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Abstract
Softmax regression, a generalization of Logistic re-
gression (LR) in the setting of multi-class classi-
fication, has been widely used in many machine
learning applications. However, the performance
of softmax regression is extremely sensitive to the
presence of noisy data and outliers. To address this
issue, we propose a model of robust softmax regres-
sion (RoSR) originated from the self-paced learn-
ing (SPL) paradigm for multi-class classification.
Concretely, RoSR equipped with the soft weight-
ing scheme is able to evaluate the importance of
each data instance. Then, data instances partici-
pate in the classification problem according to their
weights. In this way, the influence of noisy data and
outliers (which are typically with small weights)
can be significantly reduced. However, standard
SPL may suffer from the imbalanced class influ-
ence problem, where some classes may have little
influence in the training process if their instances
are not sensitive to the loss. To alleviate this prob-
lem, we design two novel soft weighting schemes
that assign weights and select instances locally for
each class. Experimental results demonstrate the
effectiveness of the proposed methods.

1 Introduction
Classification typically involves a supervised learning sce-
nario which studies a model based on the training data sam-
ples with known labels and then make predictions on new
data (test data). In the past couple of decades, a large num-
ber of classification models have been proposed, such as
support vector machines (SVM) [Hsu and Lin, 2002], de-
cision tree [Krawczyk et al., 2014], naive Bayes [Farid et
al., 2014], neural network [Anand et al., 1993], and so
on. Even so, logistic regression (LR) is one of the most
widely used methods for binary classification task due to
its ease of understanding and implementation, good perfor-
mance, and high efficiency [Freedman, 2009; Cox, 1958;
Walker and Duncan, 1967]. For multi-class classification, LR
usually applies the one-vs-all strategy that trainsK (the num-
ber of classes) binary classification models, each treating the
instances in one class as positive and all the other instances

as negative. Each model provides a predicted probability of
a test data instance and this instance will be assigned to the
class that gives the largest probability.

By contract, softmax regression (SR) [Bishop, 2006; Bh-
ning, 1992], also known as multi-class logistic regression,
can also be used to solve multi-class classification tasks. In
multi-class classification, the classes are usually mutually ex-
clusive. Thus, it is better to use SR instead of building K
separate LR models. SR is also less time consuming than
LR because SR only needs to train the classification model
once. SR has also been widely used in many machine learn-
ing applications. However, noisy data and outliers can signifi-
cantly affect the performances of both LR and SR. To enhance
the effectiveness of LR, several robust methods of LR have
been proposed recently [Shafieezadeh-Abadeh et al., 2015;
Tibshirani and Manning, 2014; Feng et al., 2014]. However,
as far as we know, none of work has been done to improve
the performance of SR for multi-class classification from the
perspective of self-paced learning.

Recently, a new machine learning framework named self-
paced learning (SPL) [Kumar et al., 2010] has attracted a
lot of attentions. The idea comes from the fact that peo-
ple usually learn better when they start with simple knowl-
edge and then gradually consider complex knowledge. To
formalize this strategy in machine learning, [Bengio et al.,
2009] proposed curriculum learning (CL). After that, [Ku-
mar et al., 2010] proposed SPL to achieve the curriculum
designing’s goal by adding an SPL regularization term into
the objective function. Concretely, SPL trains the classifica-
tion model on “easy” instances first, and then gradually adds
“complex” instances to train. The learning difficulty of an
instance (whether the instance is “easy” or “complex”) is de-
cided by its loss according to the current parameter value.
It has been empirically demonstrated that SPL has the abil-
ity of avoiding bad local minima and thus has better general-
ization ability [Kumar et al., 2010; 2011; Jiang et al., 2015;
Tang et al., 2012]. Therefore, SPL is typically used to find
better solutions for non-convex problems where multiple lo-
cal minima exist.

