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Abstract

We study the problem of improving a machine
learning model by identifying and using features
that are not in the training set. This is applicable
to machine learning systems deployed in an open
environment. For example, a prediction model
built on a set of sensors may be improved when
it has access to new and relevant sensors at test
time. To effectively use new features, we pro-
pose a novel approach that learns a model over
both the original and new features, with the goal
of making the joint distribution of features and
predicted labels similar to that in the training set.
Our approach can naturally leverage labels associ-
ated with these new features when they are acces-
sible. We present an efficient optimization algo-
rithm for learning the model parameters and empir-
ically evaluate the approach on several regression
and classification tasks. Experimental results show
that our approach can achieve on average 11.2%
improvement over baselines.

1 Introduction
We consider a setting where a machine learning system can
access features that are previously unseen in the labeled train-
ing set. This often happens when machine learning systems
are deployed in an open environment.

For example, consider a weather station equipped with a
set of sensors measuring temperature, wind speed, pressure,
etc. Suppose the station has a machine learning model that
predicts humidity from the sensor readings. The prediction
model is built on a training set containing historical sensor
readings and the corresponding humidity. Now, the station
plugs in a new sensor that measures dew point. Since dew
point is strongly correlated with humidity, leveraging this new
sensor could potentially improve the model.

As a second example, consider a model that predicts a job
applicant’s quality. It is built on a training set where each
sample contains features from the resume of a previous ap-
plicant and the quality level labeled by HR. Now, for future
applicants, the model is allowed to access applicants’ social
media such as Facebook and Twitter. Exploring new features

extracted from social media may improve the prediction qual-
ity since social media data often reflect an applicant’s person-
ality and perspectives, which may not be revealed in resumes.

In the above examples, the new features are likely to pro-
vide complementary information over the original features in
the labeled training set. Identifying and leveraging such fea-
tures can potentially improve the underlying machine learn-
ing models. This is an important step towards developing
intelligent systems that can interact and learn from an open
environment. The challenge is that there is no labeled sam-
ples associated with those additional features. Collecting new
labels can be costly and often requires human input. It is de-
sirable to develop an approach that can automatically exploit
previously unseen features.

This problem can be viewed in the framework of do-
main adaptation or transfer learning [Pan and Yang, 2010;
Daume III and Marcu, 2006; Quionero-Candela et al., 2009],
which aims to adapt machine learning models trained on a
source domain to a related but different target domain. Our
problem can be viewed as a special case of heterogeneous
domain adaptation, where the feature space of the source do-
main is different from that of the target domain. Although be-
ing a special case, our problem setting actually poses unique
challenge for existing domain adaptation approaches.

Previous work on heterogeneous domain adaptation mainly
consists of two types of approaches. One type learns a trans-
formation to map the features from one domain to the other
[Dai et al., 2008; Socher et al., 2013; Zhou et al., 2014]
by leveraging sample-level correspondences across domains
(e.g., an image and its tag). This type of approach can be ap-
plied to our setting naturally since each target-domain sample
provides a correspondence between the original and new fea-
tures. However, learning a good transformation may not be
possible when the dependency between the original and new
features is weak.1 In our context, the new features are ex-
pected to contain complementary information not available in
the original features, making such transformation difficult to
obtain. A second type of approach maps the source and target
domains into a domain-invariant feature space in which they
distribute similarly (in terms of the features in that space), and

1Weak dependency implies that there is no strong correspon-
dence between original and new features. In other words, knowing
original features is not very helpful when predicting new features.
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then learns a model in that space using labeled data [Kulis et
al., 2011; Wang and Mahadevan, 2011; Argyriou et al., 2008;
Duan et al., 2012; Shi et al., 2010; Harel and Mannor, 2010;
Wei and Pal, 2011; Yeh et al., 2014]. These approaches are
not applicable to our setting because the original features al-
ready provide a domain-invariant feature space, which would
completely ignore new features in the target domain.

Our problem can also be viewed as a special case of semi-
supervised learning [Zhu, 2005], with additional features as-
sociated with unlabeled data. To the best of our knowledge,
such problem setting has not been explored before because
existing semi-supervised learning algorithms focus on using
unlabeled data from the same feature space of labeled data.

