
Flexible Orthogonal Neighborhood Preserving Embedding

Tianji Pang1, Feiping Nie1,2, Junwei Han1

1Northwestern Polytechnical University, Xian 710072, P. R. China.
2University of Texas at Arlington, USA

{pangtj911,feipingnie,junweihan2010}@gmail.com

Abstract
In this paper, we propose a novel linear subspace
learning algorithm called Flexible Orthogonal
Neighborhood Preserving Embedding (FONPE),
which is a linear approximation of Locally Linear
Embedding (LLE) algorithm. Our novel objective
function integrates two terms related to manifold
smoothness and a flexible penalty defined on the
projection fitness. Different from Neighborhood
Preserving Embedding (NPE), we relax the hard
constraint PT X = Y by modeling the mismatch
between PT X and Y, which makes it better cope
with the data sampled from a non-linear manifold.
Besides, instead of enforcing an orthogonality be-
tween the projected points, i.e. (PT X)(PT X)T =
I, we enforce the mapping to be orthogonal, i.e.
PT P = I. By using this method, FONPE tends
to preserve distances so that the overall geometry
can be preserved. Unlike LLE, as FONPE has an
explicit linear mapping between the input and the
reduced spaces, it can handle novel testing data s-
traightforwardly. Moreover, when P becomes an
identity matrix, our model can be transformed in-
to denoising LLE (DLLE). Compared with the s-
tandard LLE, we demonstrate that DLLE can han-
dle data with noise better. Comprehensive experi-
ments on several benchmark databases demonstrate
the effectiveness of our algorithm.

1 Introduction
Nowadays, most of data we obtain is always very high-
dimensional, but its potentially meaningful structure is of
much lower dimensionality. A large number of dimension re-
duction techniques[Xu et al., 2016] [Huang et al., 2015] [El-
bagoury and Ibrahim, 2016] have been proposed to extract the
underlying low-dimensional structure and have been widely
used in many fields, such as data mining, machine learning,
computer vision, etc., as an important preprocessing step. By
using the dimension reduction methods, data can be better
understood and its intrinsic structure can be better visualized.
Moreover, dimension reduction methods can overcome the
curse of dimensionality effectively.

Two popular dimension reduction techniques are Princi-
pal Component Analysis (PCA) [Turk and Pentland, 1991]
and Linear Discriminant Analysis (LDA) [Belhumeur et al.,
1997]. Their modified methods [Wang et al., 2015b] [Li and
Tao, 2012] are also widely used in many different fields, in-
cluding face recognition, fingers movement recognition and
so on. In recent years, there has been a growing interest in dis-
covering the manifold of data since Roweis and Saul [Roweis
and Saul, 2000] and Tenenbaum et al. [Tenenbaum et al.,
2000] who indicate that many types of high dimensional data
can be characterized by a low dimensional underlying mani-
fold. However, both PCA and LDA effectively discover only
the Euclidean structure. They fail to discover the underlying
structure if the data lie on a manifold. Besides, a manifold
of data usually exhibits significant non-linear structure while
PCA and LDA are both linear dimension reduction methods.

To discover the intrinsic geometry structure of a data set,
many non-linear manifold learning methods have been pro-
posed, such as locally linear embedding (LLE) [Roweis and
Saul, 2000], Isomap [Tenenbaum et al., 2000], and Laplacian
Eigenmap [Belkin and Niyogi, 2003]. These non-linear meth-
ods do yield impressive results on some artificial data sets.
However, they often suffer from the so-called out-of-sample
problem [Bengio et al., 2004], which means they can not han-
dle new data points which are not included in the training set.
Besides, their non-linear property makes them computation-
ally expensive. Thus, they might not be suitable for many real
world tasks.

At the same time, a large number of kernel based dimen-
sion reduction methods, such as kernel PCA [Schölkopf et
al., 1998] and kernel LDA [Liu et al., 2002] have also be pro-
posed. These method can also discover the non-linear struc-
ture of data. However, most of these methods do not consider
the structure of the manifold of data explicitly. Besides, they
are also computationally expensive.