Since SR solves a convex optimization problem and can
find a global optimum, applying the original SPL model to SR
will obtain the same solution as SR. Lately, several variations
of SPL were developed to not only select samples to train but
also assign a weight to each selected sample. The key step
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is to apply the soft weighting scheme instead of the hard one
in the traditional SPL [Jiang et al., 2014; Zhao et al., 2015;
Pi et al., 2016]. In this paper, we utilize such soft weight-
ing technique of SPL to evaluate the importance of each data
sample and propose robust softmax regression (RoSR), in
which each data sample participates in the training process
according to its weight. Typically, noisy data and outliers
obtain small weights and their influence will be significantly
reduced.

Moreover, in each iteration of SPL, the weights of data in-
stances are determined by those loss values and a global con-
trolling parameter, this might cause that data points of some
classes obtain relatively small weights. Hence, these classes
have smaller influence than others in the training process and
the learned model parameter will be biased. To alleviate this,
we propose two novel soft weighting schemes to evaluate
weights of data instances locally for each class. This ensures
that none of the classes is ignored in the training process and
the resulting method is abbreviated to RoSR-L (“L” denotes
“Locally”).

The main contributions of this work are summarized as fol-
lows:

i) To the best of our knowledge, this is the first work to
incorporate soft weighting of SPL into softmax regres-
sion. The proposed RoSR can significantly reduce the
negative influence of noisy data and outliers.

ii) Two soft weighting schemes are developed. The pro-
posed RoSR-L can avoid the situation that some classes
are neglected in training and can further improve the per-
formance of RoSR. The methods and experience pre-
sented in this paper can be easily used for other clas-
sification methods.

iii) Experiments on simulated data show how RoSR and
RoSR-L work and extensive experiments on real data are
concluded to demonstrate their effectiveness.

2 Related Work
[Kumar et al., 2010] proposed SPL to formulated the cur-
riculum learning’s idea as an optimization model by adding
a regularization term. SPL learns easy samples first, and
then add more samples to training by gradually increas-
ing the controlling parameter. Then, an SPL strategy for
the specific-class segmentation task was developed in [Ku-
mar et al., 2011]. [Lee and Grauman, 2011] developed a
self-paced discovery framework for visual category discov-
ery tasks. [Tang et al., 2012] formulated a self-paced do-
main adaptation approach by training target domain knowl-
edge starting with easy samples in the source domain. [Su-
panČiČ and Ramanan, 2013] designed an SPL method for
long term tracking by setting smallest increase in the SVM
objective as the loss function. [Jiang et al., 2014] discovered
that pseudo relevance feedback is a type of self-paced learn-
ing which explains the rationale of this iterative algorithm
starting from the easy examples. [Jiang et al., 2015] pro-
posed self-paced curriculum leaning (SPCL), which makes
use of prior knowledge in SPL. [Ren et al., 2017] made use of
SPL to solve the non-convex problem caused by feature cor-
ruption techniques. Traditional SPL methods usually use the

hard weighting method, while some work [Jiang et al., 2014;
Zhao et al., 2015; Pi et al., 2016] has been done to apply
soft weighting schemes. However, all of these existing soft
weighting schemes do not consider the difference among the
classes and may suffer from the imbalanced class influence
problem.

There exists several robust methods of LR have been pro-
posed. Concretely, a distributionally robust method to LR has
been developed in [Shafieezadeh-Abadeh et al., 2015]. [Tib-
shirani and Manning, 2014] presented a novel robust LR ap-
proach which adds a term reflecting the possibility of misla-
belling in the objective function. [Feng et al., 2014] proposed
a robust extension of LR which considers LR with arbitrary
outliers in the covariate matrix. To illustrate the influence of
robustness, [Feng et al., 2016] proposed robust support vector
classifiers (RSVC) for classification problems. Similar with
our work, RSVC also tries to reduce the negative influence
of noisy data from a weighted viewpoint. The difference is
that RSVC aims at solving binary classification problems and
the idea of weighting scheme comes from M-estimation in
statistic, while our work targets for multi-class classification
problems and evaluates the weights of data points via SPL
technology.

