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Abstract
In multiview learning, it is essential to assign a rea-
sonable weight to each view according to the view
importance. Thus, for multiview clustering task,
a wise and elegant method should achieve cluster-
ing multiview data while learning the view weight-
s. In this paper, we propose to explore a Laplacian
rank constrained graph, which can be approximate-
ly as the centroid of the built graph for each view
with different confidences. We start our work with
a natural thought that the weights can be learned
by introducing a hyperparameter. By analyzing the
weakness of this way, we further propose a new
multiview clustering method which is totally self-
weighted. More importantly, once the target graph
is obtained in our models, we can directly assign
the cluster label to each data point and do not need
any postprocessing such as K-means in standard
spectral clustering. Evaluations on two synthet-
ic datasets indicate the effectiveness of our meth-
ods. Compared with several representative graph-
based multiview clustering approaches on four real-
world datasets, the proposed methods achieve the
better performances and our new clustering method
is more practical to use.

1 Introduction
Many computer vision objects, such as image and video, in-
volve instances represented with multiple views. It is essen-
tial to study how to efficiently cluster such kind of data. Sup-
pose we use a graph to capture entities and their relation in
each view, we will naturally obtain multiple graphs. There-
fore, from this perspective, graph-based multiview clustering
can be transformed into a multiple graph learning problem.

Prior to the multiple graph learning method, a direct way
to handle multiview data is to concatenate all the features in-
to a new one and then utilize it to construct a single graph.
However, this seemingly simple method neglects the relation
among all the views and doesn’t make sense theoretically.
Recently, in pratice many works would prefer to construc-
t a graph for each view and then jointly utilize them to learn
a unified one. Inspired by co-training [Blum and Mitchel-
l, 1998], which is widely used in multiview semisupervised

learning, [Kumar and Daumé, 2011] searched for the clusters
that agree across all the views. Later, to minimize the dis-
agreement between every pair of views, [Kumar et al., 2011]
applied the co-regularization technique to spectral cluster-
ing model and reformulated multiview clustering as a jointly
maximization problem. Similarly, [Cai et al., 2011] designed
a graph-based multiview spectral learning model to integrate
heterogenous image features. These methods extend pairwise
concept to multiple views condition and look for the most
consistent representation. Following a more comprehensive
thought is that each individual view may contain specific in-
formation as well as common information, [Tang et al., 2009]
presented the linked matrix factorization model to extract the
structure information shared by all the graphs.

Almost every aforementioned method works on the as-
sumption that all the views are reliable. However, in real-
world clustering problems, the views of data are inherent-
ly strong or weak, and meanwhile some may have been
corrupted by noises. This means the final results will be
degraded if we fail to distinguish different views. [Xi-
a et al., 2014] addressed this problem by separating noise
from each graph and learned a shared low-rank transition
probability matrix, which will be the input to the standard
Markov chain method for clustering. [Kumar et al., 2011;
Cheng and Zhao, 2009] proposed to roughly compute the
weights by combining with the prior knowledge. This kind
of approaches are manually intervening or shallow. In
view of this point, some other methods [Li et al., 2015;
Xie and Sun, 2013] looked for a new weight learning strategy
which has been widely used in multiview learning. It explic-
itly defines the view weights in the objective and then learns
them as variables, which is parallel with the thought of our
first method. Nevertheless, this so-called adaptive or auto-
matical weight learning strategy has to resort to an additional
hyperparameter (For simplicity, we replace with γ when re-
ferring this parameter in the following text), which is usually
difficult to set in a specific task.