To solve these problems above, i.e. the out-of-sample prob-
lem and learning the non-linear manifold of data, many linear
dimensionality reduction methods based on manifold learn-
ing were proposed. Local learning projection (LPP) [He
and Niyogi, 2004] and neighborhood preserving embedding
(NPE) [He et al., 2005] are the representative ones among
these methods. In [Wang et al., 2015a], Wang et al. also
proposed a modified method of LPP called robust LPP (rLP-
P). Different from PCA which aims at preserving the glob-
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al Euclidean structure, LPP, NPE and rLPP aim at preserv-
ing the local neighborhood structure. Actually, LPP is the
optimal linear approximations to the eigenfunctions of the
Laplace Betrami operator on the manifold [He and Niyogi,
2004] while NPE is a linear approximation to the LLE [He et
al., 2005]. rLPP improves the robustness of LPP by using `1-
norm or not-squared `2-norm formulations instead of squared
`2-norm formulations. Thus, though rLPP, LPP, NPE and
PCA are all linear dimensionality reduction methods, rLPP,
LPP and NPE can successfully maintain the non-linear man-
ifold structure of data but PCA can not. Besides, as they can
map the data in the original feature space to a lower dimen-
sional space by a simple linear transformation, they can be
used for faster training and testing in real applications, as
well as the interpretation of the data. However, LPP, rLPP
and NPE all used the hard constraint, i.e. PT X = Y to obtain
a linear approximation of the non-linear manifold structure
of data, which is supposed to be too strict to cope with the
data sampled from a non-linear manifold very well. What
is more, both LPP and NPE require an orthogonality relation-
ship between the projected points, i.e. YYT = I. This kind of
orthogonality may lead to a criterion that is similar to that of
PCA: the projected data points tend to be different from one
another which results in the problem that the overall geom-
etry cannot be preserved very well [Kokiopoulou and Saad,
2007].

In this paper, we propose a novel linear dimensionality re-
duction algorithm, called Flexible Orthogonal Neighborhood
Preserving Embedding (FONPE). The dimensionality reduc-
tion matrix P is obtained by minimizing an objective function
which is constructed by a manifold smoothness term and a
flexible penalty term defined on the projection fitness. Specif-
ically, given a set of data points, we first build a weighted ma-
trix which explicitly models the topology of the data. Similar
to LLE, each data point can be represented as a linear com-
bination of its neighboring data points and the weight matrix
is constructed by the corresponding combination coefficients.
Then, we can obtain a dimensionality reduction matrix P by
solving an eigenvalue decomposition. Actually, FONPE is a
linear approximation to the LLE. Thus, like most other mani-
fold learning based linear dimensionality reduction methods,
FONPE can learn the non-linear manifold of data though it is
a linear method and it can also overcome the out-of-sample
problem since it employs an explicit mapping between the in-
put and the reduced space. But different from NPE which is
also an LLE linear approximation algorithm, FONPE relaxes
the hard constraint, i.e. PT X = Y, in NPE by introducing
a flexible mismatch penalty between PT X and Y. With this
relaxation, FONPE can better deal with the samples which
reside on a non-linear constraint. Besides, we enforce the
mapping to be orthogonal instead of the projected points as
NPE does. In [Kokiopoulou and Saad, 2007], Kokiopoulou
et al. had demonstrated that this kind of orthogonality can
preserve the overall geometry better. What is more, we also
find an interesting fact that when the projection matrix P be-
comes an identity matrix, our model can be transformed into
denoising LLE (DLLE), which can handle noised data better
than LLE.

2 Related Works
In this section, we will give a brief introduction to linear di-
mension reduction and a brief review of LLE and NPE.