Although a large amount of work has been presented to
address the robustness problem in the presence of noisy data
and outliers in binary classification tasks, e.g., LR and sup-
port vector machine, none of work has been done to refine
SR for multi-class classification from the view of SPL. This
work fills the gap by applying the soft weighting scheme of
SPL into SR and develops RoSR. Two novel soft weighting
scenarios are also developed to further enhance the perfor-
mance of RoSR.

3 Preliminaries
Let X = {(x(1), y(1)), . . . , (x(n), y(n))} be the data set
where x(i) ∈ Rd is the i-th instance, and y(i) ∈ {1, . . . ,K}
represents its label where K ≥ 2 is the number of classes.
x
(i)
j is the j-th feature of sample x(i) 1. The cost between

the ground truth label y(i) and the estimated label g(x(i),θ)
is computed by loss function L(y(i), g(x(i);θ)) ≥ 0 (abbre-
viated to li). θ is the model parameter.

3.1 Self-Paced Learning
The goal of self-paced learning (SPL) is to jointly learn θ and
the latent weight variable v = [v1, . . . ,vn]

T by minimizing:

min
θ,v

J(θ,v;λ) =
n∑
i=1

vili + f(λ,v) (1)

When fix v, Eq. (1) is a traditional classification problem.
When fix θ, the solution of v depends on the definition of the
SPL regularization term f(λ,v) and the range of values of v.
[Kumar et al., 2010] lets v ∈ {0, 1}n and defines f(λ,v) as

f(λ,v) = −λ
n∑
i=1

(vi) (2)

1The intercept term 1 is added for every instance. Hence, x(i)
1 =

1, ∀i = 1, . . . , n.
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The optimal v∗ can be calculated by

v∗i =

{
1, if li < λ
0, otherwise (3)

Since vi (i = 1, . . . , n) should be equal to either 1 or 0, this
method introduced in [Kumar et al., 2010] is considered as
hard weighting. λ > 0 is initially set to a small value, then
only those samples with small loss values are selected to train.
As λ grows iteratively, more samples will be added until all
the samples are chosen.

3.2 Softmax Regression
Let 1{·} be the indicator function, so that 1{a true
statement} = 1, and 1{a false statement} = 0. Then the
cost function of softmax regression [Bishop, 2006; Bhning,
1992] is

J(θ) =
1

n

n∑
i=1

li + µr(θ) (4)

where the loss function of x(i) is defined as below:

li = L(y(i), g(x(i);θ)) = −
K∑
k=1

1{y(i) = k} log eθ
T
k x(i)∑K

l=1 e
θT
l x(i)

(5)
The regularization term is

r(θ) =
1

2

K∑
k=1

d∑
j=1

θ2
kj (6)

and µ is the coefficient. Note that θk denotes the parameter
vector of the k-th class and θkj is the j-th item of θk. As is
well-known, SR is a convex model which can find a global
optimal solution.

4 Robust Softmax Regression
4.1 Problem Formulation
As mentioned before, the performance of SR is sensitive
to the presence of noisy data and outliers. This will be
empirically verified later in this paper. To address this, in
this work, we introduce Robust Softmax Regression (RoSR)
model whose main idea is to make use of soft weighting of
SPL. The resulting model is actually a weighted version of
SR. The common optimization model of RoSR is defined as
follows:

min
θ,v

J(θ,v;λ) =

n∑
i=1

vili + µr(θ) + f(λ,v) (7)

where v ∈ [0, 1]n evaluates the weights of data instances,
µ is the regularization coefficient, li and r(θ) are defined in
Eqs. (5) and (6), respectively. If f(λ,v) is defined by Eq.
(2), then vi is either 1 or 0. Then, the optimal solution of
Eq. (7) is the same as that of SR. The reason is that once
all the data instances are selected, vi = 1 (∀i = 1, . . . , n)
and f(λ,v) is a constant. Thus, the solution of Eq. (7) is the
same as minimizing Eq. (4), since both of them can find a
global optimum. Thus, in order to make Eq. (7) a weighted
version of SR (i.e., let vi ∈ [0, 1]), we should use some other
definitions of f(λ,v).

