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Abstract

In this paper, we propose a statistical model for
relevance-dependent biclustering to analyze rela-
tional data. The proposed model factorizes rela-
tional data into bicluster structure with two fea-
tures: (1) each object in a cluster has a relevance
value, which indicates how strongly the object re-
lates to the cluster and (2) all clusters are related
to at least one dense block. These features sim-
plify the task of understanding the meaning of each
cluster because only a few highly relevant objects
need to be inspected. We introduced the Relevance-
Dependent Bernoulli Distribution (R-BD) as a prior
for relevance-dependent binary matrices and pro-
posed the novel Relevance-Dependent Infinite Bi-
clustering (R-IB) model, which automatically es-
timates the number of clusters. Posterior infer-
ence can be performed efficiently using a collapsed
Gibbs sampler because the parameters of the R-IB
model can be fully marginalized out. Experimental
results show that the R-IB extracts more essential
bicluster structure with better computational effi-
ciency than conventional models. We further ob-
served that the biclustering results obtained by R-
IB facilitate interpretation of the meaning of each
cluster.

1 Introduction

Relational data encoding pairwise relationships between I
and J objects appears in many fields. Biclustering is one
of the most popular techniques to extract useful insights
from relational data. It abstracts the given data matrix to a
low-dimensional block structure by simultaneously cluster-
ing both the row and column objects. For example, biclus-
tering of point-of-sale (POS) data can be used to elucidate
bipartite relationships between particular customers and par-
ticular items that sell well. In this paper, we focused on the
most typical type of relational data, i.e., sets of observations
represented as a binary matrix.

Figure 1a shows standard biclustering, which is the ba-
sic concept assumed in many existing biclustering mod-
els [Nowicki and Snijders, 2001; Kemp et al., 2006; Airoldi
et al., 2008; Xu et al., 2006]. In particular, the Infinite
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Figure 1: Diagrams of (a) standard biclustering and (b) relevance-
dependent biclustering.

Relational Model (IRM) [Kemp et al., 2006] is one of the
most widely used biclustering models, and it can automat-
ically estimate the number of clusters. In such standard
biclustering models, it is assumed that the given relational
data is abstracted by a block structure in which each block
has uniform density. However, this assumption has prob-
lems when we analyze relational data. We typically analyze
an obtained cluster from the objects constituting the clus-
ter. Thus, the assumption requires that we inspect all ob-
jects in the rows and columns of each block to understand
what the block means. Furthermore, biclustering models
with this assumption often extract many meaningless clusters
that comprise objects with few links [Ishiguro et al., 2012;
2016]. Thus, extracting insights from standard biclustering
results is often very time-consuming.

In this paper, we propose relevance-dependent biclustering
(Fig. 1b) to solve the drawbacks of standard biclustering. We
assume that each row and column object has a hidden variable
indicating a relevance value that determines how strongly the
object relates to the cluster. A large relevance value means
that the corresponding object strongly relates to the cluster.
Thus, such highly relevant objects ought to be inspected to
aid in understanding the meaning of the clusters. In other
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words, a small relevance value indicates that the correspond-
ing object is non-informative. The advantages of relevance-
dependent biclustering are as follows:

• The meaning of obtained clusters can be understood by
inspecting only a few highly relevant objects.

• All obtained clusters are interpretable because they are
related to at least one meaningful (dense) block.

Consequently, the meaning of the biclustering results can be
understood easily without cumbersome manual effort.

Now we provide a motivating example for the proposed
biclustering. When analyzing the shopping behavior of cus-
tomers on an e-commerce site, there may be items that a
certain customer would like to purchase but cannot afford,
whereas a customer with a larger budget can purchase any
item on sale. Therefore, the bicluster structure underlying
real-world relationships may represent highly distorted rela-
tionships rather than ideal relationships. To obtain a bicluster
structure in such a situation, it is natural to assume additional
latent factors (i.e., relevance values) that affect the link proba-
bilities of objects regardless of their cluster membership. Al-
though the necessity of considering clusters with uneven den-
sity has been discussed in social community analysis [Araujo
et al., 2014], this problem has not yet been studied directly.
Another challenge is to develop an efficient inference algo-
rithm for this problem, as simultaneous estimation of biclus-
ter structure and relevance is a chicken-and-egg problem.

