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Abstract
Matrices are a common form of data encountered
in a wide range of real applications. How to ef-
ficiently classify this kind of data is an important
research topic. In this paper, we propose a novel
distance metric learning method named two dimen-
sional large margin nearest neighbor (2DLMNN),
for improving the performance of k-nearest neigh-
bor (KNN) classifier in matrix classification. Dif-
ferent from traditional metric learning algorithms,
our method employs a left projection matrix U and
a right projection matrix V to define the matrix-
based Mahalanobis distance, for constructing the
objective aimed at separating points in differen-
t classes by a large margin. Since the parameter-
s in those two projection matrices are much less
than that in its vector-based counterpart, 2DLMNN
can reduce computational complexity and the risks
of overfitting. We also introduce a framework for
solving the proposed 2DLMNN. The convergence
behavior, computational complexity are also ana-
lyzed. At last, promising experimental results on
several data sets are provided to show the effective-
ness of our method.

1 Introduction
Matrix data is a common form of data that appears in a wide
range of real applications. Examples of the data in ma-
trix form include the gray-level images [Kong et al., 2005;
Yang et al., 2013; You et al., 2004; Lu et al., 2016a;
Lu et al., 2016b] in computer vision, multichannel EEG sig-
nals in biomedical engineering [Tomioka et al., 2006], and so
on. In the fields of pattern recognition and computer vision,
matrix data classification has essentially become one of the
most important topics.

Many classification techniques have been proposed in past
decades. Among those classification methods, k-nearest
neighbor classifier (KNN) is one of the most popular ones
since it has following advantages: the non-linearity of deci-
sion boundaries leads to good recognition performance and
the computational complexity is independent of the number
of classes. In addition, KNN can be applied in scenarios
where not all categories are given at the time of training, such

as, in face verification applications where the subjects to be
recognized are unknown in advance.

The classification accuracy of KNN depends significant-
ly on the distance metric which is used for determining k
nearest neighbors[Xiang et al., 2008; Song et al., 2017;
Shakhnarovich et al., 2006; Weinberger et al., 2005]. Usu-
ally, Euclidean distance is adopted in many cases. This is
logical when the statistics of data is unknown or when all di-
mensions of samples are equally relevant. However, those
assumptions are too strict. In most cases, distance analysis
along some special directions of the feature space is more in-
formative. In those cases, performing distance metric learn-
ing algorithm on data set can improve the performance of
KNN greatly.

Traditional distance metric learning methods are designed
for dealing with vectors. When they are applied to process
matrix data, the matrix data should be previously collapsed
into vectors. Normally, this is done by cascading each col-
umn of a matrix one by one. However, the spatial correlations
of matrix are lost inevitably in this procedure. Moreover, the
dimensionality of resulting vector may be very high. In this s-
cenarios, traditional metric learning algorithm maybe can not
be carried out due to the overfitting and high computational
complexity.

To handle those problems, one feasible way is to use
matrix-based feature reduction algorithms to transform the
matrix data to low-dimensional vectors, and then to learn
a distance metric on the low-dimensional resulting feature
space by implementing the vector-based metric learning
method. However, the feature reduction may lost some dis-
criminate information of the data set which is crucial for clas-
sification. And there is literature revealing that performance
of combining feature reduction and metric learning together
would be better than that of the two-step solution [Brock-
meier et al., 2013; Parameswaran and Weinberger, 2010;
Song et al., 2017]. In addition, the two-step solution may
involve too much computational cost. Recently, many tensor-
based methods for matrix classification are proposed [Chang
et al., 2016; Hou et al., 2014; Zhang and Chow, 2012;
Nie and Xianga, 2009]. Those literatures prove that matrix-
based methods are more efficient than vector-based method-
s for dealing with matrix data. This inspires us to develop
matrix-based metric learning method.

