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Abstract
We propose a general framework for discrimina-
tive Bayesian nonparametric clustering to promote
the inter-discrimination among the learned clusters
in a fully Bayesian nonparametric (BNP) manner.
Our method combines existing BNP clustering and
discriminative models by enforcing latent cluster
indices to be consistent with the predicted labels
resulted from probabilistic discriminative model.
This formulation results in a well-defined genera-
tive process wherein we can use either logistic re-
gression or SVM for discrimination. Using the pro-
posed framework, we develop two novel discrimi-
native BNP variants: the discriminative Dirichlet
process mixtures, and the discriminative-state in-
finite HMMs for sequential data. We develop ef-
ficient data-augmentation Gibbs samplers for pos-
terior inference. Extensive experiments in image
clustering and dynamic location clustering demon-
strate that by encouraging discrimination between
induced clusters, our model enhances the quality of
clustering in comparison with the traditional gener-
ative BNP models.

1 Introduction
Clustering is an exploratory data analysis task commonly en-
countered in machine learning and data mining. The ideal
goal of clustering is to group data points into clusters in such
a way that data points within a cluster are similar (minimize
intra-distance) and at the same time, clusters are as separated
as possible (maximize inter-distance). Separated clusters of-
ten result in distinct and more interpretable clusters and the
number of clusters are smaller. Previous work has argued that
discriminative clustering is desirable in various tasks, e.g.,
subspace selection analysis [De la Torre and Kanade, 2006;
Ye et al., 2008], computer vision [Joulin et al., 2010], unsu-
pervised regression [Krause et al., 2010] and factor modeling
[Henao et al., 2014].

As the number of clusters is often unknown and growing
over time, modern Bayesian nonparametric (BNP) clustering
methods have the advantages of automatically identifying the
suitable number of clusters - most popular models include the
Dirichlet process mixture models (DPM) [Ferguson, 1973;

Antoniak, 1974; Sethuraman, 1994; Ghahramani, 2012].
While DPM and models alike have been successful, they
are strictly generative and the clustering outcomes favor the
similarity of data points within a cluster, but do not explic-
itly model the discrimination among clusters. We consider
in this paper discriminative clustering [Kaski et al., 2005;
Ye et al., 2008; Krause et al., 2010; Chen et al., 2014] under
the formalism of Bayesian nonparametrics where data points
in the same cluster not only promote to be similar, but also be
discriminated from other data points from other clusters.

To achieve this goal, we propose a general framework
called the discriminative Bayesian nonparametric clustering.
In our framework, the joint strength of BNP clustering and
discriminative modeling is achieved by enforcing the latent
cluster indices resulted from BNP clustering process to be
consistent with the discriminative decisions or labels pre-
dicted by the Bayesian discriminative model. This allows our
models to have a clear generative process and the flexibility to
choose discriminative loss functions, e.g., logistic loss (as in
logistic regression) or hinge-loss (as in SVM). Using the pro-
posed framework, we develop two novel unsupervised dis-
criminative BNP variants: the discriminative Dirichlet pro-
cess mixtures (DDPM) for i.i.d data, and the discriminative-
state infinite HMMs (DIH) for sequential data. For inference,
our posterior nicely turns out to be similar to the Chinese
restaurant process in DPM but with an additional (discrim-
inative) likelihood ratio term. To efficiently handle the dis-
criminative loss function, we employ data-augmentation sam-
pling technique proposed in [Polson et al., 2011; Polson et
al., 2013]. Together, our inference procedure reduces to an
efficient data-augmentation Gibbs-sampler.

The idea of learning a latent structure to solve the prob-
lem of a supervised discriminative task has been investigated
before (e.g., [Zhu et al., 2014; Li et al., 2014; Chen et al.,
2014]). These works were built on the regularized posterior
Bayesian principle, introducing constraints into (generative)
Bayesian models for classification tasks, as well as for super-
vised sequential labeling problems [Zhang et al., 2014]. In
contrast, our work focuses purely on unsupervised tasks for
both i.i.d and sequential data.