To address the challenge, we propose an approach named
LUF (Learning with previously Unseen Features) that builds
a machine learning model over both the original and new fea-
tures. Intuitively, the desirable model should predict target-
domain labels consistent with the labels in the source do-
main. We express the consistency in the notion of the joint
distributions over the original features and labels, and we
enforce the two domains to have similar joint distributions.
LUF minimizes k-nearest neighbor distances across domains
in the joint space and can be solved by an efficient optimiza-
tion algorithm. LUF can be simply extended to the case
where there exist labeled samples with new features. We
evaluate LUF extensively on benchmark regression and clas-
sification datasets and a sensor adaptation application in the
weather domain. In most of the evaluation cases, LUF out-
performs other baseline methods, with an average improve-
ment of 11.2%.

Contributions. To summarize, we study a new machine
learning setting involving features that are not available in
the labeled training set. We then propose a novel approach as
well as an efficient optimization algorithm. Our approach is
applicable to both regression and classification tasks and can
naturally leverage labels associated with these new features.
Our empirical study highlights the efficacy of the proposed
approach.

2 Approach
We are given N labeled samples {(xs, ys)}Ns=1, where xs ∈
RD is the input features, and ys is the corresponding
label. Additionally we are given M unlabeled samples
{(xt, zt)}Mt=1, where xt ∈ RD follows the same distribution
of xs. zt ∈ RW are the additional features associated with
xt. In the following, we refer to the set of labeled samples
as the source domain, and the set of unlabeled samples as the
target domain.

We are interested in learning a model for the target domain
that maps (x, z) to y. In the following, we denote the model
as fθ(x, z) where θ represents the model parameters, and the
predicted label as ŷ = fθ(x, z).

For each source-domain sample (xs, ys), if we could es-
timate its ẑs reliably, we can simply train fθ(x, z) on the
source domain. However, estimating z from x can be chal-
lenging when their dependency is weak, as observed in our
empirical study. On the other hand, training on the target do-
main is very challenging as there are no labels available.

We tackle the challenge based on the following intuition:
if our model predicts target-domain labels {ŷt} well, then
{ŷt} should be consistent with the training labels. Such
consistency can be expressed through some joint patterns
between x and y, for instance, the joint distribution of (x, y).
Ideally, our model fθ would make the joint distribution
similar across domains, which motivates us to seek fθ
such that {(xs, ys)} and {(xt, ŷt)} are mixed as much as
possible. When this happens, each source-domain sample
(xs, ys) becomes close to its k-nearest neighbors in the target
domain, and vise versa. Therefore, we propose the following
objective function to minimize the cross-domain k-nearest
neighbor distances in the joint space of (x, y)

min
θ

∑
s

∑
t∈Nk

T (s)

dist[(xs, ys), (xt, ŷt)]

+
∑
t

∑
s∈Nk

S (t)

dist[(xt, ŷt), (xs, ys)] + λ‖θ‖22 (1)

where dist is the distance function defined on (x, y). N k
T (s)

denotes the set of indices corresponding to (xs, ys)’s k-
nearest neighbors in the target domain, and N k

S (t) denotes
the set of indices corresponding to (xt, yt)’s k-nearest neigh-
bors in the source domain, where nearest neighbors are de-
termined based on dist. ‖θ‖22 is the regularization term on θ
with λ ≥ 0 as the regularization parameter.

For simplicity, we set dist to be the following weighted
distance2

dist[(xs, ys), (xt, ŷt)] = ‖xs − xt‖22 + γ∆(ys, ŷt) (2)

where ∆(ys, ŷt) measures the distance between ys and ŷt,
and γ > 0 is a weight balancing the scale of x and y. Let
v2st = ‖xs − xt‖22, we can write (1) into

min
θ

∑
s

∑
t∈Nk

T (s)

[
v2st + γ∆ (ys, fθ(xt, zt))

]
+
∑
t

∑
s∈Nk

S (t)

[
v2ts + γ∆(ys, fθ(xt, zt))

]
+ λ‖θ‖22 (3)

For regression tasks, we simply set ∆(ys, ŷt) = ‖ys−ŷt‖2.
For classification tasks with C classes, we use probabilistic
classification models (e.g. logistic regression [Bishop, 2006])
that can predict class probability for a given sample. In this
case, ŷt is a C-dimensional vector representing the probability
in each class, and ys is a C-dimensional binary vector. We
can set ∆(ys, ŷt) = 1 −

∑C
c=1 ys(c)ŷt(c), so that a small ∆

corresponds to similar class assignment.
Note that N k

T (s) and N k
S (t) are dependent on θ, hence (3)

is non-smooth and non-convex in θ. In the following, we
present an efficient optimization algorithm for finding a local
minimum of Eq. (3).