Contributions: We have four contributions in this paper.

1. For modeling relevance-dependent binary matrices, we
propose Relevance-Dependent Bernoulli Distribution
(R-BD), which is parameterized by a typical link
strength common to all entries in the matrix and rele-
vance parameters for each row and column object. We
also propose conjugate priors for R-BD. Thus, all R-BD
parameters can be marginalized out.

2. By incorporating R-BD, we propose a novel bicluster-
ing model called the Relevance-Dependent Infinite Bi-
clustering (R-IB) model, which can extract relevance-
dependent bicluster structure from relational data with
an unknown number of clusters.

3. The R-IB has an efficient inference algorithm because
all model parameters can be marginalized out and do not
need to be estimated explicitly.

4. In experiments, we quantitatively confirm that the R-IB
can capture more essential bicluster structure with bet-
ter computational efficiency than conventional models.
In addition, we show the ability of the R-IB to derive
an interpretable bicluster structure that facilitates the ex-
traction of insights from real-world relational data.

The rest of this paper is organized as follows. We describe
existing models in Sec. 2. We propose our novel model and
its inference algorithm in Sec. 3. We present experimental
results in Sec. 4. Finally, we conclude the paper in Sec. 5.

2 Existing Models

First, we review the IRM [Kemp et al., 2006] as a baseline
standard biclustering model and then review existing IRM ex-

tensions that consider the relevance of objects.

2.1 Infinite Relational Model

Let R be I × J relational data between I row objects and
J column objects. Ri,j = 1(0) indicates the existence of
a link (non-link) between the i-th row and the j-th column.
The IRM has latent variables z1,i ∈ {1, · · · ,K} and z2,j ∈
{1, · · · , L} that indicate the cluster assignments for I and J
objects, respectively. In addition, let η ∈ [0, 1]K×L be a
link probability matrix between K row clusters and L column
clusters. Then, the link between the i-th row object and the
j-th column object is drawn as follows:

Ri,j ∼ Bernoulli
(
ηz1,i,z2,j

)
. (1)

In the IRM, the Chinese Restaurant Process (CRP) [Black-
well and MacQueen, 1973; Aldous, 1985] is used as the prior
for cluster assignments z1 and z2. Thus, the IRM estimates
the number of clusters automatically from the observed data.
Thanks to the conjugacy between beta and Bernoulli distribu-
tions, η can be marginalized out. Consequently, the posterior
inference for the IRM can be performed efficiently using col-
lapsed methods [Liu, 1994; Teh et al., 2006b].

As the IRM is widely used, many extensions have been
proposed to extract more advanced cluster structures, such as
the mixed membership structure [Airoldi et al., 2008], the
hierarchical structure [Roy et al., 2006], the multiple mem-
bership structure [Mørup et al., 2011; Palla et al., 2012],
and other extensions [Nakano et al., 2014; Ho et al., 2011;
Ishiguro et al., 2010; Fu et al., 2009]. However, none of
them provides relevance information, because these models
also assume that the given data exactly follows the density de-
fined by only the cluster structure. As these advanced models
can be considered instances of standard biclustering models,
we focus on the IRM as the baseline model.

2.2 Existing Relevance Modeling

Few studies consider relevance dependency in bicluster-
ing. The Relevance Dependent Infinite Relational Model
(RDIRM) [Ohama et al., 2013; 2016] assumes that only a
subset of entries is relevant to the cluster structure.

