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Abstract

Nowadays, algorithms with fast convergence,
small memory footprints, and low per-iteration
complexity are particularly favorable for artifi-
cial intelligence applications. In this paper, we
propose a doubly stochastic algorithm with a
novel accelerating multi-momentum technique
to solve large scale empirical risk minimiza-
tion problem for learning tasks. While enjoy-
ing a provably superior convergence rate, in
each iteration, such algorithm only accesses a
mini batch of samples and meanwhile updates a
small block of variable coordinates, which sub-
stantially reduces the amount of memory ref-
erence when both the massive sample size and
ultra-high dimensionality are involved. Specif-
ically, to obtain an ε-accurate solution, our al-
gorithm requires only O(log(1/ε)/

√
ε) overall

computation for the general convex case and
O((n +

√
nκ) log(1/ε)) for the strongly convex

case. Empirical studies on huge scale datasets
are conducted to illustrate the efficiency of our
method in practice.

1 Introduction

In this paper, we consider the following problem:

min
x∈Rd

FP(x) = F(x) + P(x), (1)

where F(x) = 1
n

∑n
i=1 fi(x) is the average of n smooth

convex component functions fi’s and P(x) is a block-
separable, possibly non-smooth, convex regularization
function. In machine learning applications, many tasks
can be naturally phrased as the above problem, e.g. the
Empirical Risk Minimization (ERM) problem [Zhang
and Xiao, 2015; Friedman et al., 2001]. However, the
latest explosive growth of data introduces unprecedented
computational challenges of scalability and storage bot-
tleneck. In consequence, algorithms with fast conver-
gence, small memory footprints, and low per-iteration
complexity have been ardently pursued in the recent
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years. Most successful practices adopt stochastic strate-
gies that incorporate randomness into solving proce-
dures. They followed two parallel tracks. That is, in
each iteration, gradient is estimated by either a mini
batch of samples or a small block of variable coordinates,
commonly designated by a random procedure.

Accessing only a random mini batch of samples in each
iteration, classical Stochastic Gradient Descent (SGD)
and its Variance Reduction (VR) variants, such as
SVRG [Johnson and Zhang, 2013], SAGA [Defazio et al.,
2014], and SAG [Schmidt et al., 2013], have gained in-
creasing attention in the last quinquennium. To further
improve the performance, a significant amount of efforts
have been made towards reincarnating Nesterov’s opti-
mal accelerated convergence rate in SGD type methods
[Zhang and Xiao, 2015; Frostig et al., 2015; Lin et al.,
2015a; Shalev-Shwartz and Zhang, 2014; Hu et al., 2009;
Lan, 2012; Nitanda, 2014]. Recently, a direct acceler-
ated version of SVRG called Katyusha is proposed to
obtain optimal convergence results without compromis-
ing the low per-iteration sample access [Allen-Zhu, 2016;
Woodworth and Srebro, 2016]. However, when datasets
are high dimensional, SGD type methods may still suf-
fer from the large memory footprint due to its full vector
operation in each iteration, which lefts plenty of scope
to push further.

Updating variables only on a randomly selected small
block of variable coordinates in each iteration is another
important strategy that can be adopted solely to reduce
the memory reference. The most noteworthy endeav-
ors include the Randomized Block Coordinate Descent
(RBCD) methods [Nesterov, 2012; Richtárik and Takáč,
; Lee and Sidford, 2013; Wright, 2015]. Now accelerated
versions of RBCD type methods, such as APPROX [Fer-
coq and Richtárik, 2015] and APCG [Lin et al., 2015b],
have also made their debuts. A drawback of RBCD type
methods is that all samples have to be accessed in each
iteration. When the number of samples is huge, they can
be still quite inefficient.

Doubly stochastic algorithms, simultaneously utiliz-
ing the idea of randomness from sample choosing and
coordinate selection perspective, have emerged more re-
cently. Zhao et al. carefully combine ideas from VR and
RBCD and propose a method called Mini-batch Ran-
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Table 1: We give the per-iteration Sample Access (S.A.), Vector Operation (V.O.), and overall computational complexities to
obtain an ε-accurate solution in relative algorithms. Here APG is short for Accelerated Proximal Gradient. L and κ is defined
in section 2.1. The mini batch size is set to 1 for simplicity. Ω is the block size.