Among others, the closest work to ours is the DP Max-
margin GMM [Chen et al., 2014]. This regularized model
combines a multi-class setting with a standard posterior of a
Bayesian nonparametric clustering models for i.i.d data. In
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contrast, our model is derived by directly enforcing consis-
tency between a generative BNP component with a proba-
bilistic discriminative one. Furthermore, our model can read-
ily incorporate any discriminative loss such as the logistic loss
or the hinge-loss by turning them into likelihood; it also sim-
plifies the inference procedure. Lastly, beyond the work of
[Chen et al., 2014], our discriminative-state infinite HMMs is
designed to handle sequential data.

To demonstrate the benefit of our models, we experiment
with two different tasks in two domains: image clustering
(for clustering task) and dynamic location clustering from
user WiFi usage (for sequential state-space clustering task).
Our experimental results demonstrate that the additional dis-
criminative aspect of our models offers important benefits:
not only that it discovers more discriminative clusters, it also
enhances the quality of clustering in comparison with the tra-
ditional generative BNP models.

2 Data Augmentation
We first briefly review the data augmentation method for
Bayesian discriminative models [Polson et al., 2011; Pol-
son et al., 2013] which has received great interest recently
[Nguyen et al., 2016a; Nguyen et al., 2016b]. Let xi ∈ RD be
a feature vector and yi ∈ {−1,1} be a corresponding observed
label.

2.1 Bayesian Support Vector Machine
Minimizing the regularized Hinge-loss objective function for
a standard SVM L (η ;C) = ∑

N
i=1 2max

{
1− yiη

T xi,0
}
+

C||η ||22 (where η is the vector of coefficient parameters and
C > 0 is the regularization hyper-parameter) is equivalent to
a MAP estimation for the following pseudo-posterior dis-
tribution parameterized by η due to the monotonic prop-
erty of the exponential η̂MAP = argmax

η

p(η | x,y,C) where

p(η | x,y,C) ∝

exp
{
−C||η ||22

} N

∏
i=1

exp
{
−2max

(
1− yiη

T xi,0
)}

. (1)

Thus, p(yi | xi,η) ∝ exp
{
−2max

(
1− yiη

T xi,0
)}

can be
viewed as the likelihood and p(η |C) ∝ exp

{
−C||η ||22

}
as

a prior distribution over η ; this is a Gaussian form, i.e.,
p(η |C) =N (µ0,Σ0) with mean µ0 = 0 and Σ0 = wI where
w = 1

2C .
In a Bayesian setting, we would like to sample from Eq.

(1). However, the likelihood term renders it difficult to
achieve this goal. The key idea from [Polson et al., 2011]
is to augment each data point xi with an auxiliary variables
λi > 0 so that the individual likelihood term can be written as

p(yi | xi,η) ∝ exp
{
−2max

(
1− yiη

>xi,0
)}

=
∫

∞

0

1√
2πλi

exp

{
−
[
λi +

(
1− yiη

>xi
)]2

2λi

}
dλi.

The term inside the integral can then be viewed as the
joint distribution p(yi,λi | xi,η) (over which marginalizing

λi will recover the likelihood for yi). Thus, the posterior
p(η | x,y,C) can be viewed as the marginal from a joint pos-
terior with the auxiliary variables

p(η ,λ | ...) ∝

N

∏
i=1

1√
2πλi

exp

{
−
[
λi +

(
1− yiη

>xi
)]2

2λi

}

× exp
(
−1

2
[η−µ0]

T
Σ
−1
0 [η−µ0]

)
.

Gibbs sampling can now be used on this joint posterior by
sequentially sampling η given λi and vice versa.

3 Discriminative BNP Clustering
We present the proposed discriminative clustering in this sec-
tion. We first describe our framework for exchangeable data,
and then for sequential data, which extend the Dirichlet pro-
cess mixture (DPM) [Antoniak, 1974] and the infinite hidden
Markov model (iHMM) [Beal et al., 2002] with discrimina-
tive power.

