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Abstract

Learning the sparse Gaussian Markov Random
Field, or conversely, estimating the sparse inverse
covariance matrix is an approach to uncover the
underlying dependency structure in data. Most of
the current methods solve the problem by opti-
mizing the maximum likelihood objective with a
Laplace prior L1 on entries of a precision matrix.
We propose a novel objective with a regularization
term which penalizes an approximate product of
the Cholesky decomposed precision matrix. This
new reparametrization of the penalty term allows
efficient coordinate descent optimization, which in
synergy with an active set approach results in a very
fast and efficient method for learning the sparse in-
verse covariance matrix. We evaluated the speed
and solution quality of the newly proposed SCHL
method on problems consisting of up to 24,840
variables. Our approach was several times faster
than three state-of-the-art approaches. We also
demonstrate that SCHL can be used to discover in-
terpretable networks, by applying it to a high im-
pact problem from the health informatics domain.

1 Introduction

Markov Random Fields, or undirected networks, are a promi-
nent class of probabilistic graphical models that can charac-
terize the dependency structure among a set of random vari-
ables [Koller and Friedman, 2009]. As inference in these
models is generally intractable, a Gaussian assumption is of-
ten assumed to make it tractable and computationally effi-
cient, giving rise to Gaussian Markov Random Field (GMRF)
models. Commonly, the observations of many multivariable
processes of interest are effectively approximated by a multi-
variate normal distribution, allowing reliable GMREF learning.

Although the Gaussian assumption of the model allows
for efficient inference and learning, its utility also depends
on the properties of the underlying connectivity structure.
Sparsity in the model parametrization is well aligned with
the desirable property of the model parsimony (Occam’s ra-
zor). Sparsity also reduces the tendency of overfitting, and
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increases the interpretability of the model by exposing es-
sential relations between the variables. Therefore, enforcing
sparsity when learning GMRFs is an attractive way to dis-
cover the underlying structure in the data, which makes sparse
GMREF a handy tool applicable in various domains with high-
dimensional data, including bio-medical [Dobra et al., 2004],
spatial [Banerjee er al., 2014] and computer vision [Li, 2012].

Learning a GMRF model is shown to be equivalent to re-
constructing the inverse covariance matrix (a.k.a precision)
from the data. The precision matrix essentially carries infor-
mation about conditional dependence between the variables,
or equivalently of the graph connectivity patterns. There ex-
ist several methods developed to solve the problem of sparse
inverse covariance estimation which we briefly introduce in
section II. In that body of work, special attention is devoted
to the computational efficiency of methods. With an ever in-
creasing size and dimensionality of available data, there is a
necessity for even faster and more efficient algorithms.

We propose a novel method for fast learning of sparse GM-
RFs from high-dimensional data, that relies on Cholesky de-
composition. In section III, we introduce a new sparsity in-
ducing regularization term, based on L1 norm, that penalizes
an approximate product of two Cholesky factors. The result-
ing objective function is convex and can be efficiently opti-
mized by the coordinate descent based SCHL algorithm. Fur-
ther substantial speedup is achieved by developing an active
set approach, which reduces unnecessary computations by fo-
cusing only on a subset of active parameters. In section IV,
we compare the proposed SCHL method against three state-
of-the-art approaches, on synthetic problems of varying sizes.
The empirical evaluations suggest that our method is several
times faster than the best of the competing approaches. The
results also provide evidence that obtained solutions of all
evaluated methods have comparable quality. We also provide
analysis of the applicability of our SCHL method for discov-
ering the meaningful structures in high impact applications
involving gene expression levels in septic patients.

2 Related Work

Sparse inverse covariance learning was first introduced as
a problem to find the maximum likelihood model with a
minimal number of nonzero parameters (the Ly norm pe-
nal) [Dempster, 1972]. However, this combinatorial opti-
mization problem quickly becomes intractable with an in-
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crease in the number of variables. Initial approaches to ad-
dress this challenge were based on a greedy search in a space
of possible graphs [Lauritzen, 19961, which did not scale well
due to the necessity of calculating a maximum likelihood in
each iteration, and were also inapplicable in cases where di-
mensionality was greater than the number of samples.