2In our implementation, features are first normalized into similar
scales.
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2.1 Alternating Optimization
For the ease of optimization, we introduce a set of auxiliary
variables to “decouple” the dependency ofN k

T (s) andN k
S (t)

on θ. Let VkT (s) index (xs, ys)’s any (not necessarily the
nearest) k neighbors in the target domain, and VkS(t) index
(xt, yt)’s any k neighbors in the source domain. It is easy to
see ∑

t∈Nk
T (s)

[
v2st + ∆(ys, fθ(xt, zt))

]
= min
Vk

T (s)

∑
t∈Vk

T (s)

[
v2st + ∆(ys, fθ(xt, zt))

]
(4)

and the same relationship holds for VkS(t) and N k
S (t). Thus

(3) is equivalent to

min
θ,{Vk

T (s)},{Vk
S(t)}

∑
s

∑
t∈Vk

T (s)

[
v2st + ∆(ys, fθ(xt, zt))

]
+
∑
t

∑
s∈Vk

S(t)

[
v2ts + ∆(ys, fθ(xt, zt))

]
+ λ‖θ‖22 (5)

(5) can be efficiently optimized via an alternating procedure.
When θ is fixed, we update {VkT (s)} and {VkS(t)} based on
nearest neighbor search. When {VkT (s)} and {VkS(t)} are
fixed, we optimize θ by solving

min
θ

∑
s

∑
t∈Vk

T (s)

∆(ys, fθ(xt, zt))

+
∑
t

∑
s∈Vk

S(t)

∆(ys, fθ(xt, zt)) + λ‖θ‖22 (6)

which can be easier to optimize than (3) when fθ is smooth
in θ. For regression tasks, if linear regression is used, θ can
be solved analytically. For classification tasks, if logistic re-
gression is used, a global optimum of θ can be solved using
gradient descent techniques.

The above alternating procedure decreases (5) at each al-
ternating step, and converges to a local minimum of (3). Em-
pirically, the procedure converges quickly (usually within 50
iterations). The outline of the algorithm is described in Algo-
rithm 1.

Algorithm 1 Optimization algorithm for LUF

Input: source-domain samples {(xs, ys)}Ns=1 and target-
domain samples {(xt, zt)}Mt=1, neighbor size k, weight pa-
rameter γ, and regularization parameter λ.
Initialize θ by solving Eq. (8)
for iter = 1, 2, · · · , T do

for s = 1, 2, · · · , N do
Fix θ, update VkT (s)

for t = 1, 2, · · · ,M do
Fix θ, update VkS(t)

Fix {VkT (s)}, {VkS(t)}, optimize θ by solving Eq. (6)
Output: a local optimal solution θ∗.

Initialization: The quality of the solution depends on how
we initialize θ. Intuitively, if we could get a good estimate of
ẑs based on each source-domain sample xs, we can initialize
θ by solving

min
θ

∑
s

∆(ys, fθ(xs, ẑs)) (7)

However, estimating ẑs can be very challenging when the de-
pendency between x and z is weak. Nevertheless, we can
estimate a candidate set of ẑs based on target-domain data as
follows: for each xs, we find a set of its nearest neighbors in
{xt}, and use the corresponding zt to form a candidate set
Zs. We then minimize the model error by optimizing both θ
and {ẑs}:

min
θ

∑
s

min
ẑs∈Zs

∆(ys, fθ(xs, ẑs)) (8)

where ẑs is allowed to be any element of Zs. (8) essentially
relaxes the dependency between x and z, and uses the optimal
θ for the relaxed setting as an initialization. By setting {Zs}
to different sizes, we can get different initial solutions for θ.

Complexity analysis: In Algorithm 1, each iteration iter
involves N updates on VkT (s) and M updates on VkS(t). Each
update on VkT (s) takes O(MD2) and each update on VkS(t)
takes O(ND2), where D is the dimensionality of original
features. Therefore the complexity of updating {VkT (s)} and
{VkS(t)} at each iteration is O(NMD2). Additionally, each
iteration iter involves leaning a linear regression or logistic
regression function, whose complexity is O((D+W )2(N +
M)) where W is the dimensionality of new features and we
assume N > D + W . Further assuming W = O(D) and
M = O(N), we have the overall complexity as O(D2N2).