2.1 Linear Dimension Reduction
Given a dataset X = [x1, x2, ..., xn], where xi ∈ Rm×1 is the
i-th sample, linear dimension reduction aims to find a trans-
formation matrix P ∈ Rm×d that can maps the data from the
orignally m-dimensional space to the d-dimensional space,
where d << m, via a simple linear transformation as fol-
lows:

Y = PT X (1)

where Y ∈ Rd×n is the compact low dimensional data which
can represents X.

2.2 Local Linear Embedding
LLE [Roweis and Saul, 2000] aims to preserve the local lin-
ear reconstruction relationship among the data points. LLE
expects each data point and its neighbors to lie on or be closed
to a locally linear manifold. Thus, each data point can be re-
constructed from its k nearest neighbors by a weighted linear
combination. The weight coefficients W are calculated by
minimizing the following cost function:

ε(W) =
∑
i

‖xi −
∑

j∈Nk(xi)

Wijxj‖2 = ‖X− XWT ‖2F

s.t.W1 = 1
(2)

where 1 ∈ Rn×1 is a column vector with all its entries be-
ing 1, Nk(xi) denotes the k nearest neighbors of xi and the
weight Wij summarizes the contribution of the jth data point
to the construction of the ith data point.

To preserve the intrinsic geometric properties of the local
neighborhoods, LLE assumes that nearby points in the high
dimensional space remain nearby with respect to one anoth-
er in the low dimensional space. Besides, LLE expects the
reconstruction weights Wij can reflect geometric properties
of data. The same weights which reconstruct the point xi by
its neighbors in the high dimensional space should also re-
construct its embedded manifold coordinates in a low dimen-
sional space. Thus, the final embedding coordinates can be
calculated by fixing the weight coefficients and minimizing
the following cost function:

ε(Y) =
∑
i

‖yi −
∑
j

Wijyj‖2 = ‖Y− YWT ‖2F

s.t.Y1 = 0,YYT = NI
(3)

where 0 ∈ Rn×1 is a column vector with all its entries being
0 and I is a identity matrix. The constraint here is to make the
problem well-posed. The problem will amount to computing
the smallest d+1 eigenvalues of the matrix M = (I−W)T (I−
W) and the associated eigenvectors.

Since LLE suffers from the out-of-sample problem, He et
al. [He et al., 2005] proposed a linearization method called
NPE.
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2.3 Neighborhood Preserving Embedding
NPE [He et al., 2005] is a linear approximation to the LLE
algorithm. NPE first constructs an adjacency graph by us-
ing the k nearest neighbors method or the ε neighborhood
method. Then, the weights on the edges can be computed by
(2) as LLE does. Afterwards, NPE uses the strategy of lin-
ear approximation to the nonlinear mapping of LLE to learn
the projection. By making PT xi = yi, the projection can be
obtained by minimizing the following cost function:

min
PT XXT P=I

∑
i

‖PT xi −
∑
j

WijPT xi‖2 (4)

The constraint here is to remove an arbitrary scaling factor in
the projection.

The optimal projections of (4) correspond to the minimum
eigenvalue of the following standard eigenvalue problem:

XMXT P = XXT PΛ (5)

where M = (I − W)T (I − W) and Λ is the eigenval-
ue matrix whose diagonal elements are the eigenvalues of
(XXT )−1XMXT . Finally, the embedding can be obtained
by (1).

As we can see, NPE replaces Y by PT X in LLE to calculate
the projection matrix. This linear approximating may be over-
strict to fit the data samples from a non-linear manifold. Be-
sides, NPE imposes the orthogonal constraint PT XXT P = I.
However, Kokiopoulou et al. in [Kokiopoulou and Saad,
2007] pointed out that this kind of orthogonal constraint tend-
s to make the projected points different from one another,
which makes NPE can not preserve the overall geometry very
well. To solve these two problems, we propose a novel linear
dimension reduction method.

3 The Proposed Algorithm
In this section, we present the details of the proposed method,
called Flexible Orthogonal Neighborhood Preserving Embed-
ding (FONPE). An iterative method is also proposed to solve
the objective function.