More specifically, in the RDIRM, mixing parameters
ρ1,i, ρ2,j ∈ [0, 1] are introduced for each object, and obser-
vations are drawn from a mixture of foreground ηz1,i,z2,j and
background η0 densities as follows:

Ri,j ∼ Bernoulli(ri,j × ηz1,i,z2,j + (1− ri,j)× η0),

ri,j = F (r1,i→j , r2,j→i),

r1,i→j ∼ Bernoulli(ρ1,i), r2,j→i ∼ Bernoulli(ρ2,j), (2)

where F (·, ·) is a Boolean function typically set to the logical
product.

Although the aim of the RDIRM is to exclude non-
informative entries as noise, this mechanism can be consid-
ered an approach for modeling relevance dependency because
mixing parameters ρ1 and ρ2 affect the observed link proba-
bilities regardless of a given object’s cluster membership.

However, there is a number of drawbacks in their ap-
proach. First, in the RDIRM, a link probability for an entry
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Figure 2: Outcomes drawn from the R-BD (λ = 0.6931) with
different Dirichlet parameters. (a) shows probability densities and
(b) shows binary matrices drawn from corresponding density, where
black corresponds to 0 and white to 1.

depends on many internal parameters: foreground probabil-
ity ηz1,i,z2,j , background probability η0, mixing parameters
ρ1,i, ρ2,j , and Boolean function F (·, ·). This makes the effect
of the relevance on link probabilities too complex to interpret.
Second, to infer the RDIRM, not only I + J cluster assign-
ments z1, z2 must be estimated but also I×J latent variables
r1, r2. Thus, the RDIRM can be applied to only very small
relational data. Finally, no reasonable strategy is available
to select the Boolean function F (·, ·). Ohama et al. [2015]

tackled this problem by assuming the prior for Boolean func-
tions. However, the interpretability of relevance is degraded
as the estimated probabilistic Boolean function becomes in-
creasingly complex.

3 Proposed Model

First, we introduce the R-BD: a novel prior for relevance-
dependent binary matrices. Then, by incorporating the R-BD,
we propose the R-IB model.

3.1 Relevance-Dependent Bernoulli Distribution

To design a prior distribution for an I × J relevance-
dependent binary matrix x, we consider three non-negative
parameters λ, θ1,i, and θj,2. The first parameter λ in the
range [0,+∞] is a typical link strength that controls the over-
all density for matrix x. The remaining parameters θ1,i and
θ2,j (also in [0,+∞]) are the relevance parameters for the
i-th row and the j-th column, respectively. Then, we de-
fine the relevance-dependent link strength for an entry xi,j by
multiplying these parameters as θi,1θj,2λ. Finally, to obtain
a binary random variable, we define Relevance-dependent
Bernoulli distribution (R-BD) as follows:

xi,j ∼ Bernoulli
(
1− e−θ1,iθ2,jλ

)
, (3)

where the function f(s) = 1 − e−s is the Bernoulli-Poisson
(BerPo) link function [Zhou, 2015] that transform a non-
negative variable s into a probability.

The relevance modeling in our R-BD is more interpretable
than that in the RDIRM, because the effect of relevance is
defined by a simple multiplication of non-negative variables.

Another remarkable property of R-BD is that all internal
parameters (i.e., λ, θ1, and θ2) can be marginalized out. Fol-
lowing the property of BerPo link, Eq. (3) can be equivalently

rewritten by truncating a Poisson random variable x∗

i,j as

xi,j = I(x∗

i,j ≥ 1), x∗

i,j ∼ Poisson(θ1,iθ2,jλ), (4)

where I(·) is 1 if the predicate holds and is 0 otherwise. Pos-
terior sampling of x∗

i,j can be easily performed as follows:

x∗ |x, λ ∼

{
δ(0), if x = 0
ZTP(λ). if x = 1

(5)

Note that δ(0) is a point mass at zero and ZTP(·) denotes
a zero-truncated Poisson distribution [Geyer, 2007]. This
representation enables the construction of conjugate priors
for R-BD parameters. Assuming gamma and Dirichlet pri-
ors as λ ∼ Gamma(a, b) 1, {θ1,i}

I
i=1/I ∼ Dirichlet(c1),

and {θ2,j}
J
j=1/J ∼ Dirichlet(c2), we obtain a closed-form

marginal likelihood for auxiliary counts x∗ as follows:

P (x∗) =
1

∏

i,j x
∗

i,j !