3.1 Discriminative DPM
Fig. 1 presents the graphical model representation for our
proposed discriminative Dirichlet process mixture (DDPM).
We start with the set of N data points {x1, . . . ,xN} assumed
to be exchangeable where xi ∈ RD. Our goal is to cluster
them into K clusters through the indicators zi. The number
of active clusters K is unknown and will be determined given
the data setting. Given the concentration parameter α > 0,
we generate the infinite mixing proportion π ∼ Stick(α) and

the cluster label for each data point zi
iid∼Mult(π),∀i = 1, ..,N.

Then, we randomly draw a collection of topic atoms as φk
iid∼

H (ω) and the corresponding data observation xi ∼ F (φzi).
This part of the model is identical to a DPM [Antoniak, 1974].

To introduce discrimination, for each cluster, we randomly
generate the hyperplane ηk

iid∼ N (µ0,Σ0) whose purpose
is to separate cluster k from the other clusters. For each
data point, we further introduce the random vector yi =
[yi1, ...,yiK ,yiKnew ]. Each variable yik ∈ {1,−1} has two par-
ents xi and ηk (cf. Fig. 1) where yik = 1 indicates that xi lies
in the positive half of ηk so that p(yik | xi,ηk)

=

{
∝ exp

{
−2max

[
1− yikηT

k xi,0
]}

for SVM
1

1+exp(−yikxT
i ηk)

for LR. (2)

In a traditional discriminative setting, during training yi∗
will be observed as a one hot encoding1 of the label;
and during testing the predicted value is computed as k̂ =
argmax

k

p(yik = 1 | xi,ηk).

However, our model is unsupervised, therefore y is not ob-
served. To connect and ensure the consistency of the gen-
erative and the discriminative components in our model, we
additionally introduce the consistency variable ci. Specifi-
cally, ci = 1 if yi and zi are consistent in the sense that yizi = 1

1One hot vector has the usual form [0,...,1,...0] while this one has
the form [-1,...1,...-1].
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Figure 1: Stick-breaking representation for the discriminative Dirichlet process mixture (DDPM) (Left) and the discriminative-state infinite
hidden Markov model (DIH) (Right). The DAG arrows from zi and the descendants of xi meet in ci. As a result, conditioning on ci introduces
an extra dependency (in addition to the one already present in the generative model) between xi and zi. This dependency is contained in the
discriminative part of the model.

and yil =−1,∀l 6= zi and ci = 0 otherwise. To force the con-
sistency between yi and zi, ci is clamped to 1. As a result,
the variable yi will be equated to the one-hot encoding of zi.
Hence, there is a dual view of yi: (a) as the hidden mixture
component that the data point xi is assigned to, and (b) as the
target for separation by the discriminative component (either
a Bayesian SVM or a Bayesian LR).

Given ci = 1 and zi = k, we can rewrite
the discriminative likelihood for simplicity as
p
(
yi∗ =

[
−1, ...,1(k), ...,−1

]
| xi,zi = k,η ,ci = 1

)
=

p(yik = 1 | xi,ηk)∏
l 6=k

p(yil =−1 | xi,η l)

=
p(yik = 1 | xi,ηk)

p(yik =−1 | xi,ηk)
×Z. (3)

where Z = ∏
K+1
l=1 p(yil =−1 | xi,η l). For a new cluster, we

sample ηk from its prior.
The introduction of the consistency variable ci is the most

crucial part of our model as it provides the glue between the
generative and the discriminative components. The truth-
value conveyed by ci (true or false) simply reflects whether
the generative component is consistent with the discrimina-
tive component. Viewing this way, it is natural to clamp ci to
true since the generative and the discriminative components
are then forced to be consistent. There is also a rejection-
sampling semantic for our model where the ci is obtained
randomly, but only those samples where ci = 1 are retained.

Posterior inference
We use collapsed and augmented Gibbs sampler for posterior
inference where we integrate out π and φk under conjugacy
property. Note that all probabilities are conditioned on ci = 1,
and hence yi∗ is a one hot encoding of zi. Thus, we do not
need to sample yi∗ when zi is known.