3.1 Problem Formulation
Our algorithm is a linear approximation to LLE. Differen-
t from NPE, we relax the hard mapping function Y = PT X
by introducing a flexible penalty term. By using this relax-
ation, our framework is more flexible and it can better cope
with the samples which reside on the nonlinear manifold. We
formulate our objective function as follows:

min
P,F,W1=1

‖F− FWT ‖2F + β‖PT X− F‖2F (6)

where F ∈ Rd×n is the low-dimensional manifold embed-
ding of X , β is a positive parameter and W is an affinity
matrix which contains geometry characteristics of data. In
this paper, we build W by using the same strategy as LLE
does. We assume that each data sample together with its k n-
earest neighbors lies on a locally linear manifold and it can be
reconstructed by a linear combination of its k nearest neigh-
bors. Thus, W is a matrix with Wij having the weight if the
ith and jth sample are neighbors, and 0 otherwise.

As we can see, the first term of (6) is the same as the mani-
fold learning term in LLE which yields manifold smoothness
and the second term is a residue which yields the linear ap-
proximation fitness. By using the parameter β, we can bal-
ance these two different terms.

In order to remove an arbitrary scaling factor in the pro-
jection, we need to impose some kinds of constraints. Here,
we do not use the same constraint as NPE does, because the
orthogonality of the projected data may make them tend to
be different from one another. To better preserve the overall
geometry of data, we employ a different orthogonality strat-
egy. We enforce the projection to be orthogonal. Thus, the
constraint can be written as follows:

PT P = I (7)

Thus, our objective function can be reformulated as follows:

min
PT P=I,F,W1=1

‖F− FWT ‖2F + β‖PT X− F‖2F (8)

By solving (8), we can obtain the projection matrix P.
Then, the embedding of X can be obtained by using a sim-
ple linear transformation as follows:

Y = PT X (9)

Because our method has an explicit linear mapping be-
tween the high-dimensional data and its corresponding low-
dimensional embedding, it does not suffer from the out-of-
sample problem as LLE does.

3.2 Optimization
We introduce an efficient algorithm to tackle problem (8) al-
ternatively and iteratively.

The first step is to find the k nearest neighbors for each
data sample.

The second step is to fix F, P and solve W. Then, we need
to solve the following subproblem:

min
W1=1

‖F− FWT ‖2F (10)

This is the same problem as (2). For the details about how
to solve the above minimization problem, please refer to
[Roweis and Saul, 2000].

The third step is to fix F, W and solve P. Taking derivative
of (8) w.r.t. F and setting it to zero, we have:

F = PT B (11)

where,
B = βX[(I−W)T (I−W) + βI]−1 (12)

Then, bringing (11) back to (8), we have:

min
PT P=I

tr(PT QP) (13)

where,

Q =[B(I−W)T (I−W)BT

+ β(XXT − XBT − BXT + BBT )]
(14)

According to Ky Fan′s Theorem [H, 2007], given the value
of d which denotes the dimension of the output data, the op-
timal value of (13) is

∑d
i=1 λi, where λi(i = 1, 2, ..., d) are
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the first d smallest eigenvalue of Q. The columns of P, i.e
pi(i = 1, 2, ..., d), are the smallest eigenvectors of Q. There-
fore, the projection matrix P can be calculated by eigenvalue
decomposition.

The forth step is to fix P, W and solve F. This problem
can be solved by (11) and (12).

We iteratively and alternatively update W, P and F accord-
ing to the last three steps. The method can be achieved by
Algorithm 1.

It is worth noting that in this paper, we initialize P by I
and F by X. By using this method, (8) becomes the following
function:

min
W1=1

‖X− XWT ‖2F (15)

which is same as LLE of learning an affinity matrix. In this
case, we can obtain a W which contains the geometric struc-
ture of the original data. This ensures us to obtain a low-
dimensional embedding which maintains the original geo-
metric structure.