4.2 Optimization
We use the alternative search strategy to solve Eq. (7). Con-
cretely, we iteratively optimize one of the two parameters θ
and v while keeping the other one fixed. The main task con-
tains the following two steps.

Step 1: Fix θ, update v. With the fixed θ, li and µr(θ) in
Eq. (7) are constant terms. Then, the weight vector v can be
updated by solving:

v∗ = argmin
n∑
i=1

vili + f(λ,v) (8)

RoSR In [Jiang et al., 2014; Zhao et al., 2015; Pi et al.,
2016], vi is allowed to take any value in [0, 1]. The corre-
sponding methods are considered as soft weighting. Here, we
use two types of soft weighting methods (i.e., liner weight-
ing and mixture weighting [Jiang et al., 2014]) in RoSR. The
experimental results will show that different soft weighting
methods perform comparably with each other. The defini-
tion of f(λ,v) and the corresponding optimal v∗ of linear
weighting [Jiang et al., 2014] are given in Eqs. (9) and (10),
respectively.

f(λ,v) = λ(
1

2
‖v‖2 −

n∑
i=1

vi) (9)

v∗i =

{
− liλ + 1, if li < λ
0, otherwise (10)

[Jiang et al., 2014] defines f(λ,v) of mixture weighting as

f(λ,v) = −
n∑
i=1

ζ ln(vi + ζ/λ) (11)

where an extra SPL parameter ζ > 0 is introduced in addition
to λ. Then, the corresponding optimal v∗ is given by [Jiang
et al., 2014]:

v∗i =

{
1, if li ≤ ζλ/(ζ + λ)
0, if li ≥ λ
ζ/li − ζ/λ, otherwise

(12)

For simplicity, we do not tune the parameter ζ and always
set ζ = 0.5 × λ no matter which value of λ is taken. Eqs.
(10) and (12) tell us that points with small loss values are
assigned with large weights. Noisy data points and outliers,
and those points locate in the overlapped regions among the
classes, typically have large loss values and will gain small
weights. In this way, their influence is significantly reduced.

RoSR-L We can observe from Eqs. (10) and (12) that
RoSR chooses instances based on their loss values and a
global λ. This may suffer from the imbalanced class influence
problem. Concretely, in a certain iteration, the situation prob-
ably happens that instances from some classes obtain small
loss values and will obtain higher weights. Then, these in-
stances will have more influence in learning the model param-
eter θ. By contract, most instances from some other classes
might have relatively large loss values and will obtain lower
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weights (even equal to 0). A a result, these classes contribute
little in learning θ. If so, the learned θ is heavily biased and
will bring negative influence for the following training pro-
cess.

To alleviate this, we consider assigning weights and select-
ing instances locally from each class. To this end, we set
controlling parameters λk for the k-th class and define two
novel SPL regularization terms, shown in Eqs. (13) and (17),
respectively. The resulting method is named RoSR-L (“L”
means “Locally”).

The first regularization term proposed here is

f(λ,v) =
K∑
k=1

λk
∑
i∈Sk

(
1

2
vi

2 − vi

)
(13)

where Sk denotes the set of indices of data points in the k-th
class. If x(i) belongs to the t-th class, then the optimal v∗i is
given by

v∗i =

{
− li
λt

+ 1, if li < λt
0, otherwise

(14)

Eq. (14) is similar with Eq. (10) and is also considered as
linear weighting. λk controls the weights of instances and the
number of selected instances in the k-th class. The proof of
Eq. (14) is given by Theorem 1.
Theorem 1. If f(λ,v) is defined by Eq. (13), the optimal v∗
is given by Eq. (14).

Proof. Substituting Eq. (13) in Eq. (8), we obtain

v∗ = argmin
n∑
i=1

vili +
K∑
k=1

λk
∑
i∈Sk

(
1

2
vi

2 − vi

)
(15)

By setting the partial derivative of the cost function in Eq.
(15) w.r.t. vi to 0 and suppose x(i) belongs to the t-th class,
we have

li + λt(vi − 1) = 0 (16)

Then, we can easily obtain the optimal v∗i = − li
λt

+1. Recall
that vi ∈ [0, 1] and li ≥ 0, we can obtain that the optimal v∗
can be calculated by Eq. (14).