The first motivation of this work is: it is very common
that graph-based clustering methods appear in the contex-
t of spectral learning, such as [Kumar and Daumé, 2011;
Kumar et al., 2011; Cai et al., 2011; Tang et al., 2009;
Xia et al., 2014; Cheng and Zhao, 2009; Li et al., 2015;
Xie and Sun, 2013]. This means that in the last step of these
methods, it often needs to apply a simple clustering method
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such as K-means to the learned indicator matrix. However,
the uncertainty of this postprocessing operation will increase
the instability of the original performance. We avert this trou-
ble by extending an existing single graph learning approach
[Nie et al., 2016b] to multiview domain. Inspired by the re-
cent works, we propose the Parameter-weighted Multiview
Clustering (PwMC) method to weightedly combine each s-
ingle graph learning model. The second motivation is that,
as many previous works, PwMC involves an undesired pa-
rameter γ. There are two reasons to argue. 1) In context of
unsupervised learning where no instance is labeled, γ can not
be obtained by traditional supervised hyperparameter tuning
techniques, such as cross validation. 2) It is observed that
the final experimental performance is sensitive to γ and the
optimum of γ varies on different datasets (see Experiments
part of Section 3.3), which causes PwMC (and the related
multiview clustering methods with the similar weight learn-
ing strategy) not practical to use. Thus, to remove γ while
without loss of too much precision, we further propose a new
Self-weighted Multiview Clustering (SwMC) method. These
two motivations are exactly corresponding to our contribu-
tions of this paper. The toy examples and experiments on
real-world datasets demonstrate the the effectiveness of our
proposed methods.

Notation. Throughout the paper, all the matrices are writ-
ten as uppercase. For a matrix M , the i-th row and ij-th ele-
ment of M are denoted as mi and mij separately. The trace
of M is denoted as Tr(M). The v-th view representation of
M is written as M (v). The Frobenius norm of matrix M is
denoted by ‖M‖F . In particular, we use 1n to denote a n
dimensional column vector where each element is 1.

2 The Proposed Framework
2.1 Graph-based Clustering Revisit
Suppose we have n samples and they can be partitioned into
c clusters, graph-based clustering methods firstly construc-
t a Similarity Matrix (SM, and we will not differ SM and
graph in this paper) to represent the affinities of all the sam-
ples. Many early works have studied how to design a SM
with high quality, such as [Zelnik-Manor and Perona, 2005;
Cai et al., 2005]. These well-designed SMs will be the in-
puts of graph-based clustering methods, e.g., spectral cluster-
ing. However, an ideal SM S ∈ Rn×n is supposed to exactly
have c connected components, by which way, S can be direct-
ly used for the clustering task. Recently, [Nie et al., 2014a;
Feng et al., 2014; Chen and Dy, 2016; Nie et al., 2016b] have
leveraged this property in different ways. We briefly intro-
duce the Constrained Laplacian Rank (CLR) method [Nie et
al., 2016b] therein, which is easier to understand and will be
the base of our proposed framework. Given an arbitrary input
SM A ∈ Rn×n, the target SM can be learned by minimizing
the following problem

min
si1n=1,sij≥0,S∈C

‖S −A‖2F , (1)

where S is nonnegative, whose each row sums up to 1, and C
represents the set of n by n square matrices with c connect-
ed components. According to the graph theory in [Mohar et

al., 1991; Chung, 1997], the connectivity constraint can be
replaced with a rank constraint, and thus we have

min
si1n=1,sij≥0,rank(LS)=n−c

‖S −A‖2F , (2)

where rank(LS) means the rank of LS . The Laplacian ma-
trix LS = DS −

(
ST + S

)/
2, where the degree matrix

DS ∈ Rn×n is defined as a diagonal matrix whose i-th di-
agonal element is

∑
j (sij + sji)/2. In this way, the target

SM can be solved and we directly use it for clustering.

2.2 Parameter-weighted Multiview Clustering
(PwMC)

CLR is a single view graph-based clustering method. In
this paper, we introduce this technique into multiview clus-
tering domain. For multiview data, let m be the number
of views and A(1), A(2), ..., A(m) be the corresponding input
SMs, where A(v) ∈ Rn×n(1 ≤ v ≤ m). Thus, our goal be-
comes to find out the target SM S which is constrained as in
Eq. (2) but can approximate each original input SM A(v). An
intuitive way to address this problem is to simply calculate an

average SM A = 1
m

m∑
v=1

A(v) and input it into CLR. Actu-

ally, this thought is equivalent to assigning the equal weight
to each graph. In practice, we need to employ a group of
meaningful weights to measure the importance of each view.
In other words, the target SM S is supposed to approximate
every input SM with different confidences. This idea can be
naturally modeled by minimizing the linear combination of
the reconstruction error