Algorithm 1: The Algorithm of Solving (8)
Input: Training data X ∈ Rm×n, parameter β, the

reduction dimension d, the number of nearest
neighbors k.

Initialize P = I and F = X;
while not converge do

1. Update W by solving (10);
2. Update P. The columns of the updated P are the
first d eigenvectors of Q corresponding to the first d
smallest eigenvalues, where Q can be calculate by
(14);
3. Update F by (11).

Output: P ∈ Rm×d

3.3 Denosing LLE
An interesting finding is that by making P to be an identity
matrix in our objective function, it can be transformed into
denoising LLE (DLLE). DLLE can learn embedding man-
ifold structure from high-dimensional data which contains
noise. In this case, our objective function can be written as
follows:

min
F,W1=1

‖F− FWT ‖2F + β‖X− F‖2F (16)

Actually, in many cases, the obtained data X always contain
some noise. It may destroy the manifold structure of data
to some extent. The traditional LLE always can not capture
the manifold structure of data very well. In fact, F in (16)
can be viewed as an approximation to X. By choosing an
appropriate β, we can make F be the data which has better
manifold structure compared to X. By using this method,
we can obtain an affinity matrix W which contains a more
accurate geometric structure of data. Thus, we can learn a
better embedding than the original LLE.

The method of solving (16) is almost like the method of
solving (8). We also tackle (16) in an alternative and iterative
way:

The first step is to find the k nearest neighbors for each
data sample.

The second step is to fix F and solve W. Then, we need to
solve the following subproblem:

min
W1=1

‖F− FWT ‖2F (17)

The third step is to fix W and solve P. Taking derivative
of (16) w.r.t. F and setting it to zero, we have:

F = βX[(I−W)T (I−W) + βI]−1 (18)

We iteratively and alternatively update W and F according
to the last two steps. To solve (16), we initialize F by X. The
final embedding of DLLE can be obtained by solving (3) after
we obtain W.

3.4 Convergence Analysis
As the methods of solving (8) and (16) are almost the same,
here we only analyse the convergence of Algorithm 1.

As seen above, we solve the problem (8) in an alternative
way. The following proposition shows that the proposed al-
gorithm can find a globally optimal solution in each iteration.

Proposition 1 When F and P are fixed, the optimal W can
be obtained by our method. The same conclusion can also be
obtained by F and P

Proof Briefly, when F and P are fixed, the optimization prob-
lem (8) is equivalent to the problem (10). Roweis and Saul in
[Roweis and Saul, 2000] gave a detailed description on the
method to find the global solution of the problem (10). In this
paper, we adopt the same way to solve (10). When W and
F are fixed, solving the problem (8) is equivalent to solving
(13). According to Ky Fan′s Theorem [H, 2007], if the value
of d which denotes the dimension of the output data is given,
the optimal solution of (13) can be obtained by finding the
first d smallest eigenvalues and its corresponding eigenvec-
tors of Q. When W and P are fixed, it is obviously that the
problem (8) is a convex problem without constraint. Its glob-
al optimal solution can be easily obtained by taking derivative
of (8) w.r.t. F and setting it to zero. �

The above proposition only shows that the proposed al-
gorithm could find a global optimization in each iteration.
Based on this result, we will propose another proposition.It
indicates that our iteration can monotonically decrease the
objective function of the problem (8).

Proposition 2 The proposed iterative procedure can mono-
tonically decrease the objective function of the problem (8) in
each iteration.

