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Abstract

In this paper, we present a simple, yet effective,
attention and memory mechanism that is reminis-
cent of Memory Networks and we demonstrate it
in question-answering scenarios. Our mechanism
is based on four simple premises: a) memories can
be formed from word sequences by using convo-
lutional networks; b) distance measurements can
be taken at a neuronal level; c) a recursive soft-
max function can be used for attention; d) extensive
weight sharing can help profoundly. We achieve
state-of-the-art results in the bAbI tasks, outper-
forming Memory Networks and the Differentiable
Neural Computer, both in terms of accuracy and
stability (i.e. variance) of results.

1 Introduction
Methods and algorithms that emulate a general purpose com-
puting machine at a neural level [Graves et al., 2014; 2016;
Sukhbaatar et al., 2015] have recently seen strong interest.
The basic premise of these methods is that an external or in-
ternal memory is formed and that this memory is searched
iteratively for data relevant to a certain task. The searching
mechanism is often termed “attention”. This creates an arti-
ficial “bandwidth” limiter that removes the bulk of input in-
formation – letting only the most relevant information pass
through for further processing.

In order to test the performance of one of these new
models, Memory Networks, Facebook Research created a
dataset [Weston et al., 2015] termed Basic Tasks for AI
(bAbI). The dataset is based on twenty different task types
that portray different question-answering scenarios. These
tasks are formed in Data-Question-Answer triplets. A tex-
tual input (the data) is presented to a machine-learning algo-
rithm, followed by a question on the data. The algorithm is
then tasked with answering that question, based on the given
textual data.

In this paper we devise an architecture that is meant to
be both general enough to serve as a general-purpose neu-
ral network, and strong enough to attack the relevant prob-
lem of “searching through the seas of irrelevancy” adequately
to (almost) solve the bAbI tasks. The main contribution of

this work is the new neural architecture, termed Convolu-
tional Match Network (CNM), which, as we demonstrate,
improves the performance on the bAbI question-answering
dataset compared to previous published state-of-the-art work.

The basic premise of our architecture is fairly simple; text
data is processed through an embedding layer [Mikolov et
al., 2013], which encodes relevant information in a word-
by-word basis and transforms each word into a real-valued
vector. Thus, a series of words is converted into a series
of vectors. Those vectors are sequentially processed by a
one-dimensional convolutional layer [LeCun et al., 1998].
The addition of this convolutional layer, alongside a dif-
ferent match function, is the main extension of this work
over that of [Samothrakis et al., 2016]. The question asked
is processed by exactly the same mechanism – weights are
shared between the data and question convolutional layers.
Both word-vector sequences are then passed through a max-
pooling layer, which aims to subsample the textual informa-
tion down to a small sequence of neuronal activations that
roughly retains the original textual information. At this stage
we have “compressed” our sentence and question data. Next
we perform what we call a “matching” operation which aims
to identify the differences between the compressed question
and each compressed sentence. This matching step helps the
neural network identify which bits of the source data (i.e.
which bits of a “sentence”) are likely to be most helpful in
answering (i.e. the closest “match” to) the question. This
results in a separate match vector for each sentence-question
pair. Following that, we perform a non-linear transformation
to each matched sentence-question pair. Next, we apply a
timed softmax attention procedure that loops through each
question-answer pair, resulting in a single vector containing
the most relevant information. We then feed this final vector
back in another recurrence, acting as a complementary ques-
tion. After three such recurrent loops through the network (or
“hops”), we pass the final output to a softmax layer which
provides the final answer. This whole process is described in
detail in Section 3.

The organisation of the paper is as follows. The next sec-
tion provides all the necessary background. The new neural
network architecture is presented in more detail in Section
3. In Section 4, we discuss and analyse the experiments per-
formed with the new architecture on the bAbI tasks. The pa-
per ends with a short discussion and conclusion in Section 5.
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2 Background

Attention mechanisms have been very popular lately and a
number of datasets have been proposed that should (in the-
ory) make the qualities of algorithms that incorporate them
shine [Luong et al., 2015; Xu et al., 2015b; Xiong et al.,
2016]. One characteristic of attention mechanisms is that
they tend to ignore large chunks of data; this is somewhat
reminiscent, but significantly different, to the LASSO [Tib-
shirani, 1996] regulariser, which tries to ignore features by
setting weight coefficients to zero. The importance of each
feature is conditioned on the input, hence which features are
“penalised” changes continuously from sample to sample.