Method S.A. V.O. General Convex Strongly Convex

APG O(n) O(d) O(dn
√
L/ε) O(dn

√
κ log(1/ε))

RBCD O(n) O(Ω) O(dnL/ε) O(dnκ log(1/ε))

APCG O(n) O(Ω) O(dn
√
L/ε) O(dn

√
κ log(1/ε))

SVRG O(1) O(d) O(d(n+ L/ε) log 1
ε
) O(d(n+ κ) log(1/ε))

Katyusha O(1) O(d) O(d(n+
√
nL)/

√
ε) O(d(n+

√
nκ) log(1/ε))

MRBCD/ASBCD O(1) O(Ω) O(d(n+ L/ε) log(1/ε)) O(d(n+ κ) log(1/ε))

ADSG(this paper) O(1) O(Ω) O(d(n+
√
nL/ε) log 1

ε
) O(d(n+

√
nκ) log(1/ε))

domized Block Coordinate Descent with variance reduc-
tion (MRBCD), which achieves linear convergence in
strongly convex case [Zhao et al., 2014]. Zhang and Gu
propose the Accelerated Stochastic Block Coordinate De-
scent (ASBCD) method, which incorporates RBCD into
SAGA and uses a non-uniform probability when sam-
pling data points [Zhang and Gu, 2016]. These methods
avoid both full dataset assess and full vector operation in
each iteration, and therefore are amenable to solving (1)
when n and d are large at the same time. However, none
of them meets the optimal convergence rate [Woodworth
and Srebro, 2016], and hence can still be accelerated.

To bridge the gap, we introduce a multi-momentum
technique in this paper and devise a method called Ac-
celerated Doubly Stochastic Gradient algorithm (ADSG).
Our method enjoys an accelerated convergence rate, su-
perior to existing doubly stochastic methods, without
compromising the low sample access and small per-
iteration complexity. Specifically, our contributions are
listed as follows.

1. With two novel coupling steps, we incorporate three
momenta into ADSG. These two steps enable the
acceleration of doubly stochastic optimization pro-
cedure. Additionally, we devise an efficient imple-
mentation of ADSG for ERM problem.

2. We prove that ADSG has an accelerated con-
vergence rate and the overall computational
complexity to obtain an ε-accurate solution is
O(log(1/ε)/

√
ε) in the general convex case and

O((n +
√
nκ) log(1/ε)) in the strongly convex case,

where κ stands for the condition number.

Further, to show the efficiency of ADSG in practice, we
conduct learning tasks on huge datasets with more than
10M samples and 1M features. The results demonstrate
superior computational efficiency of our approach com-
pared to the state-of-the-art.

2 Preliminary

2.1 Notation & Assumptions

We assume that the variable x ∈ Rd can be equally
partitioned into B blocks for simplicity, and we let
Ω = d/B be the block size. We denote the coor-
dinates in the lth block of x by [x]l ∈ RΩ and the
rest by [x]\l. The regularization P(x) is assumed to

be block separable with respect to the partition of x,

i.e. P(x) =
∑B
l=1 Pl([x]l). Many important functions

qualify such separability assumption [Tibshirani, 1996;
Simon et al., 2013]. The proximal operator of a con-
vex function g is defined as proxg(y) = argminx g(x) +
1
2‖x − y‖2 where we use ‖ · ‖ to denote the Euclidean
norm. We say x is an ε-accurate solution of to Problem
(1) if FP(x)−FP(x∗) ≤ ε, where x∗ is the optimal. Fur-
ther, we define ε0 to be FP(x0), i.e. the objective value
at the initial point x0. We now give some assumptions.

Assumption I Each function fi is L-smooth, i.e.
∀x,y ∈ Rd, f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L

2
‖x− y‖2.

Assumption II The average function F is LB-smooth
with respect to each block, i.e. for any l and ∀x,h ∈ Rd
such that [h]\l ≡ 0,f(x+h) ≤ f(x)+〈∇f(x),h〉+ LB

2
‖h‖2.

Assumption III Function P is µ-strongly convex, i.e.
∀x,y ∈ Rd, and g ∈ ∂P(x), P(y) ≥ P(x) + 〈g,y − x〉 +
µ
2
‖x− y‖2.

We define κ = L+LB
µ

as the condition number.

