
Distributed Accelerated Proximal Coordinate Gradient Methods

Yong Ren, Jun Zhu∗

Center for Bio-Inspired Computing Research
State Key Lab for Intell. Tech. & Systems

Dept. of Comp. Sci. & Tech., TNList Lab, Tsinghua University
renyong15@mails.tsinghua.edu.cn; dcszj@tsinghua.edu.cn

Abstract
We develop a general accelerated proximal coordi-
nate descent algorithm in distributed settings (Dis-
APCG) for the optimization problem that mini-
mizes the sum of two convex functions: the first
part f is smooth with a gradient oracle, and the
other one Ψ is separable with respect to blocks of
coordinate and has a simple known structure (e.g.,
L1 norm). Our algorithm gets new accelerated con-
vergence rate in the case that f is strongly con-
vex by making use of modern parallel structures,
and includes previous non-strongly case as a spe-
cial case. We further present efficient implementa-
tions to avoid full-dimensional operations in each
step, significantly reducing the computation cost.
Experiments on the regularized empirical risk min-
imization problem demonstrate the effectiveness of
our algorithm and match our theoretical findings.

1 Introduction
We consider the following optimization problem with a com-
posite objective function:

min
x∈RN

F (x) := f(x) + Ψ(x), (1)

where f and Ψ are proper and lower semi-continuous con-
vex functions. We further assume that f is differentiable
on RN , and Ψ has a simple blockwise separable structure
Ψ(x) =

∑n
i=1 Ψi(xi), where xi is the i-th block of x with

cardinality Ni. This problem is ubiquitous in machine learn-
ing, where f(x) denotes the loss and Ψ represents some con-
straints or regularizations. Given a setD of i.i.d data, a typical
loss function f has the following form

f(x) =
∑

Aj∈D
l(x;Aj), (2)

where l is some smoothed loss function such as the smoothed
hinge loss [Lin et al., 2014]. The choice of Ψ depends on the
requirements of certain problems, such as bound constraints
(e.g., Ψi(x) = 0 for x ∈ [0, 1] and ∞ otherwise) or regular-
izations for a special purpose (e.g., L1-regularizer for spar-
sity). f(x) can be strongly convex or not. The strong convex-
ity property usually means a faster (linear) convergence rate

∗Corresponding author

and hence is interested in many cases (e.g., ridge regression).
We aim to develop a general accelerated coordinate descent
method to solve problem (1) under distributed settings, and
accelerate the convergence rate by making use of the parallel
structure.

1.1 Related Work and Motivation
Coordinate descent (CD) methods are popular optimization
algorithms to handle such problems that can break down to
small pieces since they can usually make use of special struc-
tures underlying the problems. At each iteration t, the ba-
sic CD method chooses one block of coordinate xit to suf-
ficiently reduce the objective value while keeping the other
blocks fixed. There are two common strategies for choos-
ing such a block—the cyclic scheme and the randomized
scheme, where the former chooses it in a cyclic fashion (i.e.,
it+1 = it mod n+ 1), while the latter chooses it uniformly
or via some distributions. The randomized scheme is more
common since it enjoys both theoretical and practical bene-
fits [Wright, 2015]. Due to their superior convergence prop-
erty, CD algorithms have been widely used in many practi-
cal problems, especially in some regimes that need relatively
high accurate solutions [Wright, 2015].
To improve the performance of the basic CD algorithm,

many variants have been proposed. Among them, Nesterov’s
acceleration technique [Nesterov, 1983], which is proven to
be an “optimal” first order (gradient) method in convergence
rate, is an important line. Specially, Nesterov [2012] devel-
oped an accelerated randomized CD method for minimizing
unconstrained smooth functions (i.e., with Ψ(x) = 0), which
is the first one that applies acceleration techniques to CD
methods. Later one, Lu and Xiao [2013] gave an improved
version with a sharper convergence analysis. For the more
general problem (1), Fercoq and Richtarik [2015] proposed
the APPROX algorithm for solving functions f(x) without
strong convexity to obtain an accelerated sublinear conver-
gence rate and Lin [2014] proposed a general APCG algo-
rithm to obtain an accelerated convergence rate for f(x) ei-
ther with strong convexity or not.
Another important line is to utilize parallel computing ar-

chitectures to accelerate the CD algorithms. Here we focus
on the synchronous case, where multiple blocks of coordi-
nates are sampled and gradients are then computed in each
iteration, running in parallel on multiple processors. After