In this paper, we focus on the bAbI dataset [Weston et al.,
2015]. The version of bAbI used in this paper contains 20 dif-
ferent question answering tasks, each having 10, 000 training
examples. The test set of these tasks comprises of 1, 000 ex-
amples. When working with the bAbI dataset, results may be
presented for either training a different network/classifier for
each task, or for training a single network to solve all tasks
together. In this paper, we train one network to solve all tasks
together, referred to as “joint trainng,” meaning the dataset
comprises 200, 000 training and 20, 000 testing instances.

A human would presumably find it hard to directly answer
the questions posed by the dataset by just following the “in-
formation” pathway of different facts. Instead, one would
first need to search for specific “facts”, rescan the data for
relevant sentences and iterate until a sentence with informa-
tion that can answer the question is identified. If, however,
one has identified the relevant sentences, the task is made
much easier. Hence, focusing the algorithm’s attention al-
most trivialises the problem and showcases the power of at-
tention mechanisms. Note that in all results presented here,
we do not manually tell the network which memories/sen-
tences/facts are most relevant, but instead we rely on the net-
work’s in-built attention mechanism to figure these details out
for itself.

The benchmark has previously been used to assess vari-
ous architectures (e.g. [Graves et al., 2016; Sukhbaatar et al.,
2015; Kumar et al., 2015; Graves et al., 2014; Peng et al.,
2015; Samothrakis et al., 2016]), all using somewhat simi-
lar ideas, but with different executions and implementations.
For example, [Graves et al., 2016] use three different atten-
tion mechanisms to assess the relevancy of memory content,
while [Peng et al., 2015] use a simple combination of convo-
lution and max-pooling. These implementational differences
lead to widely different performance. A common theme
among these efforts is their apparent instability – with even
the best score achievable and the mean results presented be-
ing widely different; leading practitioners to often present the
best of several runs. The amount of preprocessing required is
yet another interesting point of difference, and some architec-
tures require the input to be heavily pre-processed (e.g., as to
extract features at a sentence level), whereas others (includ-
ing ours, but also see [Graves et al., 2016]) perform infer-
ence at a word level. The memory mechanisms used in the
vast majority of the work is internal to the network, but atten-
tion systems could also possibly be coupled with completely
external memories (e.g. databases) and produce end-to-end

data inquiry pathways, with some results towards this direc-
tion presented in [Yin et al., 2015].

3 Neural Architecture
This section describes the architecture of the whole network
in more detail, delving into individual components. Our ar-
chitecture is in effect a straightforward application of [Col-
lobert et al., 2011], extended to include memory and attention
mechanisms as discussed in [Samothrakis et al., 2016], and is
presented in Figure 1.

3.1 Input Encoding
Both the question and all data-sentences are encoded ini-
tially by two concurrent processing pipelines that share the
same weights. The first one involves encoding the data (re-
ceived in our setting in the form of a text). An embed-
ding layer processes the data word by word, similarly as in
word2vec [Mikolov et al., 2013]. First, each word is encoded
as a vector of length n neurons, and then each sentence is
padded out with blank words so that all sentences are uniform
length, n mns. Each sequence of sentences is also padded to
the maximum data length available. The padding is done for
two reasons. The first one is to create tensors of a fixed shape
that are required in modern neural network frameworks. The
second one is per-sentence padding, which is effectively done
as a way of saying “This is where a sentence ends”. Both
are tricks to get away from the fact that one needs to pass
3D tensors of certain shapes. The number of sentences is
n memories. All sentences and words are represented as an
output matrix of dimension (n words× n neurons), where
n words = n mns ∗ n memories. Dropout [Srivastava et
al., 2014] is applied, resulting in a new matrix of the same
dimension, but with some elements zeroed out.

The matrix is then passed into a 1-dimensional convolu-
tional layer with the number of filters set to n filters =
n neurons. Each convolutional filter is of dimension
n mns×n neurons. The convolution filters are passed over
the input matrix, with stride length 1. The input matrix is
padded with zeros so that the result of each convolution is the
same dimension as the input matrix1. Again, the result is a
matrix of dimension (n words× n filters).