The second proposed regularization term is defined as

f(λ,v) = −
K∑
k=1

∑
i∈Sk

ζk ln(vi + ζk/λk) (17)

The optimal v∗ is computed by (suppose xi is a member of
the t-th class)

v∗i =

{
1, if li ≤ ζtλt/(ζt + λt)
0, if li ≥ λt
ζt/li − ζt/λt, otherwise

(18)

For simplicity and fair comparison, we always set ζk = 0.5×
λk in our experiments. Eq. (18) is similar with Eq. (12) and is
considered as mixture weighting. The proof of (18) is shown
in Theorem 2.
Theorem 2. If f(λ,v) is defined by Eq. (17), the optimal v∗
is given by Eq. (18).

Proof. Similarly with Theorem 1, we substitute Eq. (17) in
Eq. (8) and set the partial derivative of the corresponding cost
function w.r.t. vi to 0. Then, we have

li −
λtζt

λtvi + ζt
= 0 (19)

proved that xi belongs to the t-th class. Then, it can be easily
obtained that the optimal v∗i = ζt/li− ζt/λt. Note again that
vi ∈ [0, 1] and li ≥ 0, we can find that the optimal v∗ is
given by Eq. (18).

Step 2: Fix v, update θ. When v is fixed, f(λ,v) in Eq.
(7) is a constant and we can update θ by solving:

θ∗ = argmin
n∑
i=1

vili + µr(θ) (20)

Eq. (20) is actually a weighted version of Eq. (4). We use
gradient-descent method [Amari et al., 1996] to solve Eq.
(20). Then, θk (k = 1, . . . ,K) is iteratively updated by:

θk ← θk − α

{
n∑
i=1

vi∇θk
li + µ∇θk

r(θ)

}
(21)

where ∇θk
li and ∇θk

r(θ) can be easily observed. α is the
learning rate. The iteration stops when it converges or reaches
the maximum number of iterations, which is set to 250 in our
experiments. The L-BFGS method 2 is used for this optimiza-
tion.

Step 1 and step 2 are iteratively implemented. In each it-
eration, we increase λk to select more samples to train. In
the model, we set λk (k = 1, . . . ,K) such that half the in-
stances (whose weights are bigger than 0) from the k-th class
are selected in the first iteration. Then, in every following it-
eration, we increase λk to add 10% more instances from the
k-th class. As a consequence, λk (k = 1, . . . ,K) are auto-
matically determined and µ is the only parameter in Eq. (7).
Our model stops when all the instances are chosen. Then, the
corresponding learned θ and v are the final model parameter
and weight vector, respectively.

5 Experiments
5.1 Experimental Setup
We first conduct experiments on toy examples to show how
the proposed methods work. The original toy example (which
is shown in Fig. 1 (a)) consists of 3 classes, each provid-
ing 150 data points. Thirteen real data sets from different
sources are tested in our experiments. The characteristics of
these data sets are shown in Table 1. 10digits collects in-
stances for digits 0-9, and each instance is represented by a
28*28 image. CinC (CinC ECG torso) is a UCR time se-
ries data set 3. IJCNN1, Seismic, and Vowel are available
at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
Prostate is a gene expression data set 4. Balance (Balance

2http://www.cs.ubc.ca/∼schmidtm/Software/minFunc.html
3www.cs.ucr.edu/∼eamonn/time series data/
4http://stat.ethz.ch/∼dettling/bagboost.html
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Figure 1: Train softmax regression on toy examples.
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Figure 2: Train RoSR-Mix on toy examples. Points whose weights
are less than 1 are highlighted with squares.

Scale), Biodeg (QSAR biodegradation), Haberman (Haber-
man’s Survival), Letter (Letter Recognition), Musk1 (Musk-
Version 1), Skin (Skin Segmentation), and Spambase are all
UCI data sets 5. For each data set, each feature is normalized
to have zero mean value and unit variance.

Table 1: Data sets used in the experiments.