Proof Assume that we have derived W(s) and P(s) in the sth
iteration. We now update F. The following results hold:

{F(s)} = argmin
F
‖F− F(W(s))T ‖2F

+ β‖(P(s))T X− F‖2F
(19)

In the (s + 1)th iteration, we fix F, P as F(s),
P(s),respectively, and update W by solving (8). We have the
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following results:

{W(s+1)} = argmin
W1=1

‖F(s) − F(s)WT ‖2F

+ β‖(P(s))T X− F(s)‖2F
(20)

Similarly, when we fix W, F as W(s+1), F(s), respectively,
and optimize P by solving (8), the following result holds:

{P(s+1)} = argmin
PT P=I

‖F(s) − F(s)(W(s+1))T ‖2F

+ β‖PT X− F(s)‖2F
(21)

Then, when we fix W, P as W(s+1), P(s+1), respectively,
and optimize F by solving (8), the following result holds:

{F(s+1)} = argmin
F
‖F− F(W(s+1))T ‖2F

+ β‖(P(s+1))T X− F‖2F
(22)

As we known, {F(s),W(s),P(s)} and
{F(s+1),W(s+1),P(s+1)} are both feasible solution to
the problem (8). More importantly, recalling the results in
Proposition 1, we have the following inquality:

G(F(s+1),W(s+1),P(s+1))

≤ G(F(s+1),W(s+1),P(s))

≤ G(F(s+1),W(s),P(s))

≤ G(F(s),W(s),P(s))

(23)

where

G(F,W,P) = ‖F− FWT ‖2F + β‖PT X− F‖2F
s.t.PT P = I,W1 = 1

(24)

It indicates the decrease of objective function during itera-
tion. �

4 Experiment
In this section, we perform extensive experiments to test the
performance of FONPE and DLLE. We compare FONPE
with several manifold learning based linear dimension reduc-
tion methods, i.e. PCA, LPP and NPE, on synthetic data and
together with the other two recently proposed dimension re-
duction methods, i.e. FME [Nie et al., 2010] and ULGE-K
[Feiping Nie and Li, 2017], on real data. As for DLLE, we
only compare its performance with LLE on synthetic data s-
ince it suffers out-of-sample problem.

4.1 Synthetic Data
We first evaluate the performance of FONPE on synthetic da-
ta. In this paper, we employ two well known synthetic data
from [Roweis and Saul, 2000]: the s-curve and the swissroll.
We compare FONPE with PCA, LPP and NPE. Data points
in Fig 1(b) (N = 2000), Fig 2(b) (N = 2000) are randomly
sampled from the manifold shown in Fig 1(a), Fig 2(a), re-
spectively. The affinity graphs of LPP, NPE and FONPE are
all constructed using k = 6 nearest neighbor points.

(c) (d) (e) (f)(a) (b)

Figure 1: Results on swissroll by linear dimensionality reduction
methods. (a): swissroll; (b): random points of swissroll; (c): PCA;
(d): LPP; (e): NPE; (f): FONPE.

(c) (d) (e) (f)(a) (b)

Figure 2: Results on s-curve by linear dimensionality reduction
methods. (a): s-curve; (b): random points of s-curve; (c): PCA;
(d): LPP; (e): NPE; (f): FONPE.

(c) (d) (e)(a) (b)

Figure 3: Results on swissroll by non linear dimensionality reduc-
tion methods. (a): swissroll; (b): random points of swissroll; (c):
LLE result on data without noise; (d): LLE result on data with noise;
(e): DLLE result on data with noise.

(c) (d) (e)(a) (b)

Figure 4: Results on s-curve by non linear dimensionality reduction
methods. (a): s-curve; (b): random points of s-curve; (c): LLE result
on data without noise; (d): LLE result on data with noise; (e): DLLE
result on data with noise.

As we can see from Fig 1 and Fig 2, all these three mani-
fold learning based linear dimension reduction methods per-
form much better than PCA since they can share many of the
data representation properties of non-linear techniques and p-
reserve local information of data which is indicated by the
color shading. Moreover, it can be seen, FONPE performs
better than LPP and NPE since it can preserve global geo-
metric characteristics as well.

Then, we evaluate the effectiveness of DLLE also on s-
curve and swissroll. Different from above, when building
training data, we add 1 by 2000 uniformly distributed random
noise into each dimension of s-curve and swissroll.