∏

i

Γ(c1 +Mi,·)

Γ(c1)

∏

j

Γ(c2 +M·,j)

Γ(c2)

×
IMΓ(Ic1)

Γ(Ic1 +M)

JMΓ(Jc2)

Γ(Jc2 +M)

G(a+M, b+ IJ)

G(a, b)
, (6)

where Mi,· =
∑

j x
∗

i,j , M·,j =
∑

i x
∗

i,j , and M =
∑

i,j x
∗

i,j .

Thus, the parameters for R-BD no longer need to be esti-
mated explicitly because they have been marginalized out.
This gives the R-BD an affinity with collapsed inference.

Figure 2 depicts the random binary matrices drawn from R-
BD with different Dirichlet parameters. Although the binary
matrices drawn from R-BD indicate various density patterns,
the expected link strengths for these matrices are equal to ex-
actly λ. Therefore, the estimated value of λ can be interpreted
as a representative value of a given binary matrix.

3.2 Relevance-Dependent Infinite Biclustering

Here, we describe the proposed R-IB model. CRP(γ) denotes
a CRP with concentration parameter γ. The full description
of the R-IB model, incorporating R-BD to the observation
model of the IRM, is as follows:

Ri,j | z,θ,λ ∼ Bernoulli
(

1− e−θ1,iθ2,jλz1,i,z2,j

)

,

λk,l | a, b ∼ Gamma(a, b),

θ1,k/n1,k | c1, z1 ∼ Dirichlet(

n1,k
︷ ︸︸ ︷
c1, · · · , c1),

θ2,l/n2,l | c2, z2 ∼ Dirichlet(

n2,l
︷ ︸︸ ︷
c2, · · · , c2),

z1,i | γ1 ∼ CRP(γ1), z2,j | γ2 ∼ CRP(γ2), (7)

where n1,k (n2,l) is the number of row (column) objects as-
signed to cluster k (l). Note that θ1,k (θ2,l) is a set of rele-
vance parameters θ1,i (θ2,j), where z1,i = k (z2,j = l).

Thanks to the conjugacy between R-BD and its priors, by
introducing auxiliary Poisson counts R∗, the model param-
eters λ, θ1, and θ2 can be marginalized out. The marginal

1Gamma(a, b) denotes a gamma distribution with shape param-

eter a and rate parameter b, i.e., P (λ | a, b) = λa−1e−bλ/G(a, b)
where G(a, b) = Γ(a)/ba. Γ(·) denotes the gamma function.
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likelihood for R∗, given z1 and z2, is then given as

P (R∗ | z1, z2)

=
1

∏

i,j R
∗

i,j !

∏

i

Γ(c1 +Mi,·)

Γ(c1)

∏

j

Γ(c2 +M·,j)

Γ(c2)

×
∏

k

n
Mk,·

1,k Γ(n1,kc1)

Γ(n1,kc1 +Mk,·)

∏

l

n
M·,l

2,l Γ(n2,lc2)

Γ(n2,lc2 +M·,l)

×
∏

k

∏

l

G(a+Mk,l, b+ n1,kn2,l)

G(a, b)
, (8)

where Mk,l =
∑

i,j R
∗

i,jI(z1,i = k)I(z2,j = l), Mk,· =
∑

l Mk,l, and M·,l =
∑

k Mk,l.
Figure 3 shows an R-IB solution for a synthetic dataset, in

which link probabilities are distorted by object relevance. As
can be seen in Fig. 3a, a 3× 3 bicluster structure is present in
the data. As shown in Fig. 3b, the IRM fails to extract the true
partitions, because the IRM assumes uniform density within
each block. In contrast, the R-IB (Fig. 3c) successfully finds
the true partitions by estimating relevance values.