Hyper-parameter tuning and overfitting prevention:
When there are no labels in the target domain, tuning hyper-
parameters is often very difficult. We tune the neighborhood
size k by reducing the error of a k-NN classifier or regressor
on the source domain. To tune the weight γ and regularization
parameter λ, we apply a leave-one-out cross validation strat-
egy on the source domain to simulate our problem setting.
Specifically, we consider each feature in the source domain
as z, and the rest of the features as x. We then split source-
domain samples into two disjoint sets: one set has only x,
and the other set has both x and z. We treat the first set as
a synthesized source domain and the second set as a synthe-
sized target domain, and apply the proposed approach to pick
the optimal γ and λ. To prevent overfitting, we adopt an early
stopping strategy: train a model on {(xt, ŷt)} and apply it to
source-domain data. If the prediction error on the source do-
main is larger than a certain threshold, we stop the learning
process. We also terminate the optimization when the ob-
jective function decreases very slowly, which not only saves
computational time but also reduces overfitting.

Leveraging labels in the target domain: LUF can natu-
rally leverage labels in the target domain when they are avail-
able. Suppose a subset of target-domain samples are labeled,
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and let L denote their sample indicies. We can directly en-
hance LUF by adding a supervised term into the objective
function

min
θ

∑
s

∑
t∈Nk

T (s)

[
v2st + γ∆ (ys, fθ(xt, zt))

]
+
∑
t

∑
s∈Nk

S (t)

[
v2ts + γ∆(ys, fθ(xt, zt))

]
+ λ‖θ‖22 (9)

+ µ
∑
t∈L

∆(yt, fθ(xt, zt)) (10)

where µ ≥ 0 is a new weight parameter that can be tuned by
cross validation on the target domain.

3 Experiments
We evaluate LUF on several regression and classification
datasets and an application on sensor adaptation for weather
stations.3

We develop the following methods for comparison:

• R: kernel regression [Bishop, 2006] trained on the
source domain. Polynomial kernel4 k(xi,xj) =
(xi

Txj + c)d is used where c and d are kernel param-
eters.

• R-ZKR, R-ZNN. These are domain adaptation methods
that explore the correspondences between x and z in the
target domain. They first estimate ẑ for each source-
domain sample, and then train a kernel regression model
over {(xs, ẑs)} on the source domain. Two strategies
are explored for estimating ẑ:

– ZKR: train a kernel regression on the target domain
to map xt to zt, and use that model to predict ẑs for
source-domain sample xs.

– ZNN: similar to ZKR except using a k-NN regression
model .

• R-Z*: kernel regression directly trained on the target do-
main, using the target-domain labels (“cheating”). This
method, though unrealistic in practice, provides an up-
per bound on the best possible performance. We apply
ten-fold cross validation on the target domain and report
the average error.

• C: logistic regression [Bishop, 2006] trained on the
source domain. Since the dimensionality of the classi-
fication datasets is relatively high, we directly use input
features and do not apply polynomial kernel.

• C-ZKR, C-ZNN, C-Z*. These methods are the same as
R-ZKR, R-ZNN, R-Z* respectively, except that kernel
regression is switched to logistic regression.

3Our algorithms and datasets can be accessed from
https://github.com/yuanshi/UnseenFeatures

4We use polynomial kernel over other nonlinear kernels because
it has explicit form for the nonlinear features. For most datasets,
we find polynomial kernel performs comparably to Gaussian RBF
kernel. Our focus is more on leveraging new features than choosing
the best kernels.

• LUF: the proposed approach for learning with previ-
ously unseen features. For regression tasks, it trains a
linear model based on the explicit feature mappings de-
rived from polynomial kernel. For classification tasks, it
trains a logistic regression based on input features.

The hyper-parameters of the above methods, including c and
d in polynomial kernel, k in k-NN regression, the regular-
ization parameter λ, are tuned on the source domain. For
R-Z* and C-Z*, their regularization parameters are tuned on
the target domain.

3.1 Results on Regression Datasets
We experiment with four regression datasets

• Abalone,5 for predicting the age of abalone, contains
4,177 samples with 8 features.

• Bank,6 which predicts the fraction of bank customers
that are turned away due to queuing, contains 8,192 sam-
ples with 8 features.

• CPU,7 for CPU running time prediction, contains 8,192
samples with 12 features.

• House,8 for housing price prediction, contains 20,640
samples with 9 features.