Data #points #features #classes
10digits 2000 784 10
Balance 625 4 3
Biodeg 1055 41 2
CinC 1420 1639 4

Haberman 306 3 2
IJCNN1 141691 22 2
Letter 20000 16 26
Musk1 476 166 2
Prostate 102 6033 2
Seismic 98528 50 3

Skin 245057 3 2
Spambase 4601 57 2

Vowel 990 10 11

The following six methods are tested in our experiments:
• LR: Logistic regression with L2 norm.
• SR: Softmax regression [Bhning, 1992].
• RoSR-Lin: RoSR with linear soft weighting.
• RoSR-Mix: RoSR with mixture weighting.
• RoSR-L-Lin: RoSR-L with linear soft weighting.
• RoSR-L-Mix: RoSR-L with mixture weighting.
5http://archive.ics.uci.edu/ml/index.html
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Figure 3: Train RoSR-L-Mix on toy examples. Points whose
weights are less than 1 are highlighted with squares.

For RoSR and RoSR-L methods, we first run SR on the
whole training data set for 5 iterations to obtain an initial-
ization of the model parameter θ. Actually, each of the six
comparing methods has only one regularization coefficient µ
needed to be tuned. We tune µ for each method on each data
set, where µ ∈{1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2,
0.1, 0.3, 1}. For each method, we perform a 10-fold cross
validation on each data set ten times and report the average
results. We utilize t-test to assess the statistical significance
of the results at 5% significance level.

5.2 Results on Toy Examples
Fig. 1(a)-(c) show the three versions of the simulated data
set, i.e., the original toy example, the toy example with fif-
teen noisy data points (those points locate in the area of the
cyan “∗” class but are labeled as the magenta “4” class), and
the toy example with five outliers (the top five points labeld
as the magenta “4” class), respectively. In this subsection,
the regularization coefficient µ is always set to 1e-3. We train
SR on the three data sets and report the corresponding re-
sults. Take Fig. 1(a) as example, we obtain three learned
model parameter vectors θi ∈ R3, i = 1, 2, 3 by SR. Then,
we plot θTi x = 0 (note that x = [1,x1,x2] in this case) using
a dashed line. The dashed line with a specified color corre-
sponds to the class with the same color. We can observe from
Fig. 1(a) that SR works well on the original simulated data
set because the three classes are well separated and none of
noisy points and outliers exists. However, as shown in Fig.
1(b)-(c), the learned parameters shift a lot when only a small
number of noisy data points or outliers exist, indicating the
performance of SR is easily affected by noisy data or outliers.

The results of RoSR-Mix and RoSR-L-Mix on toy exam-
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Table 2: Results on real data sets (accuracy ± standard derivation, %).

Data LR SR RoSR-Lin RoSR-Mix RoSR-L-Lin RoSR-L-Mix
10digits 85.62±0.30 88.04±0.18 88.47±0.22 88.36±0.16 88.44±0.20 88.52±0.26
Balance 86.37±0.50 89.31±0.36 87.63±0.56 87.71±0.56 90.94±0.48 90.72±0.42
Biodeg 87.23±0.17 87.15±0.28 87.78±0.31 87.95±0.28 87.86±0.31 87.90±0.16
CinC 71.17±0.68 71.39±0.72 72.25±0.51 72.32±0.56 72.83±0.82 73.04±0.70

Haberman 74.31±0.35 74.31±0.35 74.41±0.49 74.44±0.46 75.52±0.71 75.72±0.46
IJCNN1 92.28±0.00 92.28±0.00 91.64±0.01 91.51±0.09 92.68±0.00 92.50±0.01
Letter 72.39±0.05 77.44±0.06 78.57±0.05 78.22±0.07 79.15±0.04 78.98±0.05
Musk1 85.59±1.07 86.03±1.03 86.72±0.73 86.74±0.96 86.79±0.65 86.87±1.04
Prostate 92.25±0.56 92.35±0.41 92.35±0.62 92.45±0.66 93.14±0.46 93.14±0.46
Seismic 70.83±0.01 71.90±0.01 72.36±0.02 72.03±0.01 72.71±0.01 72.64±0.01