After convolution, a non-linearity is applied. As the fi-
nal step of encoding, each input sentence (or memory) is
compressed into a single shorter vector using max-pooling.
The max-pooling operation compresses each whole sentence
down to a single vector of dimension n filters. Hence the fi-
nal representation of all input sentences is a matrix of dimen-
sion (n memories× n filters). The whole procedure until
now is captured in the first four layers of the graph in Figure 1
(Embedding, Dropout, Convolution1D, MaxPooling).

A second, separate pathway involves encoding the ques-
tion. Each question is processed identically to a single sen-
tence. The question is passed through the same embedding
layer, followed by the same convolutional layer, resulting in
a matrix of dimension (n mns × n filters). This is fol-
lowed by a non-linearity, and by max-pooling, which com-
presses all of the “word vectors” in the question into a sin-

1This is “border mode = same” in some terminologies.
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gle vector of length n neurons. Hence, the final encod-
ing of the question is a single output vector of dimension
n filters = n neurons. Again, this is represented in the
first four layers of Figure 1.

Match 
input:

output:

[(n_memories,n_filters), n_filters, [hops]]

(n_memories,n_neurons)

TDD
input:

output:

(n_memories, n_neurons)

(n_memories, n_neurons)

AttentionRecurrent
input:

output:

(n_memories, n_neurons)

n_neurons

Dense Softmax Layer
input:

output:

n_neurons

n_outputs

Convolution1D (n_filters, n_mns)
input:

output:

(n_words,n_neurons)

(n_words,n_filters)

MaxPooling1D (n_mns)
input:

output:

(n_words, n_filters)

(n_memories, n_filters) or n_filters

Embedding
input:

output:

n_words

(n_words,n_neurons)

Dropout

Figure 1: Our end-to-end architecture.

3.2 The Matching Attention Mechanism
After the encoding we apply a match function, which com-
pares each sentence (one at a time) to the question. The
purpose of the match function is to provide a vector output
indicating how relevant each component of a particular pre-
processed sentence st is to the given preprocessed question q.
The match function we use is:

m(st, q)
i = sit|sit − qi|, ∀i = 1...n neurons , (1)

where the index i indicates the vector component. In Figure 1
this corresponds to the Match layer.

A match vector mt is thus formed for each sequence (i.e.
for all t = 1 . . . n memories). Each match vector mt is pro-
cessed further via a dense neural layer, and a non-linearity,
using what is termed a time distributed layer (TDD – see Fig-
ure 1). A time distributed layer is a layer that applies a non-
linearity (i.e. an ordinary layer) to a sequence of data. So

assuming input data of shape (n memories, n neurons), an
ordinary dense layer is applied to each set of neuron activa-
tions n neurons.

The transformed input is now passed through another layer
with output dimension of 2. The output vector at this layer is
denoted by the two-dimensional vector yt, for sentence num-
ber t. The components of yt are then transformed by:

zit =
exp yit

exp y0t + exp y1t
, for i ∈ {0, 1}. (2)

This recursive softmax operation produces two compo-
nents of zt, which sum to 1. The aim of these components
is to compare the current memory with all the previous ones
and gradually build a new “focused” output. Thus, a hidden
vector ht (of dimension n neurons) is updated via the fol-
lowing recurrent update:

ht = z0t ∗ ht−1 + z1t ∗mt , (3)

initialised with h0 = 0. This recurrent loop is referred to as
the AttentionRecurrent layer in Figure 1. At each timestep,
the layer checks the relevance of its input, working over mem-
ories and comparing the proportion of importance each one
has.

The steps “Match, TDD, AttentionRecurrent” form one
“hop”, i.e. one pass over memory. There are scenarios, how-
ever, where multiple passes are needed in order for the net-
work to infer a relevant memory. In these cases, a second and
third hop are performed, using the new match function:

m(st, q, (hp)t)
i = sit|sit − (hp)t

i − qi| , (4)

where (hp)t is the ht vector from the previous hop. The num-
ber of hops used in this paper is set to 3, but there is virtually
no limit on the number of hops. All hops share the same
weights.

The final stage of processing, after all hops are completed,
is the Dense Softmax Layer. This puts the final ht vector
through a dense neural layer, and non-linearity, producing an
output vector with dimension 195 (corresponding to the 195
possible answers in the bAbI dataset). A softmax operator
is applied to this vector to turn the output into probabilities.
Note that when multiple output words are requested, the cur-
rent setup will output a sequence directly (e.g., “apple, foot-
ball, milk”) – this is required, for instance, by tasks 8 and
19.