3.3 Inference

Posterior inference for the R-IB can be performed via col-
lapsed Gibbs sampling. As the parameters of R-BD have been
marginalized out, the only variables we have to estimate are
cluster assignments z1, z2 and auxiliary counts R∗.

As z1,i and z2,j can be sampled in the same way, we con-
centrate on z1,i. Using (8) and the likelihood for the CRP,
given R∗, the posterior probability that the i-th object is as-
signed to cluster k∗ is given by

P (z1,i = k∗ | −)

∝







n−i
1,k∗ ×

(n+i

1,k∗)
M

+i
k∗,·Γ(n+i

1,k∗
c1)Γ(n

−i

1,k∗
c1+M

−i

k∗,·
)

(n−i

1,k∗)
M

−i
k∗,·Γ(n−i

1,k∗
c1)Γ(n

+i

1,k∗
c1+M

+i

k∗,·
)

×
∏

l

G(a+M
+i

k∗,l
,b+n

+i

1,k∗
n2,l)

G(a+M
−i

k∗,l
,b+n

−i

1,k∗
n2,l)

, if n−i
1,k∗ > 0

γ1 ×
Γ(c1)

Γ(c1+Mi,·)

×
∏

l

G(a+M
+i

k∗,l
,b+n

+i

1,k∗
n2,l)

G(a,b) , if n−i
1,k∗ = 0

(9)

where superscript −i indicates that the corresponding statistic
is computed while excluding the i-th row object. Conversely,

+i means that the corresponding statistic is computed while
including the i-th row object in cluster k∗.

From (5), the posterior sampling for R∗

i,j is given by

R∗

i,j ∼

{
δ(0), if Ri,j = 0
ZTP(θ1,iθ2,jλz1,i,z2,j ). if Ri,j = 1

(10)

Note that explicit samples for λ, θ1, and θ2 are only re-
quired during the sampling of R∗, and are drawn as follows:
λk,l | − ∼ Gamma(a +Mk,l, b + n1,kn2,l), θ1,k/n1,k | − ∼
Dirichlet(c1 + M1,k), and θ2,l/n2,l | − ∼ Dirichlet(c2 +
M2,k), where c1 +M1,k (c2 +M2,l) is the set of c1 +Mi,·

(c2 +M·,j) in row (column) cluster k (l).
As the sampling for R∗ is computationally insignificant

compared with that for z1 and z2, both the R-IB and IRM
require the O((I + J)KL) computation for each iteration.
However, the computation of a beta function required for the
IRM is more expensive than that of a gamma function re-
quired for the R-IB. As a result, computational time of the
R-IB is significantly shorter than that of both the RDIRM and
IRM.

The hyperparameters for the R-IB (i.e., γ1, γ2, c1, c2, a,
and b) can also be sampled assuming gamma priors. Thanks
to the conjugacy between gamma distributions, posterior
sampling for the rate parameter b is straightforward. For
the remaining hyperparameters, posterior sampling is per-
formed using data augmentation techniques [Escobar and
West, 1994; Zhou, 2015; Teh et al., 2006a; Newman et al.,
2009] (omitted here for brevity).

4 Experiments

We present experimental results obtained using real-world
datasets. The purposes of the experiments are as follows:

• To quantitatively show that the R-IB can capture more
essential cluster structures with better computational ef-
ficiency than the IRM and RDIRM (Sec. 4.2).

• To show the usefulness of relevance-dependent biclus-
tering results obtained by the R-IB in understanding the
meaning of each cluster (Sec. 4.3).

In all the experiments, we also fit all hyperparameters of both
the proposed and baseline models assuming the same gamma
priors (Gamma(1.0,1.0)).