In order to select a subset of features to be “unseen”, we
look at features with high predictive power, which enables a
machine learning model to improve prediction performance
by leveraging these features.9 Specifically, we do the follow-
ing check for each feature: if removing it increases the pre-
diction error by more than 10 percent, then it is selected as
an unseen feature. We then sort these unseen features based
on their impact on the prediction errors in descending order.
Table 1 shows the results when the top set of unseen features
are explored.

For each dataset, we conduct experiments in 10 random
trials. In each trial, we randomly split the dataset into the
source/target domain, each with half the number of samples.
We report the average root mean square error (RMSE) and
standard error on the target domain.10 As a preprocessing
step, we normalize each feature to [0,1].

Table 1 summarizes the prediction error of different meth-
ods, where the improvement(%) is computed based on the
best performing baseline. In most cases, LUF outperforms
the other baselines, with an average improvement of 12.1%.

5https://archive.ics.uci.edumldatasetsAbalone
6http://www.cs.toronto.edu/∼delve/data/bank/desc.html
7http://www.cs.toronto.edu/∼delve/data/comp-activ/desc.html
8http://lib.stat.cmu.edu/datasets/
9Our experimental policy selects unseen features useful for pre-

diction, which is designed to evaluate LUF ’s efficacy. We also con-
duct experiments on unseen features that are uninformative or noisy.
We observe that LUF is quite robust to such features (performance
drops less than 2%). LUF often stops using these features because
either there is a minor decrease in the objective function or early
stopping is triggered.

10All target-domain data are used in the learning process. We
also tested our methods on hold-out evaluation data from the target
domain and observed consistent performance.
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Table 1: Prediction error (RMSE) on regression datasets

Dataset Unseen feat. ID R R-ZKR R-ZNN R-Z* LUF Improv.(%)
Abalone 1 2.42 ± 0.08 2.33 ± 0.076 2.31 ± 0.064 2.28 ± 0.08 2.28 ± 0.01 1.3

1 0.12 ± 0.00 0.11 ± 0.01 0.11 ± 0.00 0.12 ± 0.00 -3.7
Bank 1,2 0.15 ± 0.00 0.16 ± 0.01 0.15 ± 0.01 0.034 ± 0.00 0.13 ± 0.00 17.8

1,2,3 0.15 ± 0.00 0.16 ± 0.00 0.16 ± 0.01 0.14 ± 0.00 4.6
1 8.34 ± 0.20 9.17 ± 0.21 6.81 ± 0.13 5.35 ± 0.60 21.44

CPU 1,2 8.37 ± 0.19 9.15 ± 0.26 6.23 ± 0.18 3.63 ± 0.089 5.79 ± 0.56 7.1
1,2,3 8.59 ± 0.18 8.74 ± 0.24 5.75 ± 0.44 5.39 ± 0.48 6.3

1 10.17 ± 1.12 10.14 ± 1.11 9.55 ± 1.18 6.82 ± 0.055 28.6
House 1,2 10.77 ± 1.29 10.49 ± 1.03 8.52 ± 0.86 6.66 ± 0.25 6.90 ± 0.054 19.1

1,2,3 12.60 ± 1.48 12.22 ± 1.35 9.60 ± 1.15 7.83 ± 0.088 18.4
Note: the results of House are in the scale of 105.

This demonstrates that LUF is able to exploit useful infor-
mation in the additional features. In a few cases, LUF per-
forms slightly worse than the best baseline, but the gap is
much smaller than that in successful cases. This reveals that
although LUF may overfit due to its unsupervised nature, it
is quite robust.

It is interesting to study the improvement of LUF over
baselines when the number of unseen features increases. With
more unseen features, baselines tend to become worse but
LUF has more useful features to leverage, which may lead to
greater improvement, e.g. on Bank [1,2]. On the other hand,
more unseen features makes the remaining ones less useful.
LUF can suffer from this since the sample distances become
less meaningful, e.g. on Bank [1,2,3] and CPU [1,2,3]. In
practice, this may not be a severe problem because the fea-
tures in the source domain are often reasonably good to begin
with.

3.2 Results on Classification Datasets
We experiment with three classification datasets
• USPS, which recognizes handwriting digits from im-

ages, contains 9,298 samples from 10 classes [Hull,
1994].
• Books, which performs sentiment analysis on book re-

views from Amazon, contains 4,000 samples from 2
classes [Blitzer et al., 2006].
• Webcam, which recognizes objects in low-resolution

images taken by web cameras, contains 795 samples
from 10 classes [Kulis et al., 2011].