4 Experiments
This section showcases the relevant experimental setup and
obtained results.

4.1 Setup
We assess the quality of each method by: (i) determining the
algorithmic accuracy, and (ii) counting the number of tasks
solved. A task is solved when the error is below 5%, as de-
fined by the benchmark [Bordes et al., 2015]. All tasks are
used for both training and testing, which results in 200, 000
training instances and 20, 000 testing instances. Each net-
work training phase lasts for 50 epochs, followed by mea-
surements on the (out-of-core-training) test set. In call cases,
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Task Number/Name
LSTM

Best
NTM
Best

DNC
Best

DNC2
Best

MEM2NN
Best

CMN
Mean

QA1 - Single Supporting Fact 24.5 31.5 0.0 0.0 0.0 0.0 ± 0.0
QA2 - Two Supporting Facts 53.2 54.5 1.3 0.4 1.0 0.4 ± 0.2
QA3 - Three Supporting Facts 48.3 43.9 2.4 2.4 6.8 3.0 ± 0.7
QA4 - Two Arg. Relations 0.4 0.0 0.0 0.0 0.0 0.0 ± 0.1
QA5 - Three Arg. Relations 3.5 0.8 0.5 0.8 6.1 0.4± 0.2
QA6 - Yes/No Questions 11.5 17.1 0.0 0.0 0.1 0.0 ± 0.0
QA7 - Counting 15.0 17.8 0.2 0.6 6.6 0.9 ± 0.7
QA8 - Lists/Sets 16.5 13.8 0.1 0.3 2.7 0.7 ± 0.5
QA9 - Simple Negation 10.5 16.4 0.0 0.2 0.0 0.0 ± 0.0
QA10 - Indefinite Knowledge 22.9 16.6 0.2 0.2 0.5 0.2 ± 0.4
QA11 - Basic Coreference 6.1 15.2 0.0 0.0 0.0 0.2± 0.2
QA12 - Conjunction 3.8 8.9 0.1 0.0 0.1 0.0 ± 0.1
QA13 - Compound Coreference 0.5 7.4 0.0 0.1 0.0 0.0 ± 0.0
QA14 - Time Reasoning 55.3 24.2 0.3 0.4 0.0 0.3 ± 0.8
QA15 - Basic Deduction 44.7 47.0 0.0 0.0 0.2 0.2 ± 0.5
QA16 - Basic Induction 52.6 53.6 52.4 55.1 0.2 53.2 ± 1.6
QA17 - Positional Reasoning 39.2 25.5 24.1 12.0 41.8 2.2 ± 1.7
QA18 - Size Reasoning 4.8 2.2 4.0 0.8 8.0 0.5 ± 0.3
QA19 - Path Finding 89.5 4.3 0.1 3.9 75.7 2.9 ± 3.2
QA20 - Agent’s Motivations 1.3 1.5 0.0 0.0 0.0 0.0 ± 0.0

Mean Err (%) 25.2 20.1 4.3 3.9 7.5 3.3 ± 0.2
Failed(err. > 5%) 14.0 15.0 2.0 2.0 6.0 1.3 ± 0.5

Table 1: Results for the “best run”. We include the mean results for CMNs, as we think they compare favourably with the best results of other
architectures.

categorical cross entropy is used as the loss function. Note
that there is no intermediate supervision – we don’t, at any
point, tell the machine which memories/sentences are im-
portant and which are not. We rely on the end-to-end su-
pervised learning process to train the attention mechanism
to work this out by itself. Initial weight values were given
by Gaussian Glorot initialisation [Glorot and Bengio, 2010],
whereas recurrent softmax layer weights were initialised us-
ing orthogonal initialisation. All activation functions (non-
linearities) used were Leaky ReLU [Maas et al., 2013; Xu et
al., 2015a]. The dropout rate used was 0.2. The training al-
gorithm used was Adam [Kingma and Ba, 2015], with initial
learning rate 0.001. Adam modifies the learning rate of each
individual weight as it progresses through minibatches. The
time it took to go through one iteration (i.e. a full sweep
over the training dataset) was 760 seconds on an Nvidia
1080. The hyperparameters where chosen using a valida-
tion set on the smaller version of the bAbI tasks. We used
Keras2 (a neural network framework), Theano3 (a deep learn-
ing library) and Python for our implementation. Each neu-
ral layer had 128 units. In total there were 263, 621 parame-
ters (weights). The full code of this work can be found here:
https://github.com/ssamot/conv-match4.