In this paper, we propose a novel metric learning algo-
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rithm named two dimensional large margin nearest neighbor
(2DLMNN) which can deal with matrix data directly. The
2DLMNN can be seen as the matrix extension of one dimen-
sional large margin nearest neighbor (1DLMNN). The key d-
ifference between 2DLMNN and 1DLMNN lies in the mod-
el for data presentation. 2DLMNN works with matrix da-
ta, while 1DLMNN works with vector data. In the proposed
method, we define a new kind of Mahalanobis distance spe-
cial for matrix data, by using two projection matrices. Then
by applying the proposed matrix-based Mahalanobis distance
to the principle of 1DLMNN, we obtain the model of matrix-
based large margin nearest nearest neighbor (2DLMNN). In
addition, we propose a framework for solving the 2DLMN-
N. Convergence and computational complexity are discussed.
Last, Several experiments on various data sets are conducted.
The promising experimental results demonstrate the efficien-
cy of the proposed method.

2 Related Works
2.1 One Dimensional Large Margin Nearest

Neighbor
One dimensional large margin nearest neighbor (1DLMNN)
was first proposed in literature [Weinberger et al., 2005]
to learn the distance metric for improving the performance
of KNN. Then in literature [Torresani and Lee, 2006], the
algorithm of 1DLMNN was extended to learn the low rank
projection matrix for feature reduction. In this paper, we
consider both of the two tasks of 1DLMNN.

Given l labeled examples {(~xi, yi)}li=1, where ~xi ∈ Rd

and yi ∈ {1, 2, · · · , c} is the corresponding label, c is the
class number. For an inquiry input ~xi, we call its k-nearest
neighbors which have the same labels with ~xi as “target
neighbors”, and the rest samples whose labels are different
from yi in the dataset as “imposters”. The goal of 1DLMNN
is to learn a linear transformation L : Rd −→ Rd1(d1 ≤ d),
which can be used to define the Mahalanobis distance as:

D(~xi, ~xj)=‖L(~xi−~xj)‖2=
√

(~xi − ~xj)TM(~xi − ~xj) (1)

where L is the projection matrix of linear transformation L,
and M = LTL.

In the projection space determined by the projection L,
each sample L~xi is closer to its target neighbors than the
imposters by one distance unit, i.e. large margin. The re-
lationship of ~xi ’s target neighbor ~xj and imposter ~xl can be
expressed as linear inequality constraint with respect to the
D(·, ·):

D2(~xi, ~xl)−D2(~xi, ~xj) ≥ 1 (2)
To achieve this goal, the loss function of 1DLMNN is defined
as

ε(M) =
∑
ij

ηijD2(~xi, ~xj)+

λ
∑
i,j,l

ηij(1−yil)[1 +D2(~xi, ~xj)−D2(~xi, ~xl)]+
(3)

where ηij = 1 if the example ~xj is one of the k target neigh-
bors of ~xi, otherwise, ηij = 0. yil ∈ {0, 1} is 1 if and only

if yi = yl, [z]+ = max(z, 0) denotes the standard hinge
loss and λ is a positive constant playing the role in balancing
the effect of the two terms in Eq.(3). The optimization prob-
lem for minimizing objective in Eq.(3) can be solved by stan-
dard semi-definite programming solver, or the sub-gradient
descent method.

2.2 Two Dimensional Linear Discriminant
Analysis

2DLDA is one of the most important two dimensional sub-
space learning methods. It can be seen as the two dimen-
sional extension of the vector-based linear discriminant anal-
ysis (1DLDA). For a matrix data set {Xi}li=1 with c class-
es, 2DLDA aims at finding two projection matrices L and R,
to project Xi to its low dimensional embedding, i.e. Y =
LTXiR. Let Mj denote the j-th class, which has lj sam-
ples. So, Xj = (1/lj)

∑
Xi∈Mj

Xi is the mean of samples in
the j-th class, and X = 1/l

∑
Xi is the mean of the whole

training set. The between-class distance Db and within-class
distance Dw in the original space are defined as follows.