2.2 Doubly Stochastic Algorithms for
Convex Composite Optimization

A doubly stochastic method that incorporates both VR
and CD technique usually consists of two nested loops.
More specifically, at the beginning of each outer loop,
the exact full gradient at some snapshot point x̃ is cal-
culated. Then, each iteration of the following inner
loop estimates the partial gradient based on a mini-
batch component functions and modifies it by the ob-
tained exact gradient to perform block coordinate de-
scent. Take MRBCD for example. As noted in Ta-
ble 1, its per-iteration vector operation complexity and
sample access are O(Ω) and O(1) respectively, which is
amenable to solving large-sample-high-dimension prob-
lems. However, its overall computational complexity to
achieve an ε-accurate solution scales linearly with respect
to the condition number κ in strongly convex case and
depends on 1/ε (up to a log factor) in general convex
case. Such complexity leaves much room to improve in
doubly stochastic methods, especially when a highly ac-
curate solution to an ill-conditioned problem is sought
(small ε, large κ).
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2.3 Momentum Accelerating Technique

Accelerating the first order algorithm with momentum
is by no mean new but has always been considered
difficult [Polyak, 1964; Allen-Zhu and Orecchia, 2014].
Nesterov is the first to prove the accelerated conver-
gence rate for deterministic smooth convex optimiza-
tion [Nesterov, 1983; 1998]. When randomness is in-
volved in data point sampling, noise in the stochastic
gradient is further accumulated by the momentum, mak-
ing the acceleration much harder. Efforts have been
made to overcome such difficulty in various ways: with
an outer-inner loop manner [Lin et al., 2015a], from
a dual perspective [Shalev-Shwartz and Zhang, 2014],
or under a primal-dual framework [Zhang and Xiao,
2015]. However, it was not until recently that an optimal
method called Katyusha is proposed [Allen-Zhu, 2016;
Woodworth and Srebro, 2016]. In a parallel line, at the
first attempt to accelerate the RBCD, the momentum
step forces full vector operation in each iteration and
hence compromises the advantage of RBCD [Nesterov,
2012]. With continuing efforts, Lin et al. proposed the
APCG method for both strongly convex and general con-
vex problems, avoiding full vector operation completely
[Lin et al., 2015b]. While these previous mentioned anal-
yses deal with the randomness only in data point sam-
pling or coordinate choosing, our analysis, due to doubly
stochastic nature of ADSG, has to consider how random-
ness affects the momenta from both sample and feature
perspective, and hence is more difficult.

2.4 Empirical Risk Minimization

We focus on Empirical Risk Minimization (ERM) with
linear predictor, an important class of smooth convex
problems. Specifically, each fi in Problem (1) is of the
form fi(x) = φi(a

>
i x), where ai is the feature vector of

the ith sample and φi(·) : R→ R is some smooth convex
function. Let A = [a1 . . . an]> be the data matrix. In
real applications, A is usually very sparse and we define

its sparsity to be ρ = nnz(A)
nd . Note that our convergence

analysis applies to any convex smooth fi.

3 Methodology

We present the proposed ADSG in algorithm 1, and
discuss about some crucial details in this section.
Input: The input of ADSG varies for strongly con-
vex and general convex problems. In the former case,
µ should be the strongly convex parameter, and we set
α2,s = 1

2B
min{1,

√
n
κ
} and α3,s = 1

2B
. In the latter case, µ

is set to 0, and we set α2,s = 2
s+4B

and α3,s = 1
2B

. When
µ = 0, line 14 adopts uniform probability for sampling.
Main Body: Our algorithm is divided into epochs.
Four variables xk, yk, zk, and x̃s are maintained
throughout. At the beginning of each epoch, the full
gradient at the snapshot point x̃s is computed. Updat-
ing steps are taken in the follow-up m inner loops, where
we randomly select a mini-batch I of size b and a fea-
ture block l to construct a mixed stochastic gradient at

Algorithm 1 ADSG I

Input: n,x0, S, b, B, µ, {α2,s, α3,s}Ss=0

1: z0 = x̃0 ← x0,m← Bn,α1,s ← 1− α2,s − α3,s;
2: for s← 0 to S do
3: L̄s ← L

Bα3,s
+ LB ;

4: ηs ← 1
L̄sα2,sB

, θs ← 1 + µ
L̄sB2α2,s+(B−1)µ

;

5: ∇̃s ← ∇F(x̃s);
6: for j ← 1 to m do
7: k ← sm+ j;
8: yk ← α1,sxk−1 + α2,szk−1 + α3,sx̃

s;
9: sample mini batch I of size b and feature block l;