4.2 Results
For the main architecture, we present two different tables of
results and a progress plot (see Figure 2) on the training set -

2https://github.com/fchollet/keras
3https://github.com/Theano/Theano
4To be used in conjunction with Keras commit ID

06cc6d7fea7527e99e36c9fc766390c51e73ebba.
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Figure 2: Average loss on the training set for the 99th interval on
the 10K bAbI dataset.

notice the relative stability of the runs. Both tables contain the
same Convolutional Match Network (CMN) results, but they
compare against prior works’ best-run performance (Table 1)
and mean performance (Table 2). The reporting of the results
follows the conventions of [Graves et al., 2016] – where the
failure rate is calculated by running the experiments n times
(in our case, n = 20) and finding out the mean failures we
had (where error > 5%) for each task. It can be seen from the
outset that our results are better than their direct competitors.
The CMN architecture is extremely stable when it comes to
learning, with very few “bumps”. Note that we do not report
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Task Number/Name
LSTM
Mean

NTM
Mean

DNC1
Mean

DNC2
Mean

CMN
Mean

QA1-Single Supporting Fact 28.4±1.5 40.6±6.7 9.0±12.6 16.2±13.7 0.0±0.0
QA2-Two Supporting Facts 56.0±1.5 56.3±1.5 39.2±20.5 47.5±17.3 0.4±0.2
QA3-Three Supporting Facts 51.3±1.4 47.8±1.7 39.6±16.4 44.3±14.5 3.0±0.7
QA4-Two Arg. Relations 0.8±0.5 0.9±0.7 0.4±0.7 0.4±0.3 0.0±0.1
QA5-Three Arg. Relations 3.2±0.5 1.9±0.8 1.5±1.0 1.9±0.6 0.4±0.2
QA6-Yes/No Questions 15.2±1.5 18.4±1.6 6.9±7.5 11.1±7.1 0.0±0.0
QA7-Counting 16.4±1.4 19.9±2.5 9.8±7.0 15.4±7.1 0.9±0.7
QA8-Lists/Sets 17.7±1.2 18.5±4.9 5.5±5.9 10.0±6.6 0.7±0.5
QA9-Simple Negation 15.4±1.5 17.9±2.0 7.7±8.3 11.7±7.4 0.0±0.0
QA10-Indefinite Knowledge 28.7±1.7 25.7±7.3 9.6±11.4 14.7±10.8 0.2±0.4
QA11-Basic Coreference 12.2±3.5 24.4±7.0 3.3±5.7 7.2±8.1 0.2±0.2
QA12-Conjunction 5.4±0.6 21.9±6.6 5.0±6.3 10.1±8.1 0.0±0.1
QA13-Compound Coreference 7.2±2.3 8.2±0.8 3.1±3.6 5.5±3.4 0.0±0.0
QA14-Time Reasoning 55.9±1.2 44.9±13.0 11.0±7.5 15.0±7.4 0.3±0.8
QA15-Basic Deduction 47.0±1.7 46.5±1.6 27.2±20.1 40.2±11.1 0.2±0.5
QA16-Basic Induction 53.3±1.3 53.8±1.4 53.6±1.9 54.7±1.3 53.2±1.6
QA17-Positional Reasoning 34.8±4.1 29.9±5.2 32.4±8.0 30.9±10.1 2.2±1.7
QA18-Size Reasoning 5.0±1.4 4.5±1.3 4.2±1.8 4.3±2.1 0.5±0.3
QA19-Path Finding 90.9±1.1 86.5±19.4 64.6±37.4 75.8±30.4 2.9±3.2
QA20-Agent’s Motivations 1.3±0.4 1.4±0.6 0.0±0.1 0.0±0.0 0.0±0.0

Mean Err (%) 27.3±0.8 28.5±2.9 16.7±7.6 20.8±7.1 3.3±0.2
Failed(err. > 5%) 17.1±1.0 17.3±0.7 11.2±5.4 14.0±5.0 1.3±0.5

Table 2: Results showing mean scores. LSTM, Neural Turing Machine (NTM) and Differentiable Neural Computer (DNC) results are from
[Graves et al., 2016]. The numbers portrayed are means and standard deviations for 20 runs – note the massive improvement in results using
CMNs. All results are for “joint training”.