Dw =

c∑
j=1

∑
Xi∈Mj

‖Xi − X̄j‖2F

Db =
c∑

j=1

lj‖X̄j − X̄‖2F

(4)

Meanwhile, in the projection space, we can also define the
within-class distance D̃w and between-class distance D̃b.

D̃w = Tr(
c∑

j=1

∑
Xi∈Mj

LT (Xi − X̄j)RR
T (Xi − X̄j)L)

D̃b = Tr(
c∑

j=1

LT (X̄j − X̄)RRT (X̄j − X̄)TL)

(5)

Thus, the optimal transformation matrices L and R can
be solved by maximizing D̃w and minimizing D̃b, simul-
taneously. As it is difficult to derive the optimal L and R
simultaneously, 2DLDA solves L and R in an alternative
way. In each alternative step, L and R are calculated by
performing eigen-decomposition, respectively.

3 Two Dimensional Large Margin Nearest
Neighbor(2DLMNN)

3.1 Useful Conceptions
Before giving the formulation of 2DLMNN, several useful
conceptions are introduced.

Definition 1: Suppose Rm×n is a matrix linear space, the
inner product operation between two matrices Y,X ∈ Rm×n

is defined as < X,Y >= Tr(XTY ), where Tr(·) is the
trace of matrix ·.

Definition 2: Given a matrix linear space Rm×n

with inner product defined by Definition 1, the dis-
tance between X1, X2 ∈ Rm×n is defined as
D(X1, X2) =

√
< X1 −X2, X1 −X2 >.
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As 2DLDA, we consider the projection Y = UTXV ,
where U ∈ Rl1×m and V ∈ Rl2×n are projection matrices
to project matrix X ∈ Rm×n from Rm×n to Rl1×l2 . In
the projected space, the distance between X1 and X2 is
presented as follows.

DU,V (X1, X1) =
√
<UT (X1−X2)V,UT (X1−X2)V>

=
√
Tr(M1(X1−X2)M2(X1−X2)T )

(6)

where M1 = UUT and M2 = V V T . When Eq.(6) is seen
from original space, it is called the matrix-based Maha-
lanobis distance. When U and V are identity matrices, E-
q.(6) is called as matrix-based Euclidean distance.

It is easily to find that the matrix-based Mahalanobis dis-
tance DU,V (X,Y ) subjected to following properties.

1. DU,V (X,Y ) = DU,V (Y,X);
2. DU,V (X,Y ) ≥ 0;
3. DU,V (X,Y ) +DU,V (Y, Z) ≥ DU,V (X,Z);

3.2 Problem Formulation
Given a matrix data set {(Xi, yi)}ni , Xi ∈ Rm×n and yi ∈
{1, · · · , c} is the label of Xi. U ∈ Rm×l1(l1 ≤ m) and V ∈
Rn×l2(l2 ≤ n) are left projection matrix and right projection
matrix, respectively. The optimization problem of 2DLMNN
is defined as follows.

min
U,V

λ
∑
i,j,l

ηij(1−yil)[1+D2
U,V (Xi,Xj)−D2

U,V (Xi,Xl)]+

+
∑
i,j

ηijD
2
U,V (Xi, Xj)

(7)

where ηij = 1 if example Xj is one of the k target neighbors
of Xi, otherwise, ηij = 0. λ is a positive constant used to
balance the two terms in the objective. yil ∈ {0, 1} is 1 if and
only if yi = yl, and [s]+ = max(s, 0) is the hinge function.
It should be noticed that, the “target neighbors” and the “im-
posters” of each Xi are determined under the matrix-based
Euclidean distance in advance.

The objective of the optimization problem (7) consists of
two contrasting terms. The first term aims at pushing each
sample Xi apart from other points with labels different from
yi by an amount equal to 1 plus the distance from Xi to any
of its k similarly-labeled closest points in the projected space.
The second term encourages pulling each example Xi and it-
s k target neighbors determined in the original input space
closer. The first term corresponds to a margin condition sim-
ilar to that of SVMs and it is used to improve generalization.
The constant λ controls the relative importance of these two
competing terms and it can be chosen via cross validation.