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2655

that, a barrier synchronization step is set to update the coor-
dinates, see a series of recent work in parallel and distributed
settings [Bradley et al., 2011; Necoara and Clipici, 2013;
Richtarik and Takac, 2013a]. To meet the requirements of
the big-data challenge, combining the acceleration technique
with advanced parallel computing architectures seems to be
natural to leverage their advantages respectively. For the gen-
eral problem (1), the APPROX algorithm is parallel in na-
ture to deal with f(x) without strong convexity. For a special
case of (1) called empirical risk minimization (ERM) prob-
lem, Shalev-Shwartz and Zhang [2014] proposed an inner-
outer loop optimization scheme to obtain an accelerated con-
vergence rate with a strong convexity assumption, where the
inner loop is easily parallelized using existing techniques
[Takac and Richtarik, 2015]. However, the parallel algo-
rithm for problem (1) in the strongly convex case is still un-
explored.
In this paper, we propose a new distributed accelerated co-

ordinate gradient descent method (DisAPCG) to solve the
general form (1) for f(x) with or without strong convex-
ity. Our algorithm lies in the line of Nesterov acceleration
methods, with new carefully modified Nesterov’s sequences
to adapt into distributed settings. Our algorithm includes AP-
PROX as a special case when the function does not have a
strong convexity assumption, where a sublinear convergence
rate is obtained. In the strong convex case, we obtain an ac-
celerated linear convergence rate, thanks to the parallel struc-
ture. Furthermore, we propose an efficient implementation
to avoid full-dimensional vector operations, which reduces
the updating cost in each iteration. For practical use, we
apply our algorithm to the ERM problem and find a signif-
icant improvement comparing with several other distributed
CD solvers.

1.2 Outline of The Paper
In Section 2, we introduce the notations and assumptions,
present the general DisAPCG method, analyze its conver-
gence rate with or without strong convexity, and show the
gain by leveraging parallel structures. In Section 3, we
present an equivalent version of the general algorithm to
avoid full-dimensional manipulation in many cases. In Sec-
tion 4, we apply our DisAPCG method to the widely studied
ERM problem. Besides, we use experiments on a smoothed
version of SVM problems to demonstrate the effectiveness of
our algorithm. Finally, we conclude in Section 5.

2 The DisAPCG Method
2.1 Notations, Assumptions and Settings
For an N -dimensional vector x ∈ RN , let Ω =
{xi ∈ RNi}ni=1 denote a partition of the coordinates with∑n

i=1 Ni = N . Let U = [U1, ..., Un] be an N ×N permuta-
tion matrix with Ui ∈ RN×Ni . Then, we have

x =
n∑

i=1

Uixi, and xi = U⊤
i x, i ∈ [n].

Without losing generality, we assume that U is the identity
matrix. Our distributed setting is similar as in [Richtarik and
Takac, 2013a]. Suppose that the cluster consists of K nodes

and the blocks of coordinates (features) are uniformly dis-
tributed in each node (i.e., each node keeps and updates n/K
blocks of coordinates). For simplicity, we assume that n is di-
visible by K. We denote Sk ⊂ Ω as the collection of blocks
of coordinates that are distributed in the k-th node and we
have ∪K

k=1Sk = Ω. In the meanwhile, all the data describing
the features Sk are stored in the k-th node.
Following [Lin et al., 2014], for any x ∈ RN , the partial

gradient of f with respect to xi is defined as
∇if(x) = U⊤

i ∇f(x), i ∈ [n],
where [n] := {1, ...n} denotes the set of integers from 1 to
n. We make the following assumptions, which are commonly
used in the literature of coordinate descent methods [Fercoq
and Richtarik, 2015].
Assumption 1. The gradient of f(x) is block-wise Lipschitz
continuous with constants Li:
∥∇if(x+Uihi)−∇if(x)∥2 ≤ Li∥hi∥2, x ∈ RN , hi ∈ RNi .