Task Number/Name 10K-CNN 10K-3 10K-5 10K-7 10K-9 10K-Max 10K-Mean 1K

QA1 - Single Supporting Fact 0.0 1.0 0.0 36.9 0.5 6.9 32.5 0.0
QA2 - Two Supporting Facts 0.9 20.6 0.7 22.4 7.8 35.9 66.8 3.3
QA3 - Three Supporting Facts 7.8 33.5 4.1 17.2 22.4 46.5 67.0 16.2
QA4 - Two Arg. Relations 0.0 0.1 0.0 0.0 0.1 0.0 19.7 0.4
QA5 - Three Arg. Relations 0.2 0.6 0.4 7.0 1.0 5.8 23.9 0.8
QA6 - Yes/No Questions 0.0 1.2 0.0 18.2 1.5 4.1 30.2 0.0
QA7 - Counting 3.0 2.6 1.7 6.2 8.3 6.2 46.9 5.9
QA8 - Lists/Sets 1.1 3.2 0.7 18.2 4.9 4.6 56.9 2.7
QA9 - Simple Negation 0.1 0.9 0.0 18.0 1.5 2.4 20.8 0.0
QA10 - Indefinite Knowledge 0.2 0.9 0.4 20.7 4.2 6.0 40.4 1.3
QA11 - Basic Coreference 0.0 0.4 0.1 54.0 0.2 3.2 16.6 1.2
QA12 - Conjunction 0.0 0.0 0.0 60.6 1.0 2.5 24.1 0.0
QA13 - Compound Coreference 0.0 0.0 0.0 76.4 0.5 2.9 16.5 0.1
QA14 - Time Reasoning 0.2 31.2 2.9 15.8 14.9 0.2 49.2 0.2
QA15 - Basic Deduction 0.0 7.5 0.0 13.0 0.0 0.0 67.3 57.1
QA16 - Basic Induction 54.3 51.7 53.9 53.7 54.0 54.2 75.0 54.3
QA17 - Positional Reasoning 11.1 12.6 2.1 28.7 3.3 3.4 25.3 26.3
QA18 - Size Reasoning 1.1 0.7 1.0 0.7 2.2 0.5 16.7 2.4
QA19 - Path Finding 1.6 45.5 53.0 55.4 32.9 27.0 57.6 88.4
QA20 - Agent’s Motivations 0.0 0.0 0.2 19.1 0.3 0.0 28.5 0.0

Mean Err (%) 4.1 10.7 6.1 27.1 8.1 10.6 39.1 13.0
Failed(err. > 5%) 3.0 7.0 2.0 18.0 6.0 8.0 20.0 6.0

Table 3: Results for variations of our architecture. Column 10K-CNN shows results when the TDD layer is replaced by a CNN. Columns
10K-n show the removal of sentence padding, and a change to a filter of length n× n neuronsf. “10K-Max” and “10K-Mean” replace the
AttentionRecurrent layer with a simple max and and mean per-neuron function. Column 1K shows results for the original architecture but
with a reduced dataset of just 1,000 examples per task.
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the “best” score, as we did not collect results using a similar
procedure to [Graves et al., 2016] – i.e. reporting the best
of a validation set – hence, we use the mean instead of the
best. This can be considered a strength of our architecture, in
that training-run performance is so robust. Though not for-
mally reported in the tables, our best result has 2.8 overall
error rate, which is also comparable to [Xiong et al., 2016].
Note that [Xiong et al., 2016] compare their results with neu-
ral networks that are trained for each task individually (and
also follow the pattern of reporting “best results”) – thus we
assume they follow the same methodology and do not include
a full comparison with their results here.