The variables which need to be sampled include zi,λi,∀i =
1, ...,N and the discriminative hyperplane ηk,∀k = 1, ...,K.
Particularly, we provide the posterior inference of λi and ηk
for two discriminative cases of SVM and LR, respectively.

Sampling ηk. Given data points in cluster k {xi | zi = k}
and data points in other clusters

{
x j | z j 6= k

}
, the condi-

tional distribution of the discriminative hyperplane ηk (with
the prior distribution ηk ∼N (µ0,Σ0)), is

ηk | z,x ∝ N (ηk | µ0,Σ0) ∏
i|zi=k

p(yik = 1 | xi,ηk)

× ∏
j|z j 6=k

p
(
y jk =−1 | x j,ηk

)
. (4)

Using data augmentation technique (cf. Sec. 2), the condi-
tional distribution of ηk has the form N (ηk | µN ,ΣN). For
discriminative setting with SVM, we have Σ

−1
N = µ0Σ

−1
0 +

∑
N
i=1

xixT
i

λi
and µN = ΣN

(
∑

N
i=1

λi+1
λi

xiyik

)
. For LR case, Σ

−1
N =

µ0Σ
−1
0 +∑

N
i=1 λixixT

i and µN = ΣN
(
∑

N
i=1

1
2 xiyik +Σ

−1
0 µ0

)
. To

sample ηk ∼ N (µN ,ΣN), we compute Σ
−1
N from the data,

but not ΣN . To avoid computational inefficiency of matrix
inversion, we compute µN by solving the system of linear
equations with the complexity of O

(
D2.376

)
[Ambainis and

Filmus, 2014] where D is the feature dimension.

Sampling λi. We sample the auxiliary variable as fol-
lows: λ

−1
i ∼ IG

(∣∣1− xT
i ηzi

∣∣−1
,1
)

for SVM and λi ∼
PG
(
1,xT

i ηzi

)
for LR.

Sampling zi. Using the graphical model for DDPM
in Fig. 1, the conditional distribution for sam-
pling zi is p(zi = k | ci = 1,x,z−i,η ,y,α,H) ∝

p(zi = k | z−i,α,xi,x−i,H) p(yi∗ | ci = 1,zi = k,ηk,xi)

= p(zi = k | z−i,α)︸ ︷︷ ︸
CRP

× p(xi | zi = k,z−i,x−i,H)︸ ︷︷ ︸
Similarity LK

× p(yi∗ | ci = 1,zi = k,xi,ηk)︸ ︷︷ ︸
Discriminative LK

. (5)

The first term corresponds to a standard Chinese restau-
rant process (CRP). The second term is the similarity like-
lihood, reflecting the similarity of xi w.r.t. other data points
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{
x j | z j = k,∀ j 6= i

}
in cluster k. Here, we utilize the conju-

gacy property to integrate out the parameter φk. The final term
is the discriminative likelihood of the observation xi (defined
in Eq. (3)) which is high if xi lies on the positive half of ηk
and low vice versa.

3.2 Discriminative-state Infinite HMM
The iHMM [Beal et al., 2002], also known as the HDP-HMM
[Teh et al., 2006], is developed to identify the suitable num-
ber of states (clusters) for sequential data. Based on the HDP-
HMM and the discriminative clustering framework proposed
earlier, we develop the discriminative-state infinite hidden
Markov model (DIH) to perform discriminative clustering on
sequential data. The use of Markov property ensures that the
temporal dynamics nature of the data is taken into considera-
tion. We again introduce the variables yik, ci for each obser-
vation (cf. Fig. 1 Right) and the discriminative hyperplane
ηk for capturing the discrimination between clusters.

Sampling zi. We follow Eq. (5) to derive the posterior in-
ference over zi as follows p(zi = k | .) ∝

p(yi∗ | ci = 1,zi = k,xi,ηk)× p(zi = k | z−i,α,β )

× p(xi | zi = k,z−i,x−i,H) .