For Books and Webcam, we split the data into the
source/target domain, each with half the number of samples.
For USPS, the source/target domain uses 1,500 samples each.
For all datasets, we scale each feature to [0,1], and then use
principal component analysis (PCA) to reduce the dimension-
ality to 100, which reduces computational cost and feature
noise.

Similar to regression tasks, we check each feature as fol-
lows: if removing it increases the classification error by more
than 10 percent, then it is selected as an unseen feature. Ta-
ble 2 shows the results when the top 1 to 3 unseen features
are explored. For each dataset, 10 random splits are used
and averaged classification errors are reported. C-ZKR and
C-ZNN perform better than C in all cases. This suggests that

ẑ can be estimated fairly well for these datasets. LUF out-
performs C-ZKR and C-ZNN in most cases, with average im-
provement 3.6%. When the number of unseen features in-
creases, LUF shows greater improvement over baselines as
estimating z becomes harder.

3.3 Sensor Adaptation for Weather Stations
We apply our proposed approach to an application for sen-
sor adaptation. In particular, we investigate how sensors at
weather stations can be adapted when sensor failure happens.
In a real-world environment, sensor failure often occurs at
weather stations [Dereszynski and Dietterich, 2011] and can
cause problems for system modules relying on the failed sen-
sor. We aim to develop a robust system that automatically
reconstructs the missing signal from the working ones.

Missing signal reconstruction can be cast as a regression
task, and a regression model can be built based on historical
sensor readings. The reconstruction quality depends a lot on
the correlations between the missing signal and the remain-
ing ones. For example, reconstructing temperature from dew
point and humidity can be fairly accurate but reconstructing
wind speed from dew point and humidity is very hard. Our
system handles this challenge by allowing a weather station
to access the sensors at a nearby station when a sensor failure
is detected.

We conduct experiments with data from Weather Under-
ground,11 which contains sensor data from a large number of
personal weather stations worldwide. Each station consists of
5-10 sensors and produces a sample (combined readings form
all sensors) at a fixed time interval (e.g. every 10 minutes).
We examine three stations in San Francisco, San Jose, and
New York, respectively, as well as their nearby stations. For
a given station, we use 3,000 samples randomly drawn from
Jan. 2015 to Aug. 2015 as the source domain, and 3,000
random samples from Jan. 2016 to Aug. 2016 as the target
domain.

Table 3 summarizes the results. The reported cases cor-
respond to signals that are difficult to reconstruct using a
weather station’s own sensors.12 LUF achieves positive im-

11http://www.wunderground.com
12Note that precipitation data are not available for SF-A and SF-

B, and wind speed and wind gust data are not available for NY-A
and NY-B.
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Table 2: Classification error rate (%) on classification datasets

Dataset Unseen feat. ID C C-ZKR C-ZNN C-Z* LUF Improv.(%)
1 10.9 ± 0.08 9.2 ± 0.2 8.1 ± 0.1 8.0 ± 0.2 1.1

USPS 1,2 14.9 ± 0.1 13.4 ± 0.2 8.5 ± 0.2 7.8 ± 0.08 8.2 ± 0.2 3.5
1,2,3 19.3 ± 0.1 16.3 ± 0.2 9.3 ± 0.2 8.7 ± 0.2 7.1

1 24.9 ± 0.4 24.2 ± 0.3 23.4 ± 0.3 23.8 ± 0.3 -1.7
Books 1,2 26.5 ± 0.3 25.6 ± 0.4 24.9 ± 0.3 22.6 ± 0.2 24.1 ± 0.3 3.6

1,2,3 28.7 ± 0.3 27.8 ± 0.3 25.9 ± 0.3 24.6 ± 0.2 5.0
1 36.7 ± 0.2 35.4 ± 0.3 35.4 ± 0.3 34.8 ± 0.4 1.7

Webcam 1,2 38.5 ± 0.3 37.5 ± 0.3 37.4 ± 0.3 33.2 ± 0.2 35.3 ± 0.3 6.3
1,2,3 40.5 ± 0.4 39.1 ± 0.4 38.3 ± 0.3 36.2 ± 0.3 5.4

Table 3: Prediction error (RMSE) on weather data

Stations Missing Signal R R-ZKR R-ZNN R-Z* LUF Imp.(%)
wind speed 5.80 ± 0.024 5.94 ± 0.051 5.76 ± 0.030 5.13 ± 0.019 5.93 ± 0.032 -2.9