Often, the number of samples is smaller than the number
of measured variables, so the necessity for an applicable so-
lution yielded a different approach to learning the sparse pre-
cision matrix from the data. The intractable problem with
Ly norm was approximated by a convenient convex formu-
lation with L; norm, which also enforces a degree of spar-
sity in the solution. The first method that utilized L; norm
was the neighborhood selection approach [Meinshausen and
Biihlmann, 2006], which selected connected variables by
solving a number of decoupled LASSO [Tibshirani, 1996]
problems. Although the approach is not directly solving the
L, regularized maximum likelihood problem, it can be seen
as a simple approximation of that problem.

Several approaches followed [Yuan and Lin, 2007; Dahl et
al., 2008; Banerjee et al., 2008], that were exactly solving the
L penalized maximum likelihood problem using convex op-
timization tools [Boyd and Vandenberghe, 2004]. other meth-
ods were proposed to provide further improvement. Graph-
ical LASSO [Friedman et al., 2008] improved the compu-
tational efficiency of learning the sparse precision matrix by
proposing a faster optimization based on a coordinate descent
algorithm. In [Duchi et al., 2008], authors proposed a fast
projected gradient method, which can solve even more gen-
eral types of problems with block-sparsity. While previously
mentioned methods optimized the dual of the problem, the
SINCO algorithm [Scheinberg and Rish, 2010] solved the
direct problem by utilizing a greedy coordinate ascent. A
GISTA approach [Rolfs et al., 2012], based on the proximal
gradient method, has attractive theoretical guarantees regard-
ing the error bounds and linear convergence rates.

All the algorithms mentioned so far utilize only the first
order gradient information, which limits their convergence to
linear at best. The QUIC approach [Hsieh et al., 2011] pro-
posed the use of a second order information based on New-
ton’s method, in order to provide superlinear convergence and
a substantial increase in computational efficiency. The algo-
rithm was subsequently improved into BIG & QUIC [Hsieh et
al., 2013] by adopting the block coordinate descent method,
where blocks are obtained by clustering. Block-wise opti-
mization helped reduce the memory requirements, as it needs
only part of the precision matrix to be stored, which allowed
scaling to large problems. BCDIC [Treister and Turek, 2014]
is another memory efficient algorithm for large-scale inverse
covariance learning based on block coordinate descent.

3 Method

We propose a novel SCHL method for fast learning of sparse
GMREF, by decomposing the precision matrix into a product
of two Cholesky factors, and imposing L; penalty on the ap-
proximation of that product. Our approach is related but dis-
tinct from the CSEPNL approach that directly penalizes the
entries of a Cholesky factor itself [Huang et al., 2006].
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3.1 Problem Setup

The sparse inverse covariance ¥~ ! estimation problem is de-
fined as minimizing the negative log-likelihood of a Gaussian

1 1
(=1 = §yTE_1y - 5109\2_1\—&—/\”2_1”1 (1)

subject to positive definite constraint X1y > 0, Vy € IR".
3.2 SCHL Method

The main computational burden in finding the optimal solu-
tion of the problem (1) comes from calculating the log|X 1|
term, which in a naive implementation would require O(N3)
steps. We propose different parametrization, which enables
calculating the log|¥ | in a more efficient manner.

Recent efficient approaches are based on the coordinate
descent optimization and in combination with an active set
method are shown to be applicable to large-scale prob-
lems [Hsieh et al., 2013]. However, most models based on
the active set method need to evaluate the active condition
for each variable every iteration, which is prohibitively ex-
pensive for big data. We propose a different sparsity penal,
that enables us to determine the active set as a preprocessing
step, and effectively avoid iterating over all variables on each
sweep of coordinate descent.

We start the analysis from Cholesky reparametrization of
the problem (1). Since the precision matrix is positive def-
inite, it can be decomposed into Cholesky factors: ! =
LL"T where L is a lower-triangular matrix with positive diag-
onal entries. It can be easily shown that in such parametriza-
tion of problem (1), the positive definite constraint is encoded
into a simpler constraint L;; > 0. Also, we note several
other benefits, which we build our approach upon: 1) For
a sufficiently sparse Cholesky matrix L, LLT will also be
sparse; 2) Cholesky factors can be efficiently used to calcu-
late the inverse. By having Cholesky factors always available
at no additional cost, expensive matrix inversion operations
can be done more efficiently. Besides these benefits, using
a Cholesky parametrization of objective (1) also has some
downsides, as regularizing the precision matrix becomes in-
creasingly difficult to optimize in terms of new parameters. In
order to solve this problem, we introduce a different penalty
term based on the relaxation of the original objective.

