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Abstract
Semantic image segmentation is a fundamental task
in image understanding. Per-pixel semantic la-
belling of an image benefits greatly from the abil-
ity to consider region consistency both locally and
globally. However, many Fully Convolutional Net-
work based methods do not impose such consis-
tency, which may give rise to noisy and implausi-
ble predictions. We address this issue by proposing
a dense multi-label network module that is able to
encourage the region consistency at different lev-
els. This simple but effective module can be eas-
ily integrated into any semantic segmentation sys-
tems. With comprehensive experiments, we show
that the dense multi-label can successfully remove
the implausible labels and clear the confusion so as
to boost the performance of semantic segmentation
systems.

1 Introduction
Semantic segmentation is one of the fundamental problems
in computer vision, whose task is to assign a semantic label
to each pixel of an image so that different classes can be dis-
tinguished. This topic has been widely studied [Girshick et
al., 2014; Hariharan et al., 2014; Yadollahpour et al., 2013;
Farabet et al., 2013]. Among these models, Fully Convo-
lutional Network (FCN) based models have become domi-
nant [Dai et al., 2015; Chen et al., 2015; Lin et al., 2015;
Chen et al., 2016]. These models are simple and effective be-
cause of the powerful capacity of Convolutional Neural Net-
works (CNNs) and being able to be trained end-to-end. How-
ever, most existing methods do not have the mechanism to
enforce the region consistency, which plays an important role
in semantic segmentation. Consider, for example, Figure 1,
in which the lower left image is the output of a vanilla FCN,
whose prediction contains some noisy labels that do not ap-
pear in the ground truth. With enforced region consistency,
we can simply eliminate those implausible labels and clear
the confusion. Our aim in this work is to introduce constraints
to encourage this consistency.

∗The first two authors contributed equally and this work was
done when Guosheng Lin was with The University of Adelaide.

Figure 1: Illustration of region consistency. For a region in the in-
put image, which is coloured in red, the corresponding part in the
ground truth contains only three classes. In the network without re-
gion consistency, there are five classes that appear. If we explicitly
encourage the consistency, those unlikely classes will be eliminated
and the prediction will be better as shown on top.

Our proposal is both simple and effective: we argue that the
region consistency in a certain region can be formulated as a
multi-label classification problem. Multi-label classification
has also been widely studied [Jiang, 2016; Wei et al., 2016;
Guo and Gu, 2011], whose task is to assign one or more la-
bels to the image. By performing multi-label classification
in a region, we can allow the data to suggest which labels
are likely within the broad context of the region, and use this
information to suppress implausible classes predicted with-
out reference to the broader context, thereby improving scene
consistency. While typical multi-label problems are formu-
lated as whole-image inference, we adapt this approach to
dense prediction problems such as semantic segmentation, by
introducing dense multi-label prediction for image regions of
various sizes.

Dense multi-label prediction is performed in a sliding win-
dow fashion: the classification for each spatial point is influ-
enced by the network prediction and by the multi-label result
for the surrounding window. By employing different win-
dow sizes, we are able to construct a multi-level structure for
dense multi-label and enforce the region consistency at dif-
ferent levels both locally and globally. Figure 2 is an illus-
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Figure 2: Illustration of dense multi-label with multi-level. Win-
dows in different colours indicate different regions for dense multi-
label classification.

tration of dense multi-label at multiple windows sizes.Here
we use three windows of different sizes. The red window,
the smallest, focuses more on the local region consistency,
while the green window, the largest, is responsible for global
region consistency. The other one, in blue, is for mid-level
consistency. By sliding the windows to consider each spatial
point, we perform multi-label densely at different level, en-
couraging the segmentation predictor to give predictions that
are consistent with the dense multi-label prediction.

Our contributions are as follows:

• We address the problem of region consistency in seman-
tic segmentation by proposing a dense multi-label mod-
ule to achieve the goal of retaining region consistency,
which is simple and effective. We also introduce a multi-
level structure for dense multi-label to preserve region
consistency both locally and globally.

• We evaluate our method on four popular semantic seg-
mentation datasets including NYUDv2, SUN-RGBD,
PASCAL-Context and ADE 20k, and achieve promising
results. We also give analysis on how dense multi-label
can remove the implausible labels, clear confusion and
effectively boost the segmentation systems.