For convenience, we denote ∥x∥L =

(
n∑

i=1

Li∥xi∥22
)1/2

as

the L2-norm blockwisely weighted by the coefficients Li.
Assumption 2. There exists µ ≥ 0 such that for all y ∈ RN

and x ∈ dom(Ψ):

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2L.

An immediate consequence of Assumption 1 is

f(x+Uihi) ≤ f(x)+⟨∇if(x), hi⟩+
Li

2
∥hi∥22, ∀hi ∈ RNi ,

which bounds the variation of f(x) when a single block
changes. In distributed settings, as more than one blocks vary
in each iteration, we need the following lemma to bound the
total variation of the function f(x).
Lemma 1. ([Richtarik and Takac, 2013b]) Assume that f
satisfies Assumption 1. For all x, h ∈ RN , we have

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ |Supp(h)|
2

∥h∥2L,

where Supp(h) := {i ∈ [n] : h(i) ̸= 0} is the set of blocks
that are not equal to zero.
The above bound is tight in general. Suppose that in dis-

tributed settings, we alter κ blocks in each iteration and define

∥ · ∥2Lκ
= κ∥ · ∥2L.

Then, the bound gives that for x, y ∈ RN ,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µκ

2
∥y − x∥2Lκ

, (3)

and Assumption 1 implies that

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
∥h∥2Lκ

, (4)

where µκ = µ/κ.

2.2 The DisAPCG Algorithm
The general DisAPCG algorithm is summarized in Alg.1. We
start K processors and each processor k runs Alg.1 simulta-
neously. The algorithm maintains a non-increasing step size
αt and intermediate variable y(t), similarly in the original
Nesterov’s method. At iteration t, each node samples multi-
ple blocks of coordinates and computes the intermediate vari-
able z(t) using a proximal gradient step, as in step 4. Finally,

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2656

the coordinates are updated in a synchronized manner in step
5. We make more comments on several key steps as follows.
Step1: S

(t)
k collects the indices of the coordinates to be

updated for node k. The total number of updated coordinates
in one iteration is κ = τK, where τ is the mini-batch size that
every node samples at each iteration. Note that the sample
procedure is not equivalent to uniformly sample κ blocks of
coordinates from all since they are stored locally.
Our algorithm is essentially in a mini-batch manner. When

K = 1, we can merge several small blocks into a larger one
and use [Lin et al., 2014] directly (i.e., uniformly sample one
large block at each iteration), and hence the mini-batch anal-
ysis is not necessary. However, such merging can not be done
in the distributed settings, since every node needs to sample
their own data, not as a whole.
Step2: The original Nesterov’s sequence is computed as

n2α2
t = (1 − αt)γt + αtµ. Our new sequence considers the

influence introduced by multi-block alteration in one itera-
tion. Similar properties hold as the original ones.
Step3: The Reduce operator is similar to MPI::AllReduce,

where y(t) is first computed by gathering coordinates from all
nodes and then broadcasted to all nodes. This is a crucial step
since y(t) is of size O(N) and hence introduces the most part
of communication cost. y(t) is used to compute the gradient,
however, one can further reduce the communication cost by
exploring the special structure of f(x), as we shall see.
Step5: The update step involves full-dimensional opera-

tions since z(t+1), z(t) and y(t) are dense in general and the
similar problem exists for the computation of y(t). This issue
will be dealt with by proposing an efficient and equivalent
algorithm in Section 3.