∥∥S −A(v)
∥∥2
F

for each view. Thus,
the formulated objective can be written as

min
α(v),S

m∑
v=1

α(v)‖S −A(v)‖2F+γ ‖α‖22

s.t. α(v) ≥ 0, αT1m = 1, sij ≥ 0, si1n = 1,

rank(LS) = n− c,

(3)

where α =
[
α(1), α(2), ..., α(m)

]T
and γ > 0. The second

term in problem (3) is used to smoothen the weight distri-
bution. Straightforward, without this regularization term (or
γ → 0), the trivial solution will be obtained, i.e., the weight
of best view will be assigned to 1 and other weights will be
0s. On the contrary, when γ →∞, the equal weights will be
obtained. Since the weights severely depend on the parame-
ter γ, we name this method as Parameter-weighted Multiview
Clustering (PwMC). The detailed procedure of optimize the
problem (3) is presented in Section 2.4.

2.3 Self-weighted Multiview Clustering (SwMC)
Although problem (3) provides a feasible scheme to fuse mul-
tiple graphs on the model level, it involves the undesired pa-
rameter γ, which is confirmed to be dataset-related by our ex-
periments. To remove the parameter γ in problem (3), we pro-
pose a self-weighted multiview clustering method. It sounds
unreasonable that the suitable weights could be generated out
of thin air. But in this part, we present a new formulation
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that actually induces a self-conducted weight learning. The
proposed objective is

min
sij≥0,si1n=1,rank(LS)=n−c

m∑
v=1

∥∥∥S −A(v)
∥∥∥
F
. (4)

This equation looks pretty simplified and compact, but no
weight factor is explicitly defined therein. We consider it as a
normal issue and firstly write its Lagrange function

min
S

m∑
v=1

∥∥∥S −A(v)
∥∥∥
F

+ G (Λ, S) , (5)

where Λ is the Lagrange multiplier, G (Λ, S) serves as a proxy
for the constraints to S. Taking the derivative of Eq. (5) w.r.t
S and setting the derivative to zero, we have

m∑
v=1

w(v)
∂
∥∥S −A(v)

∥∥2
F

∂S
+
∂G (Λ, S)

∂S
= 0, (6)

where w(v) is given as the following form1

w(v) = 1

/(
2
∥∥∥S −A(v)

∥∥∥
F

)
. (7)

Obviously, from Eq. (7) we know that w(v) is dependent on
S, which means the two factors of the first term in Eq. (6) are
coupled with each other. But if we setw(v) stationary, Eq. (6)
can be considered as the solution to the following problem

min
sij≥0,si1n=1,rank(LS)=n−c

m∑
v=1

w(v)
∥∥∥S −A(v)

∥∥∥2
F
, (8)

which is simpler to be solved. And then, the calculated S
from problem (8) can be further used to update w(v) by Eq.
(7). This inspires us to solve the original problem (4) by alter-
nately optimizing S and w(v) iteratively. We summarize this
process into Algorithm 1. Moreover, if this alternating op-
timization strategy converges (it will be proved later), from
Eq. (6) we know that the finally learned S will converge to
the KKT condition of the problem (4).

Algorithm 1 The algorithm of Self-weighted Multiview
Clustering (SwMC) in Eq. (4)

Input: SMs for m views
{
A(1), A(2), ..., A(m)

}
and A(v) ∈

Rn×n, number of clusters c.
Initialize the weight for each view (e.g., α(v) = 1

m ).
repeat

1. Calculate S by solving the problem (8).
2. Update α(v) by using Eq. (7).

until converge
Output: S ∈ Rn×n with exactly c connected components

1To avoid dividing by zero, in practice we use the following for-

mula w(v) = 1

/(
2
√
‖S −A(v)‖2F + δ

)
, where δ is some very

small value, like 0.0001.