The first term is the discriminative likelihood, defined in Eq.
(3) where yik = 1 only at zi = k and yil = −1 otherwise.
The second term is the similarity likelihood of the observa-
tion xi in cluster k where the atom component φzi is inte-
grated out. The third term is the CRP for Markov transition
p(zi = k | z−i,α,β )

∝



(
nzi−1,k +αβk

) nk,zi+1+αβzi+1
nk∗+α

k ≤ K,k 6= zi−1(
nzi−1,k +αβk

) nk,zi+1+1+αβzi+1
nk∗+1+α

zi−1 = k = zi+1(
nzi−1,k +αβk

) nk,zi+1+αβzi+1
nk∗+1+α

zi−1 = k 6= zi+1

αβnewβzi+1 k = K +1.

where ni, j is the number of transitions from state i to state j
and ni,∗ is for all transitions from state i.

Sampling λi and ηk. Similar to the approach presented in
Section 3.1 for DDPM.

4 Experiments
We aim to illustrate that our models can reasonably estimate
the unknown number of discriminative clusters and improve
the clustering performance.

Experimental setup. All experiments are running in the
same Windows machine Core i7, 16GB of RAM. The im-
plementation of the proposed model and the baselines are in
Matlab. Throughout the experiments, the prior distribution
for ηk is set as p(ηk | µ0,Σ0)∼N (0,I). We use symmetric
Dirichlet with parameter 0.01. We set the hyperparameters
as α,γ ∼ Gamma(1,1), then we resample them in each iter-
ation (for robustness) following the approaches presented in
[Escobar and West, 1995; Teh et al., 2006].
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Figure 2: Clustering on the linearly chained Gaussians. We note
that if we exhaustively tune the Gaussian covariance hyperparameter
controlling the horizontal shape, DPM will estimate correctly. In
contrast, by utilizing the discriminative property, DDPM can learn
the pattern successfully without tuning the covariance.

To have a good initialization for each discriminative mod-
els, in the first 10 iterations of the collapsed Gibbs sam-
pler, we run our proposed models without using discrimina-
tive property. We call our discriminative DPM with SVM
(DDPM-S) and with LR (DDPM-L). Similarly, DIH-S and
DIH-L refer to the two variants of discriminative state iHMM.
For evaluation, the clustering scores are measured using 10
independent runs, for each run we record the results from the
last 5 Gibbs samples to reduce the sensitivity of MCMC.

4.1 DDPM for Data Clustering
We conduct experiments for DDPM on synthetic linear-shape
Gaussian 2D data and image clustering task where the data
include a collection of i.i.d. observations.

Synthetic experiment
We offer a simple illustration to understand the advantage
of discriminative clustering (against the standard clustering
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Score Kmeans GMM AP DPmeans DPM MMGM DDPM-L DDPM-S

N
U

S K 10-25 10-25 18 17 19 15 15 17
NMI .18(.01) .19(.01) .166 .161 .191(.006) .184(.007) .197(.012) .199(.005)
F1 .16(.01) .16(.01) .145 .166 .172(.003) .177(.01) .175(.011) .180(.007)

Sc
en

es K 10-25 10-25 18 17 12 10 11 12
NMI .16(.02) .17(.02) .154 .155 .208(.006) .186(.008) .218(.01) .217(.02)
F1 .13(.01) .12(.01) .124 .148 .172(.006) .171(.009) .178(.01) .176(.02)

M
ni

st K 10-25 10-25 18 17 20 18 16 14
NMI 0.56(.02) .52(.03) .471 .518 .603(.02) .583(.02) .617(.02) .597(.04)
F1 .40(.03) .38(.02) .327 .379 .395(.01) .420(.02) .481(.02) .457(.03)

Table 1: Image clustering comparison. The best and second best scores are in bold and italic.

methods) in Fig. 2. DDPM-S and DDPM-L recover correctly
K = 2 clusters while DPM cannot recover the true clusters.
Both DDPM and DPM use Gaussian likelihood to encour-
age the similarity of data points within a cluster. In addition,
the discriminative hyperplane ηk in DDPM helps to separate
data points in the k-th cluster to be away from other clusters.
This property makes the algorithm converge to a fewer num-
ber of clusters while gaining better clustering performance.
We note that if we exhaustively tune the covariance of the
Gaussian distribution, DPM might estimate these clusters cor-
rectly; whereas our model achieves this with minimum effort.