2.3 Convergence Analysis
We analyze the convergence rate of Alg.1. The main theorem
is as follows. We defer the full proof into appendix.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let
F ∗ be the optimal value of problem (1) and {x(t)} be the
sequence generated by the DisAPCG method. Then for any
t ≥ 0, the following holds:

E[F (x(t)]− F ∗ ≤ min

{(
1−

√
κµ

n

)t

,

(
2n

2n+ tκ
√
γ0

)2
}

(
F (x(0))− F ∗ +

γ0
2
κR2

0

)
,

(7)
where R0 := min

x∗∈X∗
∥x(0) − x∗∥2L, and X∗ is the set of opti-

mal solutions of problem (1).

The two terms
(
1−

√
κµ

n

)t

and
(

2n

2n+ tκ
√
γ0

)2

cor-

respond to the strong convex and non-strong convex cases re-
spectively. For the non-strongly convex case, a slight change
of the proof can remove the κ in the last term of (7) and then
we recover the convergence rate in [Fercoq and Richtarik,
2015] as a special case.
For the strongly convex case, we get an accelerated linear

convergence rate, as the following corollary shows:

Algorithm 1 The DisAPCG algorithm.

Input: x(0) ∈ dom(Ψ) and convexity parameter µκ ≥ 0.
Initialize: set z(0) = x(0) and choose 0 < γ0 ∈ [µκ, 1].
StartK nodes with their corresponding data and coordinates.
for t = 0, 1, 2, 3... do:

1. Uniformly sample τ blocks of coordinates S(t)
k .

2. Compute αt ∈ (0, κ/n] using the relation:

n2

κ2
α2
t = (1− αt)γt + αtµκ,

and set γt+1 = (1− αt)γt + αtµκ, βt =
αtµκ

γt+1
.

3. Reduce:

y(t) =
1

αtγt + γt+1

(
αtγtz

(t) + γt+1x
(t)

)
(5)

4. for all index i ∈ Sk, compute z(t+1)
i as

z
(t+1)
i = argmin

xi∈RNi

nαtLi

2
∥xi − (1− βt)z

(t)
i − βty

(t)
i ∥22

+ ⟨∇if(y
(t)), xi⟩+Ψi(xi),

and for all index i ̸∈ Sk, compute z(t+1)
i as

z
(t+1)
i = (1− βt)z

(t)
i + βty

(t)
i

5. Set

x(t+1) = y(t)+
n

κ
αt(z

(t+1)− z(t))+
κµκ

n
(z(t)−y(t)) (6)

end for

Corollary 1. Suppose that the same conditions in Theorem. 1
hold and further assume that f is µ-strongly convex. In order
to obtain E[F (x(t)]−F ∗ ≤ ϵ, it suffices to have the iteration
t satisfy

t ≥ n
√
κµ

log
C +Dκ

ϵ
,

where C = F (x(0))− F ∗, D = γ0R
2
0/2.

The previous single-machine version APCG provided in
[Lin et al., 2014] needs O(n/

√
µ) to achieve ϵ accuracy,

while our DisAPCG further accelerates this rate by a factor√
κ, omitting the log term. It remains an open problem that

whether we can accelerate this rate by κ.
Remark 1. We have assumed that the coordinates (and their
corresponding data) are uniformly distributed in each node.
However, the computation power of each node may be differ-
ent in practice, in which stragglers may slow down the bar-
rier synchronization. To avoid this, nodes can store different
amounts of coordinates, depending their computation power,
and consequently, each node k has its own mini-batch size
τk. The above theorem still holds as long as each block is
sampled with equal probability.