So far, we have presented the general process to solve the
problem (4). But what is the relation between it and our self-
weighted multiview learning? Inspecting Eq. (8), when the
optimization process converges, its form can be described
as the linear combination of reconstruction errors of dif-
ferent views if we view thew(v) as the weight factor, which
is exactly what we want to learn. Since Eq. (8) is derived
from solving the problem (4), it is a totally self-weighted
process. Furthermore, if view v is good, then

∥∥S −A(v)
∥∥
F

should be small, and thus the learnt w(v) for view v is large
according to Eq. (7). Accordingly, a weak view will be as-
signed a small weight. This indicates that our self-weighted
learning model is meaningful. In fact, the above process
of solving problem (4) can be seen as a special case of
the Iteratively Re-weighted (IR) technique [Nie et al., 2010;
Daubechies et al., 2010; Nie et al., 2014b]. In this perspec-
tive, the effectiveness of this method will reflect the practical
significance of the weight formula in IR.

2.4 Optimization
Optimization of PwMC
Once given a proper value of parameter γ, we can adopt the
alternating iterative strategy to optimize the problem (3).

When α is fixed, we need to solve the following subprob-
lem

min
sij≥0,si1n=1,rank(LS)=n−c

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥2
F
. (9)

Let σi (LS) denote the i-th smallest eigenvalue of LS .
σi (LS) ≥ 0 since LS is positive semi-definite. Given a large
enough λ2, the rank constraint in Eq. (9) can be eliminated
and the problem (9) is equivalent to the following form:

min
sij≥0,si1n=1

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥2
F

+ 2λ

c∑
i=1

σi (LS). (10)

When λ is large enough, note that σi (LS) ≥ 0 for each i,
thus the optimal solution S to the problem (10) will make

the second term
c∑
i=1

σi (LS) equal to zero and the constraint

rank(LS) = n − c will be satisfied. In addition, accord-
ing to Ky Fan’s Theory [Fan, 1950], we have the following
equation:

c∑
i=1

σi (LS) = min
F∈Rn×c,FTF=I

Tr
(
FTLSF

)
. (11)

Thus, combining with Eq. (11), the problem (10) is further
equivalent to the following problem:

min
S,F

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥2
F

+ 2λTr
(
FTLSF

)
s.t. sij ≥ 0, si1n = 1, F ∈ Rn×c, FTF = I.

(12)

2Unlike the regular hyperparameter, this introduced λ will not
influence the final experimental performance. In our method, fol-
lowing the CLR method, we determine the value of λ in a heuristic
way to accelerate the procedure.
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We solve this problem by optimizing variables F and S iter-
atively as follows.

i. Solving F When S is fixed, the problem (12) becomes

min
F∈Rn×c,FTF=I

Tr
(
FTLSF

)
. (13)

It is known that the optimal solution of F is formed by the c
eigenvectors of LS corresponding to the c smallest eigenval-
ues.

ii. Solving S When F is fixed, the problem (12) becomes

min
sij≥0,si1n=1

m∑
v=1

α(v)
n∑

i,j=1

(
sij − a(v)ij

)2
+λ

n∑
i,j=1

‖fi − fj‖22 sij .

(14)
Since the problem (14) is independent for different i, we can
solve the following problem separately for each i:

min
sij≥0,si1n=1

n∑
j=1

m∑
v=1

α(v)
(
sij − a(v)ij

)2
+ λ

n∑
j=1

‖fi − fj‖22 sij .

(15)
For simplicity, we denote vij = ‖fi − fj‖22 and vi as a vector
with j-th element equal to vij (and similarly for si and ai),
the problem (15) can be written in vector form as

min
si≥0T

n ,si1n=1

∥∥∥∥∥si −
(

m∑
v=1

α(v)a
(v)
i −

λ

2
vi

)/
m∑
v=1

α(v)

∥∥∥∥∥
2

2
(16)

This problem can be solved by an efficient iterative algorithm
proposed in [Duchi et al., 2008]. To accelerate the comput-
ing, we can choose to update t (One can set t as a const, like
10) neighbors of i-th data. Thus, S is totally sparse and can
be rapidly calculated.