4.1 Datasets

The first dataset was the Animal [Osherson et al., 1991]

dataset, which maps relationships between 50 mammals and
85 attributes. Each attribute is rated on a scale of 0–100
for each animal. We prepared binary relational data with a
threshold that yielded Ri,j = 1 for all ratings higher than the
overall average rates. Therefore, Ri,j = 1(0) indicated that
the i-th animal had (or lacked) the j-th attribute. The sec-
ond dataset was the Enron [Klimat and Yang, 2004] dataset,
which comprises e-mails sent between Enron employees. We
extracted e-mail transactions between August and October
2001, and constructed three relational datasets: Enron08, En-
ron09, and Enron10. These contained e-mail transactions be-
tween 149 employees in the corresponding month. For these

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2581



Table 1: Computed AUC-PR on real-world datasets. Best results
are highlighted in bold. Parenthesized numbers indicate standard
deviations.

IRM RDIRM R-IB

Animal 0.811 (0.036) 0.752 (0.053) 0.802 (0.026)
Enron08 0.274 (0.069) 0.204 (0.048) 0.289 (0.074)
Enron09 0.271 (0.049) 0.213 (0.045) 0.296 (0.055)
Enron10 0.352 (0.040) 0.310 (0.033) 0.381 (0.042)
MovieLens 0.410 (0.006) 0.413 (0.006) 0.447 (0.006)
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Figure 4: Average number of Gibbs iterations per five minutes in
logarithmic scale. All the models were implemented in JAVA and
run on a PC with an Intel R© Xeon R© 2.7 GHz CPU.

datasets, Ri,j = 1(0) was used to indicate whether an e-
mail was, or was not, sent by the i-th employee to the j-th
employee. The final dataset was the MovieLens [MOV, as
of 2003] dataset, which comprises five-point scale ratings of
1,682 movies submitted by 943 users. For this dataset, we set
Ri,j = 1 when the rating was higher than three and Ri,j = 0
otherwise, so that Ri,j = 1(0) indicated whether or not the
i-th user liked the j-th movie. The densities of the Animal,
Enron08, Enron09, Enron10, and MovieLens datasets were
0.368, 0.015, 0.016, 0.026, and 0.035, respectively.

4.2 Quantitative Comparison

Many real-world relational data contains many zero entries.
Thus, in order to evaluate the ability of the R-IB to capture
essential bicluster structure, we evaluated the link predic-
tion ability for held-out entries by calculating the averaged
Area Under the Curve of the Precision-Recall curve (AUC-
PR) [Davis and Goadrich, 2006]. We compared three bi-
clustering models: the IRM, the RDIRM, and the R-IB. We
ran 4000 Gibbs iterations for each model on each dataset and
used the final 500 iterations to calculate the measurement. All
scores were calculated using 10-fold cross validation, and the
overall average and deviation were reported.

Table 1 lists the results. As can be seen, R-IB significantly
outperformed the RDIRM with all datasets. The IRM demon-
strated the best performance for only the Animal dataset.
Compared with the IRM, the other models require additional
parameters to be estimated. This caused the RDIRM, and
R-IB to overfit the data, because the Animal dataset was too
small to allow the underlying cluster structure to be general-
ized. However, the difficulty in obtaining insights from the
data increased as the datasets became larger. As we consider
the performance with larger datasets to be a more important
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Figure 5: Clustering results on the Animal dataset. The central color
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criterion, the results demonstrated the superiority of our R-IB
over conventional models in link prediction accuracy.

The average number of Gibbs iterations within 5 min was
used as the metric to evaluate the computational efficiency
of the different models. As shown in Fig. 4, our R-IB over-
whelmingly outperformed the RDIRM. Even in the worst
case, posterior sampling for the R-IB was 16.1 times faster
than that for the RDIRM. Furthermore, the proposed R-IB
significantly outperformed the baseline standard biclustering
model (i.e., the IRM), providing experimental confirmation
of the computational efficiency of our model, as discussed in
Sec. 3.3.