10: [vk]l ← [∇̃s]l + 1
b

∑
i∈I
(
[∇fi(yk)]l − [∇fi(x̃s)]l

)
;

11: [zk]l←proxηsPl([zk−1]l − ηs[vk]l), [zk]\l ← [zk−1]\l;

12: xk ← yk + α2,sB(zk − zk−1);
13: end for

14: sample σ from {1, . . . ,m} with probability
θσ−1
s∑m−1

i=0 θi−1
s

;

15: x̃s+1 ← xsm+σ;
16: end for

point yk and perform proximal coordinate descent on
the auxiliary variable zk.
Momenta: In sharp contrast to existing doubly
stochastic algorithms, two coupling steps are added in
ADSG to accelerate the convergence. In line 8, yk is con-
structed as the convex combination of xk−1, zk−1, and
the snapshot point x̃s. Here, zk−1 acts as a historical
momentum that adds weight to the previous stochas-
tic gradient {vt}t≤k (note that zk is simply the linear
combination of all {vt}t≤k when P ≡ 0). This his-
torical momentum is used in many deterministic accel-
erated methods, e.g. [Beck and Teboulle, 2009]. x̃s

serves as a negative momentum that ensures the ”gra-
dient” variable yk not drifting away from x̃s and pre-
vents the variance introduced by the randomness from
surging. Such negative momentum is recently pro-
posed in [Allen-Zhu, 2016], but with a different weight
α3,s = 1

2 . Note that such weight is crucial to the con-
vergence, see Theorem 1 and 2. In line 12, we have
Elxk = α1xk−1 +α2zk−1 +α3x̃

s +α2(z̃k − zk−1), where
z̃k = proxηsP(zk−1 − ηsvk). Hence, α2,sB(zk − zk−1),
in expectation, adds extra weight on the most recent
progress z̃k − zk−1 and is called momentum in expecta-
tion for this reason. These three momenta are the key
to the accelerated convergence of ADSG.

4 Convergence Analysis

In this section, we present the convergence rate of ADSG
in both strongly convex case and general convex case.

4.1 Strongly Convex Case

If κ = O(n), we can see from Table 1 that existing
doubly stochastic algorithm like MRBCD requires only
O(log 1/ε) passes over the whole dataset to achieve an ε-
accurate solution. However, facing ill-conditioned prob-
lems where κ > n2, the performance of such method de-
cays faster than the deterministic APG method due to
its linear dependence on the condition number κ. The
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following theorem shows that ADSG enjoys an acceler-
ated convergence rate and depends only on

√
κ.

Theorem 1. Suppose Assumption I-III are satisfied.
Set α2,s = 1

2B
min{1,

√
n
κ
}, α3,s = 1

2B
and set the mini

batch size to be 1. If κ > 8B, for s ≥ 0, we have

EFP(x̃s)−FP(x∗)≤O(1) min{9

8
,(1+

√
n

κ
)}−s

(
FP(x0)−FP(x∗)

)
,

and therefore ADSG takes O((1 +
√

κ
n ) log ε0

ε ) outer
loops to achieve an ε-accurate solution.

4.2 General Convex Case
We present both direct and indirect methods to solve
Problem (1) in the general convex case. We make the
assumption that the optimal x∗ is bounded ‖x∗‖2 ≤ D,
which is common in the literature.
Indirect Method: One option is to obtain an ε/2-
accurate solution x̄ to the following strongly convex, but
perturbed stand-in of Problem (1):

min
x∈Rd

FP
ε (x)

def
= F(x) + P(x) +

ε

2D
‖x‖2. (2)

Such strategy is reasonable in that ε
2
≥ FP

ε (x̄)−FP
ε (x∗) =

FP(x̄)−FP(x∗)+ ε
2D
‖x̄‖2− ε

2D
‖x∗‖2 ⇒ FP(x̄)−FP(x∗) ≤ ε,

and hence x̄ is an ε-accurate solution to Problem (1).
Furthermore, since the condition number of Problem (2)
is DL

ε , Theorem 1 implies the following corollary.

Corollary 1. Suppose the optimal point x∗ is bounded
‖x∗‖2 ≤ D and suppose x̄ is an ε/2-accurate solution to
Problem (2). Then x̄ is an ε-accurate solution to Prob-
lem (1). Further, if Assumption I and II are satisfied,

then it takes O((1+
√

LD
nε ) log ε0

ε ) outer loops to compute

x̄ in ADSG.