Skin 91.88±0.00 91.88±0.00 89.95±0.00 90.87±0.00 92.80±0.00 92.83±0.00
Spambase 92.16±0.12 92.82±0.11 93.16±0.08 93.12±0.12 93.22±0.09 93.25±0.08

Vowel 58.17±0.59 67.25±0.22 71.35±0.22 70.98±0.45 73.18±0.48 73.17±0.52

ples are shown in Figs. 2 and 3, respectively. As expected,
Figs. 2 and 3 show that RoSR-Mix and RoSR-L-Mix perform
much better than SR in the presence of noisy data and out-
liers. In Fig. 2, the data points whose weight values assigned
by RoSR-Mix are less than 1 are highlighted with squares. It
is interesting that all the noisy data and outliers are found. In
this manner, the proposed RoSR can also be used for anomaly
and mislabelled data detection. Similarly, we highlight those
points whose weights are less than 1 with squares in Fig. 3.
We can find that more points are highlighted by RoSR-L-Mix
than RoSR-Mix. This exactly show the different behaviors
between RoSR-L-Mix and RoSR-Mix. RoSR-Mix assigns
weights to instances based on their weights globally, while
RoSR-L-Mix does this locally for each class, leading to that
some points in every class are assigned with lower weights
by RoSR-L-Mix. Thus, besides noisy data and outliers, those
points in overlapping regions among the classes also play
smaller role in the learning process of RoSR-L.

Both RoSR-Mix and RoSR-L-Mix work well on the orig-
inal toy example. Similar results can also be obtained when
applying RoSR and RoSR-L with linear weighting scheme.
The corresponding results are not reported due to limited
space.

5.3 Results on Real Data Sets
In this subsection, we evaluate the performances of all the
comparing classification methods. Table 2 gives the results.
In each row, we highlight the best and comparable results in
boldface. The first observation from Table 2 is that SR per-
forms comparably with LR on those data sets with only two
classes. Besides, SR always achieves higher accuracies than
LR. Especially, SR improves upon LR upon by a large mar-
gin on 10digits, Balance, Letter, and Vowel. We also find that
SR is much faster than LR (the results are not reported due to
space limitation) for K-class classification (K ≥ 3) tasks.

Another observation is that RoSR-Lin and RoSR-Mix al-
ways achieve higher accuracies than SR on all the data sets
except for Balance, IJCNN1, Prostate, and Skin. This demon-
strates the effectiveness of applying SPL with soft weighting
schemes in SR. On Prostate, RoSR-Lin performs compara-
bly with SR, while the accuracy achieved by RoSR-Mix is
slightly larger than that achieved by SR. Both RoSR-Lin and

RoSR-Mix lose to SR on Balance, IJCNN1, and Skin. The
main reason is that some classes might be neglected in cer-
tain iterations of SPL.

Finally, we can see from Table 2 that RoSR-L-Lin and
RoSR-L-Mix perform the best in most cases. The reason for
this is two-fold: 1) The RoSR-L methods can significantly re-
duce the negative influence caused by noisy data and outliers.
2) The SPL strategy that chooses instances to train separately
for each class guarantee that all the classes participate in the
training process and none of them is neglected in each itera-
tion of SPL.

6 Conclusion and Future Work

In this work we propose robust softmax regression (RoSR) for
multi-class classification. RoSR makes use of the soft weight-
ing scheme of self-paced learning to evaluate the importance
of each data sample. It can perform well in the presence of
noisy data and outliers. Moreover, to alleviate the imbalanced
class influence problem, we propose RoSR-L which estimates
the weights and selects data samples locally for each class to
further enhance the performance of RoSR. Correspondingly,
two novel soft weighting schemes are developed. The effec-
tiveness of the proposed methods is demonstrated by exper-
imental results on both synthetic and real data. We are in-
terested in extending the framework proposed in this paper
to other machine learning methods in our future work, e.g.,
kernel methods and neural networks.
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