Image clustering
We evaluate DDPM on image clustering using NUS Wide
(K=13, N=3411, D=500), Fifteen Scenes (K=15, N=2245,
D=128) and MNIST (K=10, N=1000, D=784) datasets where
K is the number of true cluster, N is the number of data points
and D is the feature dimension. We use SIFT histogram as a
feature which is assumed to follow Multinomial distribution
[Nguyen et al., 2014; Nguyen et al., 2015].

We compare our models with the existing methods:
DPM [Antoniak, 1974]: we use the same configuration

with our proposed model.
MMGM [Chen et al., 2014]: Since Gaussian-Wishart for

high dimensional count data of SIFT vectors is not effective,
we use Multinomial-Dirichlet likelihood.

DPmeans [Kulis and Jordan, 2012]: We follow [Kulis and
Jordan, 2012] method to select λ using farthest-first heuristic
where the expected number of cluster is set to 17 to estimate
λ . This yields λ = 5690.

K-means, GMM and AP [Frey and Dueck, 2007]: We
use Matlab built-in function with Euclidean distance. As K-
means and GMM require the number of clusters provided in
advance, we vary the number of clusters from 10 to 25, then
report the mean and standard deviation.

Table 1 shows the clustering results. DP-means [Kulis and
Jordan, 2012] achieves much lower scores than DPM and
DDPM in clustering quality. DP-means uses small-variance
asymptotic analysis and uses the mean of the data to repre-
sent a center. This trade-off assumption makes the DP-means
deterministic as traditional k-means, hence run faster, but it
degrades the clustering performance. GMM and Kmeans re-
quire the number of clusters provided in advance. To have a
fair comparison with other BNP approaches which can iden-
tify the suitable number of clusters, we vary the number of

NMI K

Sc
or

e

0.18

0.185

0.19

0.195

0.2

0.205

0.21
Clustering Evaluation w.r.t. Σ0=w×I

DPM
w=10-6

w=10-4

w=10-2

w=1 (DDPM)
w=101

Increase Discriminative

K=19

K=17

K=18

Figure 3: NUS Wide: model behavior w.r.t. Σ0 = w× I. As w in-
creases from

[
10−6,101], the norm of η is likely to increase making

the model more discriminative and reduce the number of cluster K
from 19 to 17.

clusters used in GMM and Kmeans, then report the mean and
standard deviation. Our discriminative models consistently
achieve the best clustering quality as they outperform the
other baselines in all NMI and F1-score. Among our two dis-
criminative variants, DDPM-S with the hinge loss performs
slightly better than DDPM-L with the logistic loss.

Our model also outperforms MMGM in clustering ac-
curacy (cf. Table 1) and computationally more efficient.
MMGM [Chen et al., 2014] requires heavier computation
than our models due to its max-margin multiclass formulation
that uses the Reused Algorithm to jointly estimate two vari-
ables: the best and the second best label assignments. The
complexity is hence roughly quadratic in the number of cur-
rent clusters O

(
K2
)
, while sampling zi in our model only

takes O(K).

