the above transfer learning or domain
adaptation approaches in that CHTL allows for arbitrarily het-
erogeneous feature and label spaces, and that it does not re-
quire instance-level correspondent datasets.

6 Conclusions
We propose a new method for completely heterogeneous
transfer learning which uses the attention mechanism to de-
termine instance-level transferability of source knowledge, as
well as an unsupervised transfer loss which leads to more ro-
bust projections with deeper transfer networks. We provide
both quantitative and qualitative analysis through comprehen-
sive simulation studies as well as applications on real-world
datasets. Results on synthetic datasets with varying hetero-
geneity and task difficulty provide new insights on the condi-
tions and parameters in which CHTL can succeed. The pro-
posed approach is general and thus can be applied in other
domains, as indicated by the domain-free simulation results.
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