3 Efficient Implementation
For the strongly convex case with µ > 0, we can choose
γ0 = µ/κ to get a concise version. In this case, we have that
γt = µ/κ and consequently, αt = βt =

√
κµ/n.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2657

As mentioned in Section 2.2, a straightforward implemen-
tation of Alg.1 requires full-dimensional operations on x (i.e.
O(N)), which is comparable to a full-gradient step. Lin et
al. [2014] provided an equivalent version to their original al-
gorithm, corresponding to the special single-machine case in
our paper, with an efficient update step. Here we show that
such strategy can also be used in the distributed settings with
some modifications. The overall algorithm is summerized in
Alg.2 and the equivalent assertion is made in Proposition 1.
Proof can be found in the appendix.

Algorithm 2 DisAPCG without full-dimensional vector op-
erators in the case µκ > 0

Input: x(0) ∈ dom(Ψ) and convexity parameter µκ > 0.
Initialize: set u(0) = 0, v(0) = x(0), α =

√
κµ

n , ρ = 1−α
1+α .

StartK nodes with their corresponding data and coordinates.
for t = 0, 1, 2, 3... do:
1. Reduce: ρt+1u(t) + v(t).

2. Uniformly sample τ blocks of coordinates S(t)
k .

3. for all i ∈ S
(t)
k compute h(t)

i as

h
(t)
i = argmin

h∈RNi

nαLi

2
∥h∥22 +

⟨
∇if(ρ

t+1u(t) + v(t)), h
⟩

+Ψi

(
−ρt+1u

(t)
i + v

(t)
i + h

)
4. Let u(t+1) = u(t), v(t+1) = v(t) and update i ∈ S(t) as:

u
(t+1)
i = u

(t)
i −

1− n
κ
α

2ρt+1
h
(t)
i , v

(t+1)
i = v

(t)
i +

1 + n
κ
α

2
h
(t)
i

Output: x(t) = ρtu(t) + v(t).

Proposition 1. Algorithm 2 and Algorithm 1 are equivalent
with x(t) = ρtu(t) + v(t),

y(t) = ρt+1u(t) + v(t),

z(t) = −ρtu(t) + v(t),
for all t ≥ 0.
As we can see, the updating step in Alg.2 avoids full-

dimensional operations. However, the reduce step ρt+1u(t)+
v(t) still needs O(N) computation cost in general. We can
further explore the structure of certain problem to avoid it, as
we shall see for the problem of ERM.

4 Application to Primal-dual ERM Problem
4.1 Primal and Dual ERM Problem
The ERM problem arises ubiquitously in supervised ma-
chine learning applications. Let A1, ..., An be vectors in Rd,
ϕ1, ..., ϕn be a sequence of convex functions on R, and g be
a convex function on Rd, the regularized ERM problem is
defined as follows:

argmin
w∈Rd

{
P (w) =

1

n

n∑
i=1

ϕi(A
⊤
i w) + λg(w)

}
The dual of the above problem is

argmax
x∈Rn

{
D(x) =

1

n

n∑
i=1

−ϕ∗
i (−xi)− λg∗(

1

λn
Ax)

}
,

where A = [A1, ..., An], and ϕ∗, g∗ are conjugate functions
of ϕ, g respectively.
Notice that in the above problem, the sample size n is the

dimensionality when we consider the dual problem. We focus
on the strong convexity case, where we need the following
assumption that is also standard in the literature of solving
the primal and dual ERM problems.
Assumption 3. Each function ϕi is 1/γ smooth and the func-
tion g is strong convex with parameter 1.
The above assumption implies that ϕ∗

i is γ strong convex
and g∗ is continuous differentiable.
The structure ofD(x)matches problem (1) with the equiv-

alent form F (x) = −D(x), where f(x) = λg∗(
1

λn
Ax)

and Ψ(x) =
1

n

∑n
i=1 ϕ

∗
i (−xi). In order to match the lin-

ear convergence rate assumption, we re-locate the strong
convexity of ϕ∗

i and get the final optimization problem as
argminx∈Rn F (x) where

F (x) = λg∗(
1

λn
Ax) +

γ

2n
∥x∥22︸ ︷︷ ︸

f(x)

+
1

n

n∑
i=1

(ϕ∗(−xi)−
γ

2
∥xi∥22)︸ ︷︷ ︸

Ψ(x)

.