SF-A : SF-B wind gust 10.52 ± 0.059 10.76 ± 0.20 10.45 ± 0.18 7.94 ± 0.045 9.70 ± 0.068 7.2
pressure 4.53 ± 0.23 4.93 ± 0.25 4.60 ± 0.35 0.32 ± 0.029 1.52 ± 0.25 66.4

wind speed 3.76 ± 0.082 3.94 ± 0.15 3.78 ± 0.066 1.11 ± 0.018 3.74 ± 0.053 0.51
wind gust 4.41 ± 0.083 4.38 ± 0.092 4.37 ± 0.10 1.10 ± 0.013 4.16 ± 0.045 4.8

SJ-A : SJ-B pressure 4.01 ± 0.021 4.03 ± 0.10 3.86 ± 0.079 0.15 ± 0.012 1.95 ± 0.068 49.5
precipitation 0.57 ± 0.034 0.56 ± 0.082 0.61 ± 0.12 0.07 ± 0.014 0.46 ± 0.062 17.9

pressure 11.40 ± 0.14 11.43 ± 1.17 10.34 ± 0.019 0.43 ± 0.022 9.74 ± 0.21 5.8
NY-A : NY-B precipitation 3.17 ± 0.092 3.96 ± 0.14 4.19 ± 0.26 0.68 ± 0.032 2.82 ± 0.15 11.5

Note: the results are reported in the following units: mph (wind speed), mph (wind gust), in (pressure), in (precipitation). The listed
weather stations correspond to the following station IDs in Weather Underground: SF-A (KCASANFR142), SF-B (KCASANFR114),
SJ-A (KCASANJO121), SJ-B (KCASANJO139), NY-A (KNYNEWYO139), NY-B (KNYNEWYO132).

provement in 8 out of 9 cases, with most significant improve-
ment (66.7%) on reconstructing pressure for SF-A. Note that
the amount of improvement is consistent with the gap be-
tween R-Z* and other baselines. When the gap is large,
LUF leverages better features and outperforms other base-
lines with a large margin. When the gap is small (wind speed
at SF-A), LUF performs worse than R due to overfitting, but
with a fairly small performance drop.

Figure 1 visualizes the joint distributions over original fea-
tures and predicted labels, where we choose wind speed as a
representative feature and pressure as the label, on station SF-
A. As can be observed, R generates a significantly different
joint distribution compared to the actual one, while LUF pro-
duces a much closer distribution. R-Z* performs even better
but relies on the labels from the target domain.

4 Related Work
Our learning setting can be viewed as a special case of het-
erogeneous domain adaptation [Pan and Yang, 2010], which
adapts a learning model across different feature spaces. The
work of [Zhao and Hoi, 2010] and [Hou and Zhou, 2016] also
consider new features in the target domain. However, their
approaches require labels from the target domain, which does
not work for our setting. A similar nearest-neighbor-based
objective function is used in [Kulis et al., 2011]. However,
their neighbors are fixed but ours are dynamically updated.
More importantly, our approach computes distances over both
features and labels.

Another way to address our setting is to treat it as a miss-
ing data problem: the additional features available in the tar-

get domain are completely missing in the source domain.
The baselines in our empirical study are also approaches for
missing value imputation [Grzymala-Busse and Hu, 2000;
Lakshminarayan et al., 1996; Batista et al., 2002]. However,
recovering these features in the source domain is very chal-
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x-axis represents wind speed (feature), and y-axis represents
pressure (label) given by different approaches. Ground truth
corresponds to the actual pressure. Values are in normalized scales.

Figure 1: Visualization of wind speed and predicted pressure
on weather station SF-A
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lenging in nature.
Our setting is related to zero-shot learning [Larochelle et

al., 2008; Farhadi et al., 2009] which explores unseen classes
at test time, as well as to privileged information-based learn-
ing [Vapnik and Vashist, 2009] which leverages additional in-
formation only available in training. Although related, our
setting is very different from theirs.

5 Conclusion
We presented a novel machine learning approach that lever-
ages previously unseen features in the training set. The
approach is applicable to both classification and regression
tasks. Supported by our empirical results, the approach can
be used to improve a learning model when new features are
accessible. Our future work includes theoretical analysis and
more real-world applications. We also plan to develop algo-
rithms that can automatically determine when to explore new
features and which features to select from a large pool of fea-
tures in an open environment.
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