On top of the initial results, we provide a set of further
results in Table 3. This set of results is conducted on vari-
ations of the original architecture. Though none of the ar-
chitectural modifications achieves improved results over the
original, they are worth discussing as they give some insight
as to why this architecture is so successful. In the table,
columns headings prefixed by “10K” indicate the full dataset
of 10,000 questions per task were used. Those columns
headed 10K − n, where n is one of 3, 5, 7, 9, are versions
of the network that do not pad on sentence level, and use
n × n neurons as the convolution filter length. From the
results it can be seen that filter lengths of n = 5 produce
the best results, with n = 7 producing the worst. We can-
not see any relationship between the filter size and the data.
Though smaller filter sizes allow for more “granularity”, they
also create more chunks of information to attend over - hence
we hypothesise that optimal lengths are very much task spe-
cific. The very high variance between different filter sizes
might explain why DNC results have such a large variance –
the extra knowledge provided by padding and fixing the fil-
ter length to the sentence size is very beneficial. Columns
“10K-Max” and “10K-Mean” demonstrate variations of the
architecture that remove the AttentionRecurrent layer and re-
place it with a simple max or mean operation over all incom-
ing inputs, along each neuron. Again, the results indicate
that this layer greatly helps the network, especially with tasks
that need a lot of “recursive searching”, like QA2 - Two
Supporting Facts, QA03 - Three Supporting
Facts and QA19 - Path Finding. The results of
“10K-CNN” replaces the TDD layer with a convolution of
filter length n = 3. This doesn’t seem to affect the over-
all performance that much, but does actually get rather low
scores in QA17 - Positional Reasoning and QA03
- Three Supporting Facts.

For the sake of completeness, we also provide results for
the version of the test where only 1K examples per task are
given (column headed “1K”). We solve more tasks than the
best MEM2NN – see [Sukhbaatar et al., 2015] (6 failures
instead of 10), but have a slightly higher mean error (13 vs
12.4), which can be clearly attributed to our failure in deal-
ing with task QA16 - Basic Induction. For the 1K
training setting we used a dropout rate of 0.5 and 500 training
epochs, to account for less training examples per epoch.

Overall, CMN’s mean is better than the best provided re-
sult of its competitors. The worst number of failed tasks we
have observed is two, and we suspect that this can be fixed
with hyperparameter tuning. The only task that CMN fails to

attack successfully is QA16 - Basic Induction. We
hypothesise that this is due to the fact that our architecture
focuses too much on differences between memories and ques-
tions and fails to adequately capture the relevance of different
memories with one another.

A MEM2NN uses bag of words for each sentence (and po-
sitional encoding), and compares each question to each sen-
tence individually, so it is aware of the sentence level struc-
ture of the task. This is much heavier pre-processing than the
one we use. One of our strengths is that we don’t use bags of
words, we directly throw the data to the NN (with padding).
DNCs operate on word level directly, with no knowledge that
a sentence exists. This might be a reason behind their inher-
ent instability – as discussed above. We provide knowledge
of “what is a good data chunk to attend over” combined with
using the natural structure of the sentences. Note that none of
the architectures (including ours) embeds sentences directly
– all operate more or less on a word level. Note also that we
do not perform any other kind of pre-processing, in contrast
for example to both [Sukhbaatar et al., 2015] and [Xiong et
al., 2016] who used fewer sentences for task QA3 - Three
Supporting Facts.

5 Conclusion
In this paper, we have proposed a novel method for attacking
problems that respond well to memory and attention mech-
anisms. Our contribution is in presenting a new neural net-
work architecture, Convolutional Match Networks (CMN),
that combines individual neuron match functions and a re-
current softmax attention mechanism.

We have tested the performance of this new neural ar-
chitecture against the current state-of-the-art mechanisms:
the Neural Turing Machine (NTM), Memory Networks
(MEM2NN) and the Differentiable Neural Computer (DNC),
using the bAbI benchmark set of question-answering tasks.
In the previous section, we presented results that show that
CMN outperforms the state-of-the-art in terms of mean scores
by a large margin. Although in our experiments CNM failed
to solve the QA16 - Basic Induction task, we believe
this is an issue that can be fixed with an attention layer that in-
cludes a separate set of weights or a hop that does not address
a specific question, but rather propagates memories directly.

There are several avenues for future work. There is scope
to vary some of the design choices made so far in this ar-
chitecture, such as the choice of hyperparameters and match
function. Also it would be interesting to vary the applica-
tion mode of the convolution, or the application of the match
function to later hops, or the design of equation (2) to vary the
way recurrent memories are decayed. We are also aiming at
introducing hops without a corresponding question. Finally,
it would be interesting to use the explicit knowledge learned
from the bABI tasks and use it as a seed for general question
answering, possibly combined with some method that avoids
catastrophic forgetting [French, 1999]. This should allow for
the incremental learning of different memory representations,
something that would greatly help in real-world scenarios.
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