Considering the projection Y = UTXV , each row of U
can be seen as one coefficient vector of columns in matrix X ,
therefore, the left projection matrix U capturing the distance
information in rows of X . Similarly, right projection matrix
V can be seen as the coefficient matrix of columns in matrix
X , and it captures the distance information of columns of X .
Since in the projections, the places of elements in the matrix
X are not changed, it means that the spatial correlations of

elements in the matrix X is preserved.
Upon optimization of the problem, test exampleXt is clas-

sified according to the KNN rule applied to its projection
Xt = UTXtV , by using the matrix-based Euclidean dis-
tance.

3.3 Optimization

In this section, we give the framework for solving the pro-
posed method. Since it is difficult to solve the two projec-
tion matrices U and V in the objective (7) simultaneously, we
derive an iterative algorithm in the following. More special-
ly, for a fixed V , we can compute the optimal U by solving
an optimization problem similar to the model of 1DLMNN.
With the computed V fixed, we then update U by solving an-
other optimization problem also similar to 1DLMNN. This
procedure is repeated with a certain number of times as dis-
cussed in Algorithm 1.
Computation of U

Let V ∈ Rn×l2 fixed, we denote Qi = XiV , i = 1, · · · , l.
The matrix-based Mahalanobis distance between Xi and Xj

is
√
Tr(UT (Qi −Qj)(Qi −Qj)TU). The formulation in

Eq.(7) is rewritten as

min
U

λ
∑
i,j,l

ηij(1−yil)[1+D2
U (Qi, Qj)−D2

U (Qi, Ql)]+

+
∑
j,i

ηijD
2
U (Qi, Qj)

(8)

where D2
U (Qi, Qj) = Tr(M1(Qi − Qj)(Qi − Qj)

T ), and
M1 = UUT .

If the vector distance in Eq.(6) is transformed into matrix
form as

D(~xi, ~xj)=
√
Tr(M(~xi − ~xj)(~xi − ~xj)T ) (9)

, we can find thatD2
U (Qi, Qj) andD2(~xi, ~xj) share the same

formula. That means the optimization problem in the Eq.(8)
is same with the one in Eq.(3) in shape. Therefore the solu-
tion method of Eq.(3) can be applied to that of Eq.(8).

In Eq.(3), optimization problem of the parameter M can
be solved as a standard semi-definite programming model
[Weinberger and Saul, 2009]. In Eq.(8), when l1 = m,
i.e., M1 is full rank, the optimization problem in Eq.(8) is
a convex problem, and it can also be solved by the method
of Eq.(3). However, in our method, we do not constrain the
projection matrices U and V to be full rank, that is to say,
M1 = UUT and M2 = V V T might be low rank. Since low-
rank constraint problem is awkward to solve, in our paper,
we adopt sub-gradient descend method [Torresani and Lee,
2006] to learn the low rank projection matrices.

Let Γ(U) denote the objective function in Eq.(8), the d-
ifferentiating Γ(U) with resect to the projection matrix UT
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gives the following gradient for the update rule:

∂Γ(U)

∂UT
=2UT

∑
j,i

ηij(Qi−Qj)(Qi−Qj)
T +

2λUT
∑
i,j,l

ηij(1−yil)[(Qi−Qj)(Qi−Qj)
T

− (Qi−Ql)(Qi−Ql)
T ]h′(t)

t = D2
U (Qi, Qj)−D2

U (Qi, Ql) + 1

(10)

where h(s) = max{s, 0}, and at s = 0. We let h′(s) = 0 by
adopting a smooth hinge function as in literature [Rennie and
Srebro, 2005].
Computation of V

Similarly, when U ∈ Rm×l1 is fixed, we can change the
formula of our optimization problem in Eq. (7), and derive
its V by solving another model similar to 1DLMNN. More
concretely, by denoting Ri = UTXi, i = 1, · · · , l, Eq.(7) is
transformed into Eq.(11).

min
V

λ
∑
i,j,l

ηij(1−yil)[1+D2
V (Ri, Rj)−D2

V (Ri, Rl)]+

+
∑
j,i

ηijD
2
V (Ri, Rj)

(11)

whereD2
V (Ri, Rj) = Tr(V T (Ri−Rj)

T (Ri−Rj)V ). Thus,
the computation of V is transformed into solving another
optimization problem similar to 1DLMNN. Eq.(11) is also
solved by sub-gradient descent method.