When S is fixed, the problem (3) is reduced to minimiza-
tion to the following problem

min
α(v)≥0,αT 1m=1

m∑
v=1

α(v)e(v) + γ ‖α‖22 , (17)

where e(v) =
∥∥S −A(v)

∥∥2
F

. It is easy to rewrite the problem
(17) into the following form

min
α≥0T

m,α
T 1m=1

∥∥∥∥ e2γ + α

∥∥∥∥2
2

, (18)

which is identical with the problem (16). Now, we summarize
the solving process of problem (3) in Algorithm 2.

Optimization of SwMC
According to Algorithm 1, solving SwMC mainly contains
two alternative steps, in which updating by Eq. (7) is quite
simple while the subproblem (8) needs to be further calculat-
ed. Seeing that the only difference between problems (8) and
(9) is whether weights sums up to 1, thus we can solve the
subproblem (8) with the same way.

2.5 Converge Analysis
According to the alternating optimization steps described in
Algorithm 2, since we can find the optimal solution of each

Algorithm 2 The algorithm of Parameter-weighted Multi-
view Clustering (PwMC) in Eq. (3)

Input: SMs for m views
{
A(1), A(2), ..., A(m)

}
and A(v) ∈

Rn×n, number of clusters c, parameter γ.
Initialize the weight for each view (e.g., α(v) = 1

m ). Let

A =
m∑
v=1

α(v)A(v), and compute F ∈ Rn×c, which is

formed by the c eigenvectors of LA = DA − AT+A
2 corre-

sponding to the c smallest eigenvalues.
repeat

repeat
i. For each i, update the i-th row of S by solving the
problem (16).
ii. Update F , which is formed by the c eigenvectors
of LS = DS − ST+S

2 corresponding to the c smallest
eigenvalues.

until converge
Update the weight α(v) by solving the problem (18).

until converge
Output: S ∈ Rn×n with exactly c connected components.

subproblem, obviously Algorithm 2 will converge. Now, we
focus on proving the convergence of Algorithm 1.
Lemma 1 [Nie et al., 2010] For any positive number u and v,
the following inequality holds:

u− u2

2v
≤ v − v2

2v
. (19)

Theorem 1 In each iteration of Algorithm 1, the updated tar-
get SM S will monotonically decrease the objective of prob-
lem (4), which generally makes the solution converge to the
local optimum of the problem (4) .
Proof: Let S̃ denote the updated S in each iteration. Accord-
ing to the first step of loop in Algorithm 1, we have

S̃ = arg min
sij≥0,si1n=1,rank(LS)=n−c

m∑
v=1

w(v)
∥∥∥S −A(v)

∥∥∥2
F
.

(20)
Combining with w(v) = 1

/(
2
∥∥S −A(v)

∥∥
F

)
, we can derive

m∑
v=1

∥∥∥S̃ −A(v)
∥∥∥2
F

2
∥∥S −A(v)

∥∥
F

≤
m∑
v=1

∥∥S −A(v)
∥∥2
F

2
∥∥S −A(v)

∥∥
F

. (21)

According to Lemma 1, we have

m∑
v=1

∥∥∥S̃ −A(v)
∥∥∥
F
−

m∑
v=1

∥∥∥S̃ −A(v)
∥∥∥2
F

2
∥∥S −A(v)

∥∥
F

≤
m∑
v=1

∥∥∥S −A(v)
∥∥∥
F
−

m∑
v=1

∥∥S −A(v)
∥∥2
F

2
∥∥S −A(v)

∥∥
F

(22)

Summing Eq. (21) and Eq. (22) in the two sides, we arrive at
m∑
v=1

∥∥∥S̃ −A(v)
∥∥∥
F
≤

m∑
v=1

∥∥∥S −A(v)
∥∥∥
F
. (23)
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View MSRCv1 Cal-7(20) Digits

1 CM(24) Gabor(48) FOU(76)
2 HOG(576) WM(40) FAC(216)
3 GIST(512) CENT(254) KAR(64)
4 LBP(256) HOG(1984) PIX(240)
5 CENT(254) GIST(512) ZER(47)
6 - LBP(928) MOR(6)

# Size 210 1474(2386) 2000
# Classes 7 7(20) 10

Table 1: Statistics of four datasets

Thus, the iterative optimization will monotonically decease
the objective of the problem (4) in each iteration until it con-
verges. When the convergence reaches, the equality in Eq.
(22) holds, thus S̃ will satisfy Eq. (6), the KKT condition of
problem (4). Therefore, in most cases, the Algorithm 1 will
at least converge to a local optimal solution of problem (4).