As can be seen, the structure of the low-dimensional data
obtained from data with noise by DLLE is much closer to
that of LLE obtained from data without noise. This indicates
FONPE can better capture the manifold structure of data with
noise compared to LLE.
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Table 1: Datasets Description
Data # Samples # Features # Classes

YaleB 2414 1024 38
PIE 3329 1024 68
ORL 400 1024 40

UMIST 9145 10304 102

4.2 Face Recognition
In this part, we evaluate the performance of FONPE on four
benchmark data sets for the task of face recognition. The data
descriptions are summarized in Table 1. The YaleB data set
[Georghiades et al., 2001] contains 2414 near frontal images
from 38 persons under different illuminations. Each image
is resized to 32 × 32 and the pixel value is used as feature
representation. The PIE data set [Sim et al., 2002] contains
68 individuals with 41368 face images as a whole. We used
24 face images for each individual in our experiment. The
ORL data set [Samaria and Harter, 1994] cosists of 400 face
images of 40 people. The images are captured at different
times and have different variations.Each image is resized to
32× 32 and the pixel value is used as feature representation.
The UMIST data set [Graham and Allinson, 1995] contains
20 people under different poses.

For each data set, PCA is used for preprocessing. In our ex-
periments, we keep 95 percent information in the sense of re-
construction error. After that, 50 percent images of each indi-
vidual are randomly selected with labels to form the training
set and the rest of the data set is used as the testing set. The
training samples are used to learn a projection. The testing
samples are then projected into the reduced space. Recogni-
tion is performed using a SVM classifier. We utilize the linear
kernel with the parameter C = 1. Generally, how to select a
proper k directly from data is an open problem in manifold
learning. In this paper, we run LPP, NPE and FONPE when
k = 3, 5, 7, 9, 11, 13, respectively. After that, we choose the
optimal recognition rate among these experiments as their fi-
nal results. For FME, we set each parameter to {10−9, 10−6,
10−3, 100, 103, 106, 109}, and then we report the best accu-
racy as its final result. As for ULGE-K, we set its parameters
as suggested in [Feiping Nie and Li, 2017].

For FONPE, it has an extra parameter, i.e. β, which can
balance the manifold smoothness and the linear projection
fitness. In the limiting case, namely, λ → +∞, the penal-
ty term can force data mapping into a complete linear space
which yields a hard projection constraint as NPE does. For
more general case, we demonstrate the recognition rate result
with different β on UMIST database in Fig 5. The param-
eter is selected from 10−7, 10−6, ..., 1017. As can be seen
from Fig 5, the recognition rates have slight variations when
k ranges from 10−1 to 1012. This shows FONPE is quite ro-
bust to the value of β in a large range. Besides, it can be seen
that when the value of β is too large, FONPE yields poor per-
formance. This clarifies that the methods using the relaxed
projection strategy can deal with non-linear data better com-
paring with methods using hard projection strategy. Similar
properties exist on other databases.

The recognition rates versus the dimension of each method
on these databases are shown in Fig 6. As we can see, our
approach outperforms other methods significantly.
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Figure 5: Recognition rates versus the parameter Beta on UMIST
database.
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Figure 6: Recognition rates versus the dimension of each method on
four benchmark databases.

5 Conclusion
In this paper, we have proposed a novel linear dimension-
ality reduction algorithm called Flexible Orthogonal Neigh-
bor Preserving Embedding. Though our algorithm is a linear
method, it shares many non-linear properties of LLE since it
is based on the same variational principle as LLE. By using a
projection residue penalty term, our model can fit non-linear
structure of data flexibly. Extensive experiments on synthetic
data and four benchmark data sets showed our method can
outperform other three kinds of state-of-the-art linear dimen-
sionality reduction methods. Besides, our model can also be
transformed into denoising LLE which is a non-linear man-
ifold learning method that can tolerate the noise of data to
some extent. The effectiveness of DLLE also was demon-
strated on two well known synthetic data by experiments.
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