2 Related Work

Semantic segmentation has been widely studied [Girshick et
al., 2014; Hariharan et al., 2014]. Early CNN based meth-
ods rely on region proposals or superpixels. They make
segmentation prediction by classifying these local features.
More recently, with Long et al.[Long et al., 2015] intro-
ducing applying Fully Convolutional Networks(FCNs) to se-
mantic segmentation, the FCN based segmentation mod-
els [Dai et al., 2015; Chen et al., 2015; Lin et al., 2015;
Chen et al., 2016] have become popular.

Multi-label classification has also been widely studied.
Traditional methods are based on graphical models [Xue et
al., 2011; Guo and Gu, 2011], while the recent studies benefit
more from CNNs [Wei et al., 2016; Jiang, 2016].

Here we propose a dense multi-label module to take advan-
tage of multi-label classification and integrate it into seman-
tic segmentation systems. Dense multi-label is performed
in a sliding window fashion and treats all area in a window
as multi-label classification. Experiments show that dense
multi-label can help to keep the scene consistency, clear con-
fusion and boost the performance of semantic segmentation.

3 Methods
3.1 Dense Multi-label

Figure 3: An illustration of differences between pixel classification
and dense multi-label prediction. In pixel classification, we treat
each spatial point as a single-label classification problem where only
one class is supposed to get very high confidence; dense multi-label
focuses on label concurrence where the labels that appear in the re-
gion will have equally high confidence.

Multi-label classification is a task where each image can
have more than one label, unlike a multi-class classification
problem [Simonyan and Zisserman, 2015; Szegedy et al., ;
He et al., 2016] whose goal is to assign only one label to the
image. This is more natural in reality because for majority
of images, objects are not isolated, instead they are in con-
text with other objects or the scene. Multi-label classification
gives us more information of the image.

For a dense prediction task such as segmentation, it treats
every spatial point as a multi-class classification problem,
where the point is assigned with one of the categories. As
shown in the upper part of Figure 3, the model predicts scores
for each class and picks the highest one. The ground truth is
an one-hot vector correspondingly. For a dense multi-label
problem, each spatial point will be assigned with several la-
bels to show what labels appear in the a certain window cen-
tered at this point. As shown in lower part of Figure 3, there
are two classes being predicted with high confidence and the
ground truth is given by a “multiple hot” vector.

Here we propose a method to learn a dense multi-label sys-
tem and a segmentation system at the same time. We aim at
using dense multi-label to suppress the implausible classes
and encourage appropriate classes so as to retain the region
consistency for the segmentation prediction both globally and
locally. In the next section, more details of the whole frame-
work will be provided.

3.2 Overview of Framework
An overview of the structure is shown in Figure 4, with the
part in the dashed-line rectangle being the dense multi-label
module. Without it, the network simply becomes a FCN. The
input image is first fed into several low level feature layers
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Figure 4: Illustration of the framework with dense multi-label module. The input image is first passed into low level feature layers, which
are shared by the following blocks. Then the feature maps are fed into the segmentation block and three dense multi-label blocks. The
element-wise sum will sum up the features from the blocks and make the final prediction. Apart from the segmentation loss, each dense
multi-label block also has its own multi-label loss to guide the training.

that are shared by the following blocks. Then apart from go-
ing into the segmentation block, the features also enter three
blocks for dense multi-label prediction. The outputs of theses
blocks are merged element-wise for the final prediction.

In the training phase, the network is guided by four loss
functions: the segmentation loss and three dense multi-label
losses. We use softmax loss for the segmentation path, and
use logistic loss for all the dense multi-label blocks.

The dense multi-label blocks have different window sizes
for performing dense multi-label prediction within different
contexts. With this multi-level structure, we are able to retain
region consistency both locally and globally.

Let x denote the image. The process of the low level fea-
ture block can be described as:

o = flow(x;θlow), (1)

where o is the output and θlow the layer parameters.
The dense multi-label blocks and the segmentation block

are defined as:

m(j) = f
(j)
mul(o;θ

(j)
mul), j ∈ {1, 2, 3} (2)

s = fseg(o;θseg), (3)

where m(j) and s denote the output of jth multi-label block
and the output of segmentation respectively. θ(j)mul and θseg
are layer parameters.