3 Experiments
In this paper, we follow CLR method to construct a graph for
each view as the initialized input graph A(v). Different from
some regular kernel-based methods [Zelnik-Manor and Per-
ona, 2005; Cai et al., 2005], this graph construction approach
only needs to set one parameter k which represents the num-
ber neighbors. For all the compared methods, we validate
their performances by fixing k as 10. Another advantage is
that this approach naturally obtains the neat normalized graph
for each view. It is a hard-to-get property, and many previ-
ous graph construction methods have to normalize multiview
data before utilization. The standard clustering Purity and
Normalized Mutual Information (NMI) metrics are used to
measure the clustering performance in our experiments.

3.1 Toy Example
In this part, we conduct two toy experiments to verify the
effectiveness of the proposed algorithms.

Toy 1 dataset. We design a two-view synthetic dataset
where each view is a 90× 90 matrix with three 30× 30 block
matrices diagonally arranged. Without loss of generality, the
data within each block denotes the affinity of two correspond-
ing points in one cluster, while the data outside all blocks de-
notes noise. Each element in all blocks is randomly generated
in the range of 0 and 1, while the noise data is randomly gen-
erated in the range of 0 and e, where e is set as 0.6 in the 1st
matrix, and 1.0 in the 2nd matrix. Then they are normalized
to be that the sum of each row is 1. The original input graphs
are shown in Figure 1.

We have verified that CLR can directly recover the desired
block diagonal matrix from view 1 but fails on view 2. Given
some small value to the parameter γ, the learned weights of
PwMC are close to 1/0 , which means in such a situation P-
wMC achieves the best performance (For the space limitation,
we won’t present all the learned clean block diagonal ma-
trix.) by selecting the best view. For SwMC, it also learns the
clean block diagonal matrix but with the normalized weights

(a) View 1, e = 0.6 (b) View 2, e = 1.0

Figure 1: Toy 1 is a two-view synthetic dataset, in which view 1 is
strong while view 2 is full of noises.

(a) View 1, e = 0.6,0.8 (b) View 2, e = 0.7,1.0

Figure 2: Toy 2 contains two views (a,b) which are generally com-
plementary but with different noises.

0.63/0.37. Seeing that the elements within diagonally blocks
always contributes to clustering, it indicates that SwMC ar-
rives at the optimal solution in a different style.

Toy 2 dataset. This synthetic dataset has the same scale
with Toy 1 but with the different noise settings. The initial
noise in view 1 and 2 is set as e = 0.6 and e = 0.7 respec-
tively. By increasing the noise between the first and second
block data to e = 0.8, we obtain the input matrix for view 1.
Similarly, in view 2, we increase the noise between the sec-
ond and third block data to e = 1.0. They are are normalized
and then shown as Figure 2.

By performing CLR on each individual graph, their clus-
tering performance are : Purity of view 1 and 2 are 0.66/0.63,
NMI of view 1 and 2 are 0.58/0.58. The proposed methods
can still integrate these two complementary graphs and re-
cover the clean block diagonal matrix. The learned weights
of both proposed methods are around 0.53/0.47. Noting that
view 1 contains less noise than view 2, for SwMC method,
according to Eq. (7), we find this phenomenon agrees with
our prior inference in Section 2.3.

3.2 Performance Evaluation
Following [Li et al., 2015], we evaluate the performance of
the compared methods on three multi-view datasets, MSR-
Cv1 [Winn and Jojic, 2005], Caltech101 [Fei-Fei et al., 2007]
(we use two regular subsets Caltech101-7 and Caltech101-
20), Handwritten numerals (Digits) [Asuncion and Newman,
2007], which are briefly summarized in Table 1.