Direct Method: With different parameter setting,
ADSG solves Problem (1) explicitly in general convex
case, yielding a direct method with accelerated conver-
gence rate. In this way, we avoid the extra log ε0

ε factor
in the indirect method.

Theorem 2. Suppose Assumption I and II are satisfied.
Set α2,s = 2

s+4B
, α3,s = 1

2B
, for s ≥ 0, we have

FP(x̃s)−FP(x∗) ≤ O(1)
B2

s2

(
FP(x0)−FP(x∗)+

L

n
‖x0−x∗‖2

)
,

and therefore ADSG takes O(B
√

ε0
ε + LD

nε ) outer loops

to achieve an ε-accurate solution.

The extra B in Theorem 2 leaves room for improve-
ment. The following theorem shows the dependence on
B can be alleviated when P ≡ 0.

Theorem 3. Suppose Assumption I and II are satisfied
and P ≡ 0. Denote L′ = L + BLB. Setting α2,s =

2
s+4 , α3,s = 1

2 , and α1,s = 1−α2,s−α3,s, then for s ≥ 0,

FP(x̃s)−FP(x∗) ≤ O(1)
1

s2

(
FP(x0)−FP(x∗)+

L′

n
‖x0−x∗‖2

)
.

Therefore, ADSG takes O(
√

ε0
ε

+ L′D
nε

) outer loops to

achieve an ε-accurate solution.

4.3 Proof for Strongly Convex Case
In this section, we give two key lemmas for our analysis.
The full proofs of Theorem (1-3) are deferred to the long
version of this paper.

The idea of the first lemma is to express xk as the
convex combination of {x̃i}si=0 and {zl}kl=0.

Lemma 1. In Algorithm I, by setting α2,0 = α3,0 =
1/2B, for k = sm+ j ≥ 1, we have

xk =

s−1∑
i=0

λikx̃
i + βsj x̃

s +

k∑
l=0

γlkzl, (3)

where γ0
0 = 1, γ0

1 = 1
2 −

1
2B , γ1

1 = 1
2 , β0

0 = 0, βs0 = α3,s,

λs(s+1)m = βsm, λik+1 = α1,sλ
i
k,

γlk+1 =


α1,sγ

l
k, l = 0, . . . , k − 1,

Bα1,sα2,s + (1−B)α2,s, l = k,

Bα2,s, l = k + 1,

(4)

and
βsj+1 = α1,sβ

s
j + α3,s. (5)

Additionally, we have
∑s−1
i=0 λ

i
k+βsj +

∑k
l=0 γ

l
k = 1. If all

α1,s ≥ B−1
B , then each entry in this sum is non-negative

for all k ≥ 1, i.e. xk is a convex combination of {x̃i}si=0

and {zl}kl=0.

The second lemma analyzes ADSG in one iteration.
Before proceeding, we first define a few terms: (1)

P̂(xk)
def
=
∑s−1
i=0 λ

i
kP(x̃i)+βsjP(x̃s)+

∑k
l=0 γ

l
kP(zl) ≥ P(xk),

where the inequality uses the convexity of P; (2) d(xk)
def
=

FP(xk) − FP(x∗); (3) d̃s
def
= FP(x̃s) − FP(x∗); and (4)

dk
def
= (F(xk) + P̂(xk)) − FP(x∗). Additionally, we have

0 ≤ d(xk) ≤ dk and d(x0) = d0.

Lemma 2. In the sth epoch of Algorithm 1, we have

Ei,ld̂j + θsEi,lAj ≤ α3,sd̃
s + α1,sd̂j−1 +Aj−1, (6)

with ρs = α2
2,sB

2L̄s + (B − 1)µα2,s, θs = 1 +
µα2,s

ρs
,

Aj = ρs‖x∗ − zsm+j‖2/2, and d̂j = dsm+j.