Model analysis
We study the sensitivity of our discriminative model through
the parameter Σ0 which plays an interesting role in control-
ling our model discriminative property. Let Σ0 = w× I for
w > 0. As w→ 0 (cf. Eq. (4)),∀k, ηk approaches zero; hence
there is no effect of discrimination, and our model reduces to
the standard generative model of DPM. As w increases, the
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Datasets Metric Non-sequential Sequential
User N D DPM DDPM-S DDPM-L IHMM DIH-S DIH-L

A 3932 1114 NMI .275(.01) .253(.008) .246(.026) .305(.028) .254(.035) .276(.010)
F1 .473(.03) .526(.009) .466(.024) .441(.018) .480(.047) .483(.004)

B 1793 185 NMI .245(.006) .253(.006) .253(.003) .235(.023) .254(.002) .257(.003)
F1 .535(.007) .553(.006) .551(.001) .481(.071) .559(.007) .543(.003)

C 6623 1095 NMI .199(.01) .216(.023) .208(.014) .221(.021) .222(.006) .219(.004)
F1 .672(.01) .657(.010) .641(.031) .645(.003) .659(.008) .673(.034)

Table 2: Clustering evaluation on time-series data using non-sequential and sequential methods.

norm of η is also likely to increase, making the discrimina-
tion effect stronger.

We vary the value of w and measure performance on the
NUS Wide dataset. As can be seen from Fig. 3, the NMI
score increases as soon as a small discriminative factor is
introduced (w = 10−6). In terms of the number of clusters,
when we force our model to be more discriminative, our
DDPM tends to get less clusters, reducing K from 19 to 17.
We also notice the robustness of our model in the choice of
Σ0. For a wide range of w ∈

[
10−6,101

]
, our model consis-

tently obtains better performance than the DPM.

4.2 DIH for Time-Series Analysis

We evaluate the proposed discriminative-state iHMM using
sequential data on location dynamic discovery from the MDC
dataset [Laurila et al., 2012]. We pick three users, denoted as
A, B and C. Each user has the WiFi access points recorded
overtime using a smart phone.

We aim to discover the sequence of routine locations of
each user. Each inferred location is represented in our model
a state or a cluster of WiFi usage patterns. The clustering per-
formance is then measured using the ground truth provided.
We compare discriminative-state iHMM (DIH-S and DIH-L)
with the iHMM, as well as models for i.i.d. data (DDPM and
DPM). Our main competitor is the iHMM [Beal et al., 2002]
which utilizes the Markov property to exploit the sequential
dependency and can identify the suitable number of clusters
for time series data.

The clustering performance is reported in Table 2. The
results show that our discriminative-state iHMMs consis-
tently outperforms the standard iHMM. The DIH-S performs
slightly better than DIH-L, and is generally the best method
against all the baselines.

We further illustrate the advantage of our discriminative
models by visualizing how the clustering performance (F1-
score) improves as a function of CPU times in Fig. 4. Since
our method might take longer time in each Gibbs iteration
comparing to the iHMM, to have a fair comparison, we take
the time spent per iteration into the assessment. We observe
that our discriminative iHMM take less time to achieve a
sufficiently good and stable clustering result. Although not
definitive, this behavior suggests that the augmented Gibbs
sampler developed for our discriminative iHMM is mixing
just as well as the collapsed Gibbs sampler on iHMM, if not
faster.
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Figure 4: The performance w.r.t. CPU time on User A.

5 Conclusion

Extending current generative nonparametric Bayesian clus-
tering models, we proposed a novel framework for discrim-
inative Bayesian nonparametric clustering. Our framework
introduces a discriminative component into the existing gen-
erative models by enforcing consistency between the genera-
tive clusters and the self-induced discriminative labels. This
results in two new discriminative BNP clustering models: dis-
criminative DPM and discriminative-state iHMM suitable for
i.i.d. and sequential data respectively. By employing a recent
data-augmented Gibbs sampler technique for Bayesian prob-
abilistic discriminative classification models (i.e., SVM and
LR), we further developed an efficient inference algorithms
for our models. Under the new framework, we automatically
identify the (unknown) number of clusters while encourag-
ing the similarity within a cluster as well as the separation
between the clusters. Experiments with image clustering and
sequential WiFi data clustering tasks demonstrated that our
model consistently improved in clustering quality compared
to existing methods. To scale up this framework, our future
work is readily applicable to use recent advances in scalable
inference for BNP such as stochastic variational techniques.
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