The final prediction is:

p = s+m(1) +m(2) +m(3), (4)

where p is the fused score for segmentation.
For the loss functions, we use logistic loss for the predic-

tion of dense multi label blocks, m(1),m(2) and m(3); soft-
max loss is used for final prediction p. Let mik be the out
of a dense multi-label block at ith position for kth class, and
ymul
ik be the ground truth for the corresponding position and

class. The loss function for dense multi-label is defined as:

lmul(y
mul,m) =

1

IK

I∑
i

K∑
k

ymul
ik log(

1

1 + e−mik
)

+ (1− ymul
ik ) log(

e−mik

1 + e−mik
), (5)

where ymul
ik ∈ {0, 1}; I and K represent the number of spa-

tial points and classes, respectively.
Similarly, let pik be the fused output at ith position for kth

class, and ysegi be the ground truth for segmentation predic-
tion at ith position. The loss function for segmentation is
defined as:

lseg(y
seg,p) =

1

I

I∑
i

K∑
k

I(ysegi = k) log(
epik∑
j e

pij
), (6)

where ysegi ∈ {1 . . .K}.
Our goal is to minimize the objective function:

min lseg + λ(l
(1)
mul + l

(2)
mul + l

(3)
mul), (7)

where λ controls the balance between the segmentation block
and the dense multi-label blocks. I observe this parameter is
not very sensitive. We set λ = 1 to treat each part equally.

3.3 Dense Multi-label Block
The details of the dense multi-label block are shown in Figure
5, where the input is feature maps at 1/8 resolution, due to the
downsampling in the low level feature layers. After some
convolutional layers with further downsampling, the dense
multi-label is performed at 1/32 resolution with the sliding
window and following adaptive layers. The reason for this
setting is because dense multi-label requires a large sliding
window, which will become a computational burden if we
work at a high resolution. Downsampling can greatly reduce
the size of feature maps and more importantly, the size of slid-
ing window will shrink accordingly, thus making the compu-
tation more efficient. On the other hand, dense multi-label
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requires more high level information. Therefore, working at
a coarse level can capture the high level features better. The
output of the dense multi-label is upsampled to be compatible
with the segmentation block’s output.

Figure 5: Details of a single dense multi-label block. The input fea-
tures are fed into several convolutional layers and further downsam-
pled. Then we perform sliding window with max pooling operation.
After some adaptive layers, we have scores for dense multi-label at
1/32 resolution.

3.4 Ground Truth Generation

Figure 6: The segmentation ground truth is firstly converted to
channel-wise labels, with 0 or 1 in each channel. The ground truth
for dense multi-label can be obtained by performing max pooling on
the channel-wise labels.

The ground truth for dense multi-label can be generated
from the segmentation ground truth. The process is described
in Figure 6. Firstly, the segmentation ground truth is con-
verted to channel-wise labels, which means each channel only
contains 1 or 0 to indicate whether the corresponding class
appears or not. To generate a ground-truth mask for each
class, for a given window size, we slide the window across
each binary channel and perform a max-pool operation (this
is equivalent to a binary dilation using a structuring element
of the same size and shape as the window). We repeat this
process for each window size. As noted in section 3.3, the
dense multi-label classification is performed at 1/32 resolu-
tion while the segmentation is at 1/8. Therefore, we generate
multi-label ground-truth data at 1/8 resolution with stride 4.

3.5 Network Configuration
The dense multi-label module is suitable for any segmenta-
tion system and it can be easily integrated. In this study, we
use Residual 50-layer network [He et al., 2016] with dilated
kernels [Chen et al., 2015]. In order to work at a relatively
high resolution while keeping the efficiency, we use 8-stride
setting, which means that the final output is at 1/8 resolution.
As we mentioned in the last section, we perform dense multi-
label at 1/32 resolution to make it more efficient and effective.
The window sizes are then defined at 1/32 resolution. For ex-
ample,let w be the window size. A window with w = 17 at

Block name Initial layers Stride

Low level feature block conv1 to res3d 8
Segmentation block res4a to res5c 1

Dense multi-label block res4a to res5c 4
Table 1: Configuration for Res50 network. The low level feature
block is initialized by layers “conv1” to “res3d” and has 8 stride.
The segmentation block and dense multi-label blocks are initialized
by layers “res4a” to “res5c” but do not share the weights with each
other. The segmentation block does not have any downsampling, but
the dense multi-label blocks have further 4 stride downsampling.

Figure 7: Example outputs of Res50 baseline and DML-Res50 on
ADE-20k dataset.

1/32 resolution means 4w = 68 at 1/8 resolution. The corre-
sponding window for the original image is 32w = 544. We
use w1 = 35, w2 = 17 and w3 = 7 for all the experiments.