We focus on a special case that g(w) =
1

2
∥w∥22. Such spe-

cial case implies that we can efficiently compute the partial
coordinate gradient and is mostly used as regularization term
in ERM problems [Ma et al., 2015]. In this case, we have

∇if(y
(t)) =

1

λn2
A⊤

i (Ay(t)) +
γ

n
y
(t)
i (8)

Besides, we can determine an upper bound for the Lips-

chitz constant Li ≤
R2 + λγn

λn2
, where R = max ∥Ai∥2, i ∈

[n], and a lower bound for the strong convexity parameter for

f(x) with respect to ∥ · ∥L as µ ≥ λγn

R2 + λγn
. Details can be

found in the appendix.

4.2 Numerical Experiments
We consider minimizing the smoothed hinge loss problem, in
order to satisfy the 1/γ smooth condition. Precisely, we have

ϕi(a) =

0 if a > 1
1− a− γ

2 if a ≤ 1− γ
1
2γ (1− a)2 otherwise

The conjugate function of ϕi is then as follows:

ϕ∗(b) =

{
b+ γ

2 b
2 if b ∈ [−1, 0]

∞ otherwise

Consequencely, we have

Ψi(x) =
1

n

(
ϕ∗
i (−x)− γ

2
∥x∥22

)
=

{ −x
n if x ∈ [0, 1]
∞ otherwise

In the context of primal-dual optimization problem, people
often care about the duality gap P (w(x)) − D(x), which is

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2658

Figure 1: Duality gap vs. the number of iterations, as well as duality gap vs. elapsed time for the Epsilon datasets. We vary the mini-batch
size τ while keep the number of nodesK fixed or vise versa. λ is fixed to be 10−6. The duality gap and elapsed time are shown in log domain
while the number of iterations is shown normally to emphasize the linear convergence rate.

Algorithm 3 DisAPCG for regularized ERM with µ > 0

Input: x(0) ∈ dom(Ψ) and µ = λγn
R2+λγn

Initialize: set α =
√
κµ

n , ρ = 1−α
1+α , v

(0) = x(0), u(0) =

0, p(0) = 0 and q(0) = Ax(0).
StartK nodes with their corresponding data and coordinates.
for t = 0, 1, 2, 3... do:
1. Reduce: p(t), q(t).
2. Uniformly sample τ blocks of coordinates S(t)

k .
3. for all i ∈ S(t), compute:

h
(t)
i = argmin

h∈RNi

α(∥Ai∥22 + λγn)

2λn
∥h∥22 + ⟨∇(t)

i , h⟩

+Ψi

(
−ρ(t+1)u

(t)
i + v

(t)
i + h

)
∇(t)

i =
1

λn2
(ρt+1A⊤

i p
(t) +A⊤

i q
(t)) +

γ

n
(ρt+1u

(t)
i + v

(t)
i).

4. Let u(t+1) = u(t), v(t+1) = v(t) and for all i ∈ S(t):

u
(t+1)
i = u

(t)
i −

1− n
κ
α

2ρt+1
h
(t)
i , v

(t+1)
i = v

(t)
i +

1 + n
κ
α

2
h
(t)
i

Update p, q as

p(t+1) = p(t)−
1− n

κ
α

2ρt+1
Aih

(t)
i , q(t+1) = q(t)−

1 + n
κ
α

2
Aih

(t)
i

Output: primal and dual solutions:

x(t+1) = ρt+1u(t+1)+v(t+1), w(t+1) =
1

λn
(ρt+1p(t+1)+q(t+1))

datasets dimension d sample size n sparsity
epsilon 2,000 100,000 100%
covtype 54 581,012 22%
RCV1 47,236 677,399 0.16%

Table 1: Information of three binary classification datasets.

an upper bound to the gapD∗ −D(x). An overall discussion
about the relation between these gaps can be found in [Dun-
ner et al., 2016]. Here we directly use the duality gap as the
statistical indicator.
We implement the algorithms by C++ and openMPI and

run them in clusters on Tianhe-II super computer, where in
each node we use a single cpu. Experiments are performed
on 3 datasets from [Fan and Lin, 2011] whose information is
summarized in Table 1.