5 Efficient Implementation
While ADSG has an accelerated convergence rate,

naively implementing Algorithm 1 requires O(d) compu-
tation in each inner loop due to the two coupling steps,
which compromises the low per-iteration complexity en-
joyed by RBCD type methods. Such quandary strikes all
existing accelerated RBCD algorithm [Lin et al., 2015b;
Nesterov, 2012; Fercoq and Richtárik, 2015; Lee and Sid-
ford, 2013]. To bypass this dilemma, we cast Algorithm
1 in an equivalent but more practical form, ADSG II,
with the inner loop complexity reduced to O(Ω). ADSG
II uses three auxiliary functions {x̄k, ȳk, z̄k} which are
defined as

ȳk = βj−1u
s
j−1 + γsẑ

s
j−1 + ẋs, Line 10,

z̄k = ẑsj + ẋs, Line 11 and 16,

x̄k = βj−1u
s
j + γsẑ

s
j + ẋs, Line 15 and 16,

with k = sm + j. The following proposition shows the
equivalence between Algorithm 1 and 2.
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Algorithm 2 ADSG II

Input: n,x0, S, b, B, µ, {α2,s, α3,s}Ss=0

1: ẑ0
0←~0, ξ= ẋ0←x0, k←0,m←Bn,α1,s←1−α2,s−α3,s;

2: for s← 0 to S do
3: γs ← α2,s

α2,s+α3,s
, βs−1 ← 1, βs0 ← α1,s, L̄s ← L

Bα3,s
+LB ;

4: ηs ← 1
L̄sα2,sB

, θs ← 1 + µ
L̄sB2α2,s+(B−1)µ

;

5: ∇̇s ← ∇f(ẋs);
6: us0 ← ξ − γsẑs0 − ẋs;
7: for j ← 1 to m do
8: k ← sm+ j;
9: sample mini batch I of size b and feature block l;

10: [v̇k]l ← [∇̇s]l + 1
b

∑
i∈I
(
[∇fi(ȳk)]l − [∇fi(x̃s)]l

)
;

11: [ẑsj ]l←proxηsPl([z̄k]l−ηs[v̇k]l)−[ẋs]l, [ẑsj ]\l← [ẑsj−1]\l;

12: usj ← usj−1 +
α2,sB−γs
βsj−1

(ẑsj − ẑsj−1); βsj ← α1,sβ
s
j−1;

13: end for

14: sample σ from {1, . . . ,m} with probability
θσ−1
s∑m−1

i=0 θi−1
s

;

15: ẋs+1 ← x̄sm+σ;
16: ẑs+1

0 ← z̄k − ẋs+1, ξ = x̄k;
17: end for

Proposition 1. If Algorithm 1 has the same input as
Algorithm 2, its iterates xk, yk, and zk equal to x̄k, ȳk,
z̄k respectively for all k.

Proof. First, we prove that if at the beginning of the
sth epoch, z̄sm = zsm, x̄sm = xsm, and ẋs = x̃s stand,
then the proposition stand in the following iterations in
that epoch. We prove with induction. Assume that the
equivalence holds till the (k − 1)th iteration. In the kth

iteration, for ȳk we have

yk = α1,sxk−1 + α2,szk−1 + α3,sx̃
s

= α1,sx̄k−1 + α2,sz̄k−1 + α3,sẋ
s

= α1,s(β
s
j−2u

s
j−1 + γsẑ

s
j−1) + α2,sẑ

s
j−1 + ẋs

= βsj−1u
s
j−1 + γsẑ

s
j−1 + ẋs = ȳk.

since α1,sβ
s
j−2 = βsj−1 and α1,sγs+α2,s = γs. For z̄k, by

induction we have [z̄k]\l = [z̄k−1]\l = [zk−1]\l = [zk]\l.

Additionally, since ∇̇s = ∇̃s and yk = ȳk, we have
[vk]l = [v̇k]l and thus [z̄k]l = [ẑsj+ẋs]l =proxηPl([z̄k−1−
ηv̇k]l)=proxηPl([zk−1−ηvk]l) = [zk]l. For x̄k, we have

xk = ȳk + α2,sB(ẑsj − ẑsj−1)

= βsj−1u
s
j−1 + γsẑ

s
j−1 + α2,sB(ẑsj − ẑsj−1) + ẋs

= βsj−1u
s
j + γsẑ

s
j + ẋs = x̄k

by the updating rule of uk in line 12 in ADSG II.
We then show that at the beginning of each epoch

z̄sm = zsm, x̄sm = xsm, and ẋs = x̃s stand. For z0,
we have z̄0 = z0 from the initialization. For zsm, s ≥ 1,
we have zsm = z̄sm = ẑs0 + ẋs = z̄sm, where the first
equation is from the induction in previous epoch, and
the second equation is from the definition of ẑs0 in line
16 in ADSG II. For x0, we clearly have x0 = x̄0 by
the initialization. For xsm, s ≥ 1, we have xsm = ξ =
βs−1u

s
0 + γsẑ

s
0 + ẋs = x̄sm, where the first equation is from

the induction in previous epoch, and the second equation
is from line 6 in ADSG II. ẋs = x̃s because xk = x̄k for
all k in that epoch. Thus we have the result.