These quantitative results confirmed that the R-IB can ex-
tract more essential bicluster structures with better computa-
tional efficiency than conventional models.

4.3 Qualitative Comparison

We qualitatively compared our outcomes for the Animal and
Enron09 datasets with those obtained using the IRM.

Figure 5 shows the clustering results on the Animal dataset.
As can be seen from Fig. 5a and b, our R-IB abstracted rela-
tional data into relevance-dependent blocks in such a way that
each block followed the R-BD, whereas blocks obtained us-
ing the IRM followed a uniform density. Thus, the IRM form
non-informative clusters for irrelevant objects with few links
(e.g., column cluster 1 in Fig. 5a). In contrast, as Fig. 5b
shows, all clusters obtained by the proposed R-IB were infor-
mative because they were related to at least one meaningful
(dense) block.

To assess the contents of the extracted clusters, Fig. 6
shows the content of several clusters obtained by R-IB. In
each cluster, we can understand its meaning by inspecting
only a few top-ranked objects. For example, “Meatteeth”
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Row cluster 2
Name Relevance IRM

Hamster (1.411) 3

Rabbit (1.131) 3

Mouse (1.031) 3

Squirrel (0.895) 3

Skunk (0.865) 3

Mole (0.668) 3

Name Relevance IRM

Wolf (1.379) 1

Leopard (1.172) 1

Lion (1.092) 1

Tiger (0.860) 1

Grizzly bear (0.830) 10

G. shepherd (0.666) 5

Row cluster 3 Row cluster 4

Name Relevance IRM

Fox (1.254) 1

Bobcat (1.030) 1

Raccoon (1.027) 1

Rat (0.851) 1

Weasel (0.839) 1

Row cluster 6

Name Relevance IRM

H. Whale (1.175) 4

Seal (1.151) 4

Walrus (1.017) 4

Dolphin (0.837) 4

B. whale (0.820) 4

Name Relevance IRM

Elephant (1.303) 8

Rhinoceros (0.922) 8

Hippopotamus (0.775) 8

Row cluster 7

Name Relevance IRM

Chimpanzee (1.566) 7

Gorilla (0.804) 7

S. monkey (0.630) 7

Row cluster 8

Column cluster 1
Name Relevance IRM

(Eat) fish (6.318) 28

Water (1.111) 2

Swims (1.023) 2

Ocean (0.746) 2

Arctic (0.443) 2

Flippers (0.415) 2

Coastal (0.297) 2

Strainteeth (0.225) 2

Blue (0.188) 6

Plankton (0.156) 6

Skimmer (0.079) 6

Name Relevance IRM

Meatteeth (2.036) 7

Fierce (1.967) 7

Meat (1.529) 7

Hunter (1.270) 7

Cave (0.102) 1

Stalker (0.088) 3

Name Relevance IRM

Vegetation (4.492) 14

Fields (0.585) 16

Hooves (0.469) 10

Grazer (0.360) 14

Longneck (0.049) 10

Horns (0.045) 10

Column cluster 4

Name Relevance IRM

Quadrapedal (2.373) 12

Walks (1.414) 12

Ground (1.133) 12

Orange (0.054) 1

Yellow (0.026) 1

Column cluster 7

Name Relevance IRM

Active (1.874) 11

Fast (1.816) 11

Agility (1.093) 11

Nocturnal (0.191) 3

Column cluster 6

Column cluster 3

Figure 6: Example of clusters obtained by the R-IB with the Animal
dataset. Objects within each cluster are sorted in descending order of
estimated relevance values. For each object, we list the cluster index
that the IRM estimated for the corresponding object (third column).
The most relevant object within each cluster is highlighted in bold.

and “Fierce” in column cluster 3 clearly suggest that the clus-
ter denotes carnivorous features. Similarly, other top-ranked
objects (e.g., “(Eat) fish,” “Quadrapedal,” and “Vegetation”)
also facilitate interpretation of the corresponding clusters.
Objects with smaller relevance values were also interesting.
For example, “Meatteeth” and “Stalker” in column cluster
3 are definitely related because many carnivorous mammals
stalk other animals to prey on them. However, as the third
column of column cluster 3 (Fig. 6) shows, the IRM assigned
them to different clusters because the IRM does not consider
the heterogeneity of objects’ relevance.