Influence of mini-batch size τ and number of nodes K
We first analyze the influence of the mini-batch size τ and
the number of nodes K on the Epsilon dataset. We either
vary the mini-batch size τ on each node with the number of
nodes K fixed, or vise versa. Intuitively, a larger mini-batch
size τ means a larger descent in one iteration, however, it
needs more computation cost. Similarly, a larger number of
nodes K means a larger descent while more communication
cost. Therefore, on the one hand, we show the duality gap
w.r.t the number of iterations to verify the linear convergence
rate and the benefits by increasing computation resources. On
the other hand, we show the duality gap w.r.t running time to
make clear the trade-off between computation and communi-
cation.
The overall results are summarized in Fig.1. In terms of

duality gap w.r.t the number of iterations, our DisAPCG al-
gorithm actually achieves a linear convergence rate in all set-
tings, which is consistent with our theory. And the increase
of τ andK does give a large descent in each iteration. Taking
a closer look we can see their is a

√
κ accelerating factor in

terms of the iteration number, again matching our theoretical
findings. For duality gap w.r.t running time, the result sug-
gests that a smaller mini-batch size (e.g., 10) has better per-
formance and more nodes means a faster convergence rate.

Comparison with other solvers
Now we compare our algorithm with other state-of-art dis-
tributed solvers for the primal and dual regularized ERM
problem, including the mini-batch version of SDCA in dis-
tributed settings [Yang, 2013] (denoted by DisDCA) and Co-
CoA+ [Ma et al., 2015]. The CoCoA+ solver is an inner-outer

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2659

Figure 2: Duality gap vs. the number of iterations, as well as duality gap vs. elapsed time for the RCV1 datasets with number of nodes
K = 16, m = H = 102. λ varies from 10−6 to 10−8.

Figure 3: Duality gap vs. the number of iterations, as well as duality gap vs. elapsed time for the Covertype datasets with number of nodes
K = 16, m = H = 102. λ varies from 10−6 to 10−8.

loop scheme that involves a local solver, providing a local
approximation to the global problem, and the outer loop is
responsible for communication and global parameter updat-
ing. Here we follow the original paper [Ma et al., 2015] with
SDCA as the local solver. In terms of the number of iterations
H for the local SDCA solver, we found that using a relatively
small number of iterations (e.g., 102 or 103) achieves the best
performance with running time being taken into considera-
tion. Hence we choose H = 102 for CoCoA+. For a fair
comparison, we set the mini-batch size to be τ = 102 for our
DisAPCG method and DisDCA.
We vary λ from 10−6 to 10−8, which is a relatively hard

setting since the strong convexity parameter is small. For
all settings, we use K = 16 nodes. The overall compar-
ison is summarized in Fig.2 and Fig.3. In all settings, the
CoCoA+ and our DisAPCG method outperform DisDCA a
lot. For the former two, as we can see, when λ is relatively
large, i.e., λ = 10−6, the CoCoA+ solver reduces the dual-
ity gap quickly at the beginning, however, the speed slows
down rapidly at an relatively accuracy level, e.g., 10−6 in the
RCV1 dataset. This phenomena happens, no matter with the
choice of the number of iterations for the local SDCA solver.
In contrast, the DisAPCG algorithm keeps the linear conver-
gence rate all the time and hence achieves better performance
in the case that high accuracy is needed. For the most ill
condition, i.e., λ = 10−8, our DisAPCG algorithm achieve

the best performance, either in terms of iterations or running
time, on both datasets. It is worth mentaining that CoCoA+
is a framework that can use any local solver, not only limited
in SDCA. As mentioned in Section 2.2, our algorithm can
be regarded as a mini-batch version of the APCG algorithm
when K = 1, which supports share-memory level parallel
computing in multi-core nodes. A combination of CoCoA+
with our single-machine version of DisAPCG seems to be a
good choice to further accelerate the algorithm in practice.