It should be noticed that, when U and V are not full rank,
the solution of Eq.(8) or solution of Eq.(11) is closely related
to the initial searching point. To make the alternative method
converge, the initial searching point of U or V should be s-
elected as the result solved in previous iteration step. The
details are described in Algorithm. 1.

3.4 Convergence Analysis
As mentioned above, the proposed method is solved in an
alternative way. Namely, we fix one variable and compute
the other. The following proposition shows the convergence
of the proposed method.

Proposition 1: In Algorithm 1, we use {U (s), V (s)} to
denote the solution at the s-th iteration, the objective function
of the optimization problem defined in Eq.(7) at{U (s), V (s)}
is Γ(U (s), V (s)). So Γ(U (s), V (s)) monotonically decreases
with growth of iteration number s.

Proof: Since U (s),V (s) are the solution at the s-th
iteration calculated by an alternative way. U (s) =
argminU (Γ(U, V (s−1))) with initial searching point U (s−1).
V (s) = argminV (Γ(U (s), V )) with initial searching point
V (s−1). So there are Γ(U (s), V (s−1)) < Γ(U (s−1), V (s−1))
and Γ(U (s), V (s)) < Γ(U (s), V (s−1)). Therefore,
Γ(U (s), V (s)) < Γ(U (s−1), V (s−1)).�

Since Γ(U (s), V (s)) > 0, the series Γ(U (s), V (s)) would
converge to a constant with s increasing. It means Algorithm
1 converges.

Algorithm 1 2DLMNN
Input:

1) Matrix data Xi|, i = 1, 2, · · · , l}
2) Initial matrix V (0),U (0),
3) Parameter λ, l1 and l2, maximum iteration number smax

Output:
1) Left projection matrix U ,
2) Right projection matrix V

Processing:
Initialize V by V (0)

Repeat
a) Update U by U (i): Calculate Qi = XiV

(i−1), i =
1, · · · , n,and U (i) by solving optimization problem in
Eq.(8) by sub-gradient gradient descent method with ini-
tial searching point U (i−1).

b) Update V by V (i): Calculate Ri = U (i−1)TXi, i =
1, · · · , n, and V (i) by solving optimization problem in
(11) by sub-gradient gradient descent method with initial
searching point V (i−1).

Until Convergence or the maximum number of iterations
smax is reached
Return U , V .

3.5 Computational Complexity

One of the motivations to develop the matrix-based method
is to reduce the computational complexity. In this section,
we consider the computation complexities of 1DLMNN and
2DLMNN. Since different methods would lead to different
computational complexity, we suppose both of 2DLMNN and
1DLMNN are solved by sub-gradient descent method with-
out using any accelerating technique. The majority of the
computational complexity in sub-gradient descent method is
to calculate the sub-gradient of the objective function. Let
la denote the amount of the iterations in sub-gradient de-
scent. Eq.(8) involves lal1nml2(m + n)kl2 + lmnl2 times
of multiplications. So for smax times upgrading U and V ,
2DLMNN have 2smaxla(l1nml2(m+n)kl2+l2mnl2) times
multiplications. Since smax, k are far less than other pa-
rameters, l1 ≈ l2 and m ≈ n, the complexity of 2DLMN-
N is O(lal

2
1n

3l2). Similarly, we can find that the compu-
tational complexity of 1DLMNN is O(lad1m

3n3l2). Since
l21 � d1m

3, the computational complexity of 2DLMNN is
much less than that 1DLMNN.