The results obtained by R-IB on the Animal dataset further
suggested that the relevance of column objects varied more
widely than that of row objects (see the relevance values listed
in Fig. 6). Here all row objects were selected from a speci-
fied category (i.e., mammals). Thus, the row objects followed
the underlying cluster structure with the same degree of clar-
ity. In contrast, the attributes of the column objects covered
a range of categories such as habitat, favorite food, appear-
ance, and behavioral characteristics. Therefore, the relevance
of the column objects was heterogeneous. Thus, the R-IB was
shown to be able not only to extract the relevance-dependent
bicluster structure but also to assess the necessity of relevance
modeling of an arbitrary dataset.

Figure 7 shows the solutions obtained from the Enron09
dataset. As can be seen, the IRM produced several non-
informative large blocks containing objects with few links
(e.g., block A in Fig. 7a). Although the IRM also produced
a comparatively large cluster block comprising many moder-

Non-informative 

clusters consists 

of employees 

with few links. 

Cluster block 

consists of 

moderately linked 

employees. 

From Vice 

Presidents to 

Presidents.

Between 

Cash 

Analysts.

Reports to a Vice 

President who is 

also Chief 

Financial Officer.

A

A

B

B

C

C D

D
E

E

(a) IRM solution (b) R-IB solution

Figure 7: Clustering results on the Enron09 dataset.

ately strongly linked objects (block B in Fig. 7a), it was diffi-
cult to understand the meaning of the block. In contrast, R-IB
produced a more interpretable bicluster structure (Fig. 7b). In
the R-IB solution, the relevance parameters for objects with
few links yielded small values, and these objects were as-
signed to the nearest meaningful cluster. Therefore, almost
all the clusters produced by the R-IB were informative and
worthy of inspection. In block C of Fig. 7b, the top five rele-
vant row objects were four vice presidents and an anonymized
person, and the top two relevant column objects were presi-
dents. This allowed us to assume that the main role of block C
could be understood as “reports from vice presidents to pres-
idents.” Similarly, blocks D and E in Fig. 7b were interpreted
as “mails between cash analysts” and “reports from employ-
ees to the chief financial officer,” respectively.

These results confirmed that the R-IB successfully ex-
tracted a relevance-dependent bicluster structure, allowing
deep insights to be gained from real-world relational data.

5 Conclusions

In this paper, we addressed the problem of analyzing rela-
tional data while taking account of the relevance of objects.
We introduced the relevance-dependent biclustering problem,
which simultaneously estimates the bicluster structure and the
relevance of objects. We proposed the R-BD as a prior dis-
tribution for relevance-dependent binary matrices. We fur-
ther proposed conjugate priors for the R-BD to make col-
lapsed inferences available. By incorporating R-BD as an
observation model, we introduced a novel infinite bicluster-
ing model (i.e., R-IB) that is able to extract a relevance-
dependent bicluster structure from relational data with an un-
known number of clusters. Finally, we proposed an efficient
collapsed Gibbs sampler to infer the R-IB. Experiments us-
ing real-world datasets confirmed that the R-IB was able to
extract more essential clusters with better computational effi-
ciency than conventional models. We further confirmed that
relevance-dependent clusters obtained by the R-IB were more
interpretable than those obtained by standard biclustering. In
the future, we intend to extend this to be able to discover more
advanced structures, such as those with mixed membership or
multiple membership assumptions.
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