We compare the proposed PwMC and SwMC with follow-
ing methods: Co-regularized spectral clustering [Kumar et
al., 2011] (Co-reg), Multi-View Spectral Clustering [Cai et

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2568



MSRCv1 Caltech101-7 Caltech101-20 Digits

Purity NMI Purity NMI Purity NMI Purity NMI

CLRbest 0.6143 0.6005 0.8437 0.5221 0.6102 0.3761 0.8720 0.8759
Co-reg 0.6243 0.5924 0.6669 0.3227 0.5624 0.4879 0.8243 0.8068
MVSC 0.7286 0.6152 0.8453 0.5972 0.7045 0.5025 0.8610 0.8532
RMSC 0.7295 0.6138 0.8047 0.4788 0.7083 0.4903 0.7794 0.7349
PwMC 0.8857 0.8062 0.8548 0.5713 0.7137 0.5121 0.8800 0.8925
SwMC 0.8667 0.7835 0.8548 0.5423 0.7137 0.5121 0.8815 0.8934

Table 2: Clustering performance comparison, where SwMC is the unique one which has no parameter to tune.
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Figure 3: Clustering results comparison between SwMC and PwMC on different datasets.

al., 2011] (MVSC), Robust Multi-view Spectral Clustering
[Xia et al., 2014] (RMSC). For each compared method, the
parameter is allowed to be tuned as optimum (never forget
that the proposed SwMC has no parameter to tune except for
the prefixed cluster number k). Meanwhile, to reduce the in-
fluence of the postprocessing to the learned indicator matrix,
for all the methods involving K-means, we repeat them for
50 times and report the averaged result. As for our methods,
we only run once. We mark the top two results in bold face.

Table 2 shows the clustering Purity and NMI of all the
methods on four datasets respectively. The best result of
CLR is set as the baseline in this experiment. In general, the
proposed methods in most cases achieve the top two perfor-
mances among the compared state-of-the-art multiview clus-
tering methods. Meanwhile, we find that Co-reg achieves the
unsatisfactory results, which is due to the fact that we have no
prior knowledge to support the weight assignment and thus
weight learning is not conducted in this scheme. For RM-
SC, it usually obtains the decent results but sometimes fails,
especially on digit recognition tasks. As we mention before,
RMSC differs diverse views by peeling the assumed noise
(error) from each built graph and learning a clean and unified
one. Thus, a convincing explanation for that failure case is
that RMSC cannot handle the views in which some are natu-
rally dominant while others are pretty weak. MVSC searches
a linear combination of different view’s graphs, whose perfor-
mance is slightly inferior to our graph structure based multi-
view clustering method.

3.3 Parameter-free Weight Learning
Figure 3 exhibits the clustering performance of the proposed
SwMC comparing with PwMC on different datasets. Typi-

cally, γ in PwMC is searched in logarithm form (log10γ from
0 to 4 with step size 0.5). Although PwMC and SwMC are
influenced by the different initializations, we start then with
the equal weights in this experiment.

According to Figure 3, except for Digits, PwMC achieves
better (or at least equal) performance than SwMC at some
specific γ. Theoretically, a specific γ corresponds to a weight
distribution, which means the optimal weight combination
will be obtained if one can search all the possible γs. How-
ever, it is observed that the performance of PwMC varies dra-
matically when γ changes, which makes that attempting to
apply a fixed γ throughout all the applications is not prac-
tical. Therefore, the proposed method SwMC is preferred.
This new multiview clustering method does not depend on an
additional parameter to learn the weights and without much
precision loss, is interesting and can be acceptable.

4 Conclusion

In this paper, to recover the block diagonal matrix from
multiple original input graphs, we firstly propose Parameter-
weighted Multiview Clustering (PwMC) method. By analyz-
ing its weaknesses, we further propose a new weight lean-
ing strategy in multiview clustering, named as Self-weighted
Multiview Clustering (SwMC). The proposed methods are
verified on two toy datasets and four benchmark datasets. Ex-
perimental results demonstrate the effectiveness of our meth-
ods. Especially, we note that SwMC achieves the close per-
formance with PwMC but is practical to use. In future work,
like [Nie et al., 2016a], we will consider extending this frame-
work to semi-supervised context.
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