5 Conclusions
We have presented a distributed accelerated coordinate meth-
ods DisAPCG for the composite convex optimization prob-
lem. Our method combines the Nesterov’s method and par-
allel structures, enjoying an accelerated convergence rate for
both strongly and non-strongly convex cases. Experiments
for the ERM problem show better performance camparing
with several other state-of-art solvers, matching our theoreti-
cal findings as well.

Acknowledgments
The work was supported by the National Basic Research Pro-
gram (973 Program) of China (No. 2013CB329403), NSFC
Projects (Nos. 61620106010, 61621136008, 61332007),
Tiangong Institute for Intelligent Computing, and the Youth
Top-notch Talent Support Program.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2660

References
[Bradley et al., 2011] Joseph Bradley, Aapo Kyrola, Danny

Bickson, and Carlos Guestrin. Parallel coordinate descent
for l1-regularized loss minimization. ICML, 2011.

[Dunner et al., 2016] Celestine Dunner, Simone Forte, Mar-
tin Takac, and Martin Jaggi. Primal-dual rates and certifi-
cates. ICML, 2016.

[Fan and Lin, 2011] Rong-En Fan and Chih-Jen Lin. Lib-
svm data: Classification, regression and multi-label. URL:
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets,
2011.

[Fercoq and Richtarik, 2015] Olivier Fercoq and Peter
Richtarik. Accelerated, parallel and proximal coordinate
descent. SIAM Journal on Optimization, 2015.

[Lin et al., 2014] Qihang Lin, Zhaosong Lu, and Lin Xiao.
An accelerated proximal coordinate gradient method and
its application to regularized empirical risk minimization.
NIPS, 2014.

[Ma et al., 2015] Chenxin Ma, Virginia Smith, Martin Jaggi,
Michael Jordan, Peter Richtarik, and Martin Takac.
Adding vs. averaging in distributed primal-dual optimiza-
tion. ICML, 2015.

[Necoara and Clipici, 2013] Ion Necoara and Dragos
Clipici. Efficient parallel coordinate descent algorithm for
convex optimization problems with separable constraints:
application to distributed mpc. Journal of Process
Control, 2013.

[Nesterov, 1983] Yurii Nesterov. A method of solving a con-
vex programming problem with convergence rate o(1/k2̂).
Soviet Mathematics Doklady, 1983.

[Nesterov, 2012] Yurii Nesterov. Efficiency of coordinate de-
scent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 2012.

[Richtarik and Takac, 2013a] Peter Richtarik and Martin
Takac. Distributed coordinate descent method for learn-
ing with big data. arXiv:1310.2059, 2013.

[Richtarik and Takac, 2013b] Peter Richtarik and Martin
Takac. Parallel coordinate descent methods for big data
optimization. arXiv:1212.0873v2, 2013.

[Shalev-Shwartz and Zhang, 2014] Shai Shalev-Shwartz and
Tong Zhang. Accelerated proximal stochastic dual coorid-
inate ascent for regularized loss minimization. ICML,
2014.

[Takac and Richtarik, 2015] Martin Takac and Pe-
ter Richtarik. Distributed mini-batch sdca.
arXiv:1507.08322v1, 2015.

[Wright, 2015] Stephen Wright. Coordinate descent algo-
rithms. Mathematical Programming 151.1, 3-34., 2015.

[Xiao and Lu, 2013] Lin Xiao and Zhaosong Lu. On the
complexity analysis of randomized block-coordinate de-
scent methods. arXiv:1304.4723, 2013.

[Yang, 2013] Tianbao Yang. Trading computation for com-
munication: Distributed stochastic dual coordinate ascent.
NIPS, 2013.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2661