Table 1 shows the configuration with 50-layer Residual net
(Res50) as the base network. The low level feature block
contains layers from “conv1” to “res3d”. The segmentation
block and dense multi-label blocks have layers from “res4a”
to “res5c” as well as some adaptive layers. It is worth noting
that it does not mean these blocks will share the weights even
though they initialize the weights from the same layers. After
initialization, they will learn their own features separately.

4 Experiments and Analysis
We evaluate our model on 4 commonly used semantic seg-
mentation datasets: ADE-20k, NYUDv2, SUN-RGBD and
PASCAL-Context. Our comprehensive experiments show
that dense multi-label can successfully suppress many un-
likely labels, retain region consistency and thus improve the
performance of semantic segmentation.

The results are evaluated using the Intersection-over-Union
(IoU) score [Everingham et al., 2010]. Moreover, since our
original motivation is to suppress noisy and unreasonable la-
bels to keep labels consistent with the region, we also intro-
duce new measurements to evaluate the number of classes
that are not in ground truth, and further, the number of pixels
that are predicted to be these wrong classes for each image.

We only use Res50 as base network to compare and analyse
the performance. For all the experiments, we use batch size
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Model IOU #Wrong class #Wrong label

Res50 baseline 34.5 5.6 21836
DML Res50 36.5 3.6 18294

Table 2: Results on ADE-20k. The dense multi-label boosts the IOU
by 2% and helps reduce the number of wrong class and label by 35%
and 16% respectively.

Model IOU

DilatedNet [Zhou et al., 2016] 32.3
Cascade-DilatedNet [Zhou et al., 2016] 34.9

DML-Res50(ours) 36.5
Table 3: Comparsion with other models on ADE-20k dataset. Our
model achieves the best performance.

of 8, momentum of 0.9 and weight decay of 0.0005.

4.1 Results on ADE-20k
We first evaluate our result on ADE-20k dataset[Zhou et al.,
2016], which contains 150 semantic categories including ob-
jects such as person, car etc., and “stuff” such as sky, road
etc.. There are 20210 images in the training set and 2000
images in the validation set.

As shown in Table 2, the model with dense multi-label
(DML-Res50) yields a 2% improvement. To analyse the ef-
fectiveness of label suppression, we also use two criteria to
evaluate this performance, which are shown as “Wrong class”
and “Wrong labels”. Wrong class means the number classes
that are not supposed to appear but are mistakenly predicted
by the model. Wrong labels describe how many pixels are
assigned with those wrong classes. We observe that using
Dense multi-label effectively reduces the wrong classes and
labels, by 35% and 16% respectively. Some examples are
shown in Figure 7. To make fair comparison, all the images
are raw outputs directly from the network. The last column
shows the outputs from the network with dense multi-label
where we can observe great scene consistency compared with
the output of the baseline network shown in the middle.

We achieve better results than the models reported in [Zhou
et al., 2016], as shown in Table 3.

4.2 Results on PASCAL-Context
PASCAL-Context dataset [Mottaghi et al., 2010] is a set of
additional annotations for PASCAL VOC 2010, which pro-
vides annotations for the whole scene with 60 classes (59
classes and a background class). It contains 4998 images in
training set and 5105 images in validation set.

Figure 8 shows some typical examples on this dataset. We
can also see clear scene consistency with dense multi-label in-
volved. The outputs in the middle contain many noisy classes,
especially the lower middle image contains “bird” and “sky”,
which are very unlikely in this scene. From Table 4, we can
also see the great boost with dense multi-label. The wrong
classes and labels are greatly reduced by 37% and 15%.

To compare with other models, we list several results on
this dataset. Since different models have various settings such
as multi-scale training, extra data, etc.we also explain it in
Table 5. Considering all the factors involved, our method is

Figure 8: Example outputs of Res50 baseline and DML-Res50 on
PASCAL-Context dataset.

Model IOU #Wrong class #Wrong label

Res50 baseline 41.4 4.5 26308
DML-Res50 44.4 2.8 22367

Table 4: Results on PASCAL-Context dataset. The dense multi-
label model increases the IOU by 3% and reduces the wrong classes
and labels by 37% and 15%.

comparable since we only use Res50 as the base network and
do not use multi-scale training and extra MS-COCO data.

4.3 Results on NYUDv2
NYUDv2 [Silberman et al., 2012] is comprised of 1449 im-
ages from a variety of indoor scenes. We use the standard
split of 795 training images and 654 testing images.