4 Experimental Results

We evaluate our proposed method in four different aspects.
The first is about the convergence behavior. The second is the
comparison of classification accuracy. The third is to explore
the ability of feature reduction of 2DLMNN. The last is to
compare the computational consumption of the proposed 2D
method with 1DLMNN.
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Table 1: Characters of Different Data Sets

Data set #Size (l + t) #Scale (m× n) #Class

UMIST 575 56× 48 20
USPS 2000 16× 16 10

AR 2600 64× 64 100
POLLEN 630 25× 25 7

Extended Yale-B 1368 48× 42 38
Coil-100 1440 32× 32 100

4.1 Dataset description
We utilize six typical image datasets to evaluate the perfor-
mance of the proposed method. They are Extended Yale-
B database [Belhumeur et al., 1997], AR face database1,
Coil-1002, USPS handwritten digital database3, UMIST face
database4 and POLLEN database5. The scale of these im-
age databases ranges from 16 × 16 to 64 × 64, and the fea-
ture dimensions range from 256 to 4096. The details of those
datasets are described in Table 1.

4.2 Convergence behavior
We select four datasets to demonstrate the convergence of
the proposed iterative algorithm, they are POLLEN, UMIST,
AR, Coil-100, respectively. In the experiments, we empir-
ically set λ = 0.5 [Parameswaran and Weinberger, 2010;
Weinberger and Saul, 2009] and initial points V (0) and U (0)

are given by performing 2DPCA [Yang et al., 2004]. We con-
duct the experiments with different dimensions, and the func-
tion value results obtained from 1 to 25 iterations are record-
ed. The curves of objective function are presented in Figure
1.

As seen from Figure 1. the values of objective function de-
scribed in Eq.(7) decrease with iterations on the four datasets
and the convergence is reached within 10 iterations. It identi-
fies the Proposition 1 in real data and the convergence of our
proposed method.

4.3 Classification results
We consider the 2DLMNN not using feature reduction, i.e
the projection matrices are square matrices. We compare
it with several state-of-art one dimensional supervised dis-
tance metric learning methods, i.e. one dimensional large
margin nearest neighbor algorithm (1DLMNN), one dimen-
sional sparse compositional metric learning (1DSCML) [Shi
and Sha, 2014], one dimensional local distance metric learn-
ing (1DLDML) [Yang and Sukthankar, 2006], one dimen-
sional information theory metric learning (1DITML) and one
dimensional regressive virtual metric learning (1DLRVM-
L) [Perrot and A., 2015]. In additional, we also com-
pare 2DLMNN with one dimensional support vector machine

1http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
2http://www1.cs.columbia.edu/CAVE/research/softlib/coil-

100.html.
3http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html
4http://images.ee.umist.ac.uk/danny/database.html
5http://ome.grc.nia.nih.gov/iicbu2008/pollen/index.html

(1DSVM) and two dimensional support vector machine clas-
sifier (2DSVM) [Hou et al., 2014]. The kernel of those SVM
based classifiers are adopt as linear kernel, and the rank of
2DSVM is set as 4, empirically. For all metric learning algo-
rithms, the classification are output by KNN. The parameter
k in KNN is tuned in {1, 2, 3, 4} by cross-validation [Ko-
havi and others, 1995]. The parameters in 1DLMNN and
2DLMNN are tuned in grid {0.1, · · · , 0.9}. Each dataset list-
ed in Tabel 1 is randomly divided into training set, validate set
and testing set by ratio 2 : 1 : 1. Since our method conver-
gence within 10 iterations, the iteration number of proposed
method is set as 10. For each algorithm, the average results of
50 runs are recorded. The experimental results shown in Ta-
ble 2 demonstrate the efficiency of the proposed matrix-based
method.