5.1 Overall Computational Complexity

We discuss the detailed implementation of ADSG II
when solving ERM problems. For simplicity, the mini
batch size b is set to 1. In line 10, [∇fi(ȳk)]l =
∇φi(a>i ȳk)[ai]l, where we compute each term in a>i ȳk =
βj−1a

>
i u

s
j−1 + γsa

>
i ẑ

s
j−1 +a>i ẋ

s separately. This can be
done with O(ρd). Line 12 takes O(Ω) because only the
lth block is updated. Consequently, we have O(ρd + Ω)
from every inner loop and the per-epoch complexity of
Algorithm 2 is O(BnΩ + Bnρd). When ρ is small, Ω
dominates ρd and it becomes O(dn).

Combining the above per-epoch complexity analy-
sis and the convergence rate, the overall computa-
tional complexity of ADSG is O(d(n +

√
n/κ) log 1/ε)

in strongly convex case, and O(d(n+
√
nLD/ε) log 1/ε)

in general convex case.

6 Experiments

In this section, we conduct several experiments to show
the efficiency of ADSG on huge-scale real problems. We

use FP(xt)−FP(x∗)
FP(x0)−FP(x∗)

to measure the suboptimality.

Problems We conduct experiments of three ERM
problems, namely l1-logistic regression, l1l2-logistic re-
gression, and ridge regression. Four large scale datasets
from LibSVM [Chang and Lin, 2011] are used: kdd2010-
raw, avazu-app, new20.binary, and url-combined. Their
statistics are given in Table 2.
Algorithms Katyusha [Allen-Zhu, 2016], MRBCD
[Zhao et al., 2014] (ASBCD has similar performance),
and SVRG [Johnson and Zhang, 2013] are included
for comparison. MRBCD and ADSG adopts the same
block parameter B. All methods use the same mini
batch size b. We use the default inner loop count
described in the original paper for SVRG, MRBCD,
and Katyusha. We tune the step size to give the best
performance. For SVRG and MRBCD, it is usually 1/L.

6.1 l1-Logistic Regression

In this problem, we set fi(x) = log(1 + exp(−yia>i x))
and set P(x) = λ‖x‖1, where {ai, yi}ni=1 are data points.
We present suboptimality vs. Evaluated Partial Gra-
dients (EPG) and suboptimality vs. time in the first
two rows of Figure 1, along with the parameter λ used
in experiments. The result shows that (i) Katyusha
and ADSG have superior convergence rate over non-
accelerated SVRG and MRBCD, (ii) ADSG and MR-
BCD, as doubly stochastic methods, enjoy a better time

Table 2: Statistics of datasets.

Dataset n d sparsity
news20-binary 19, 996 1, 355, 191 0.0336%
kdd2010-raw 19, 264, 097 1, 129, 522 0.0008%

avazu-app 14, 596, 137 999, 990 0.0015%
url-combined 2, 396, 130 3, 231, 961 0.0036%
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Figure 1: Columns, from left to right, are the results on news20-binary, kddb-raw, avazu-app, and url-combined. The y-axis
is the (log) suboptimality. The x-axes in the odd rows are EPG/dn and the x-axes in the even rows are time.

efficiency than Katyusha and SVRG, and (iii) ADSG has
the best performance among all competitors.

6.2 l1l2-Logistic Regression

fi(x) is log(1+exp(−yia>i x)) and P(x) is µ
2 ‖x‖

2+λ‖x‖1
in l1l2-logistic regression. The log suboptimality vs.
EPG and log suboptimality vs. time plots are given
in the third and fourth rows of Figure 1. We observe
similar phenomenon here as in the previous experiment.

6.3 Ridge Regression

We set fi(x) = 1
2‖a
>
i x−yi‖2 and P(x) = µ

2 ‖x‖
2. In the

last two rows of Figure 1, we give the log suboptimality

vs. EPG and log suboptimality vs. time plots. ADSG
shows exceptional computational efficiency.

7 Conclusion
An accelerated doubly stochastic algorithm called ADSG
is proposed in this paper. We give its convergence anal-
yses, and compare our algorithm to the state-of-the-art
in large scale ERM problems. The result is promising.
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