Table 6 shows the results on this dataset. With dense multi-
label, the performance is improved by more than 1%, and the
number of wrong class and label decrease by about 40% and
16%. Some examples are shown in Figure 9. Scene consis-
tency still plays an important role in removing those noisy
labels. Compared with some other models, we achieve the
best result, as shown in Table 7.

4.4 Results on SUN-RGBD
SUN-RGBD [Song et al., 2015] is an extension of NYUDv2
[Silberman et al., 2012], which contains 5285 training im-
ages and 5050 validation images, and provides pixel labelling
masks for 37 classes.

Figure 10 shows some output comparison on this dataset,
where we can easily observe the effect of dense multi-label.
The results are shown in Table 8. The network with dense
multi-label helps improve the IOU by more than 3%. The
wrong classes and labels also get decreased by 36% and 18%
respectively. Compared with other methods, the network with
dense multi-label reaches the best result, as shown in Table 9.

4.5 Ablation Study on PASCAL-Context
Table 10 shows an ablation study on the PASCAL-Context.
The Res50 baseline yields mean IOU of 41.4%. Treating
this as a baseline, we introduce dense multi-level module.
Firstly, in the one level setting, we use the largest window
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Model Base MS Ex data IOU

FCN-8s [Long et al., 2015] VGG16 no no 37.8
PaserNet [Liu et al., 2015] VGG16 no no 40.4

HO CRF [Arnab et al., 2015] VGG16 no no 41.3
Context [Lin et al., 2016] VGG16 yes no 43.3

VeryDeep [Wu et al., 2016] Res101 no no 44.5
DeepLab [Chen et al., 2016] Res101 yes COCO 45.7

DML-Res50 (ours) Res50 no no 44.4
Table 5: Results on PASCAL-Context dataset. MS means using
multi-scale inputs and fusing the results in training. Ex data stands
for using extra data such as MS-COCO [Lin et al., 2014]. Compared
with state of the art, since we only use Res50 instead of Res101 and
do not use multi-scale training as well as extra data, our result is
comparable.

Model IOU #Wrong class #Wrong label

Res50 baseline 38.8 8.2 27577
DML-Res50 40.2 4.9 23057

Table 6: Results on NYUDv2 dataset. Dense multi-label network
has 1.4% higher IOU and 40% and 16% lower wrong classes and
labels respectively.

size, which is basically global multi-label classification. Ac-
cordding to the results, the first level gives the biggest boost.
With 2 levels involved, the global and mid-level window, the
performance is improved further. The final level, the smallest
window, brings 0.6% more improvement. The dense multi-
label module helps improve the performance by 2.2% in total.
After using CRF as post-processing, we can achieve IOU of
44.4 without using extra MS COCO dataset.

Model IOU

FCN-32s [Long et al., 2015] 29.2
FCN-HHA [Long et al., 2015] 34.0

Context [Lin et al., 2016] 40.0
DML-Res50 (ours) 40.2

Table 7: Comparison with other models on NYUDv2 dataset. Our
method achieves the best result.

5 Conclusion
In this study, we propose a dense multi-label module to ad-
dress the problem of scene consistency. With comprehen-
sive experiments, we have shown that dense multi-label can
enforce the scene consistency in a simple and effective way.
More importantly, the dense multi-label is a module and can
be easily integrated into other semantic segmentation sys-
tems.
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Figure 9: Example outputs of Res50 baseline and DML-Res50 on
NYUDv2 dataset.

Model IOU #Wrong class #Wrong label

Res50 baseline 39.3 5.3 24602
DML-Res50 42.3 3.4 20104

Table 8: Results on SUN-RGBD dataset. Dense multi-label helps
increase the performance by more than 3% of IOU and decrease the
wrong classes and labels by 36% and 18%.

Model IOU

Kendall et al.[Kendall et al., 2015] 30.7
Context [Lin et al., 2016] 42.3

DML-Res50 (ours) 42.4
Table 9: Comparison with other models on SUN-RGBD dataset. We
achieve the best result with dense multi-label network.

Figure 10: Example outputs of Res50 baseline and DML-Res50 on
SUN-RGBD dataset.

Model IOU

Res50 baseline 41.4
DML-Res50 1level 42.5
DML-Res50 2level 43.0
DML-Res50 3level 43.6

DML-Res50 3level + CRF 44.4
Table 10: Ablation study on PASCAL-Context.
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