4.4 Feature reduction results
In this section, we explore the performance of the proposed
method for feature reduction. Since 2DLDA is the most
famous supervised matrix-based feature reduction method.
We compare the classification accuracy of 2DLMNN with
2DLDA under different dimensions. For 2DLDA, matrix da-
ta was projected into low-dimensional space, then we employ
1DLMNN to learn a full rank metric on the low-dimensional
space. The results of both of 2DLDA and 2DLMNN are
output by KNN. The datasets are divided into three parts as
section 4.3. The parameter k in KNN are tuned in {1, 2, 3, 4}
by five-fold cross-validation. The parameters 2DLMNN are
tuned in grid {0.1, · · · , 0.9}. Since our method convergence
within 10 iterations, the iteration number of proposed method
is set as 10. The feature reduction results are shown as Figure
2.

4.5 Computational complexity
Another motivation for investigating matrix-based methods is
reducing the computational complexity of 1DLMNN in ma-
nipulating vectorized high-dimensional data. In this section,
we compare 2DLMNN with 1DLMNN on the six data sets
which have different size and scales. Both of 2DLMNN and
1DLMNN learn full rank metrics. For justice, these meth-
ods are implemented in their original formulations, without
using other accelerating strategies. And the algorithms are
performed in Matlab on Intel(R) i5-6300HQ @ 2.30 HZ. The
results are shown in Table 3. We can find that 2DLMNN runs
much faster than 1DLMNN.

5 Conclusions
In this paper, we have proposed a novel two dimensional met-
ric learning algorithm for learning matrix-based distance met-
ric. Different from the traditional LMNN, our method solved
a left projection matrix and a right projection matrix by an al-
ternative way. The convergence behavior, classification accu-
racy, and computational complexity of the proposed algorith-
m were analyzed. At last, comprehensive experimental eval-
uations have been conducted to demonstrate the effectiveness
of the proposed methods.
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(a) (b) (c) (d)

Figure 1: Objective function values of 2DLMNN for different numbers of iterations on four datasets. (a)UMIST dataset; (b)Extended Yale-B;
(c)Coil-100; (d)AR face dataset.

Figure 2: Classification accuracies of different feature dimensions on six data sets. (a) Coil-100; (b) Extended Yale-B; (c)POLLEN; (d)
UMIST; (e) USPS; (f) AR.

Table 2: Comparison of our approach 2DLMNN with several baselines (mean ± std %).

Base 1DSVM kNN 1DLMNN 1DITML 1DLDML 1DSCML 1DRVML 2DSVM 2DLMNN

UMIST 92.12±3.11 82.12±2.31 92.12±2.31 94.23±1.54 93.42±2.52 92.15±2.47 94.32±2.48 93.43±1.34 96.41±1.23
Pollen 94.42±2.21 84.12±2.31 95.97±2.41 95.83±3.21 94.83±2.67 93.42±1.49 93.61±2.37 96.40±3.41 97.45±1.21

AR 71.49±2.41 64.12±2.31 74.74±1.27 76.43±1.21 75.43±1.28 75.57±1.12 76.13±1.45 77.25±1.61 77.92±1.54
Coil-100 96.52±2.03 85.12±2.31 94.63±1.34 96.84±1.56 96.21±2.32 95.32±2.46 95.44±1.54 95.55±1.51 98.89±1.33

USPS 92.12±1.51 83.32±1.32 97.28±1.25 95.43±1.21 96.32±2.21 96.46±1.32 96.31±1.21 96.42±1.22 98.21±1.21
YB 92.12±2.31 85.12±2.31 95.13±3.22 96.81±1.41 97.12±2.21 96.45±2.11 96.52±1.63 96.42±1.34 97.36±2.34

Table 3: Comparison of the computational time of 2DLMNN and 1DLMNN (sec ± std)

Methods UMIST Pollen AR USPS Extended Yale-B Coil-100

2DLMNN 82.12±3.31 43.12±4.32 163.23±4.54 67.42±2.52 146.15±3.47 94.32±2.48
1DLMNN 178.12±6.31 89.47±5.12 324.83±7.21 134.83±2.67 312.42±2.49 212.61±2.37
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