In order to derive update equations, we follow the standard
approach to separate problem (1) into differentiable g(L) and
non-differentiable h(L) parts:

(L) =g(L) +h(L) 2
First, we analyze the differentiable part, expressed in the
introduced reparametrization:

1 1
g(L) = gtr(nyLLT) - §tT(loglLLTl) 3)

The following can be easily shown using the identity
det(LLT) = [, L% :

1 N
9(L) = 5tr(LLTyy") - > log(Li) 4)
i=1
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In order to minimize the objective we compute derivatives
a L . There are two separate cases: i = j, and i # j.
For off-diagonal elements (i # j):

dg ltr(( oL
BLZ-J- - 2 aL”

LT+L

ZLM ik (5)

where S = yy” is the empirical covariance matrix.
Next, we compute diagonal derivatives:

al 1
= LuiSik — 7~ (6)
1 i

Now when we have expressions for derivatives, the differ-
ential part (3) can be optimized using coordinate descent by
finding zeros of equations (5) (linear) and (6) (quadratic):

Z i Ly, Szk
Lij = =5 —— @)

8L”

=2 ki LkiSik + \/(Zk# Ly Sik)? + 48
285

The second solution to the quadratic equation is always dis-
carded, since L;; must be positive in order for the ¥ ~! matrix
to be positive definite. By looking at the update equations (7)
and (8) we notice that if L is sparse with space complex-
ity O(Sactive ), calculating updates will also have O(Sqctive)
time complexity.

Ly = (8)

Sparsity Through L1 Regularization

In order to learn structure from the data, we rely on the spar-
sity inducing L; norm. Previous work [Yuan and Lin, 2007;
Banerjee ef al., 2008; Friedman et al., 2008] relies on ap-
plying the L, penalty on the elements of a precision matrix.
However, since our method relies on Cholesky parametriza-
tion, and the precision matrix is a function of parameters in
our setting, handling the L, penalty term is not straightfor-
ward. To derive appropriate subgradient equations we start
from the ordinary penalty term:

h(L) = A[|LL" ||, ©)

where ||LL”||; is the sum of absolute entries of the precision
matrix:

N 1 J
L) =AY Y 1> LiLyi (10)

i=1j=1 k=1

None of the terms under L; norm in eq. (10) are convex,
so optimizing the global objective (1) is hard, since none of
the standard convex optimization tools can be used. In order
to solve this, we propose a relaxation of the penalty term:

ZZAH Z\szL]k\ an

=1 j=1
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This relaxed penalty acts slightly different than the original
L penalty on the precision matrix. However, for sufficiently
sparse problems, it can be shown that they behave similarly
since they both induce sparsity on parameters L of optimiza-
tion and because sufficiently sparse Cholesky factors lead to a
sparse precision matrix. In Appendix A we outline the proof
that this relaxed penalty (11) is convex, for suitably selected
parameters A;;. Without loss of generalization, we will as-
sume that the \;; are all identical in the further text.

The new objective, with penal defined in (11), can be op-
timized using the coordinate descent method. Now, let’s ob-
serve the sub-gradient of h(L), and its (m, n) component:

Amna Lypn >0
*Amn; Lmn < 0 (12)
S [_Amnv Amn]a Lmn =0

Vh(L)mn =

where A,,,, is the value of the derivative over variables L,,,,
where it exists. We start from A,,,,:

m—1 1
0> Lkl
AngQAZ Zk_ﬂ k Jk|_|_

8Lmn
aZk 1|szLJk| 32 |L ‘
2
$ohs O 0L
1=m+1 j=1
O Lo L N 0| Lin L]
=2\ ZIEmnInt 4 9N ZImmnd 2ALn
Z 8Lmn + . Z aL’NlTL +
j=1 1=m-+1
(13)
Finally, we get:
N N
Amn =2) Z Sgn(Lmn)|LG|: 2)\Sgn(Lmn) Z|LG|
i=1 i=1

Expression for the (m,n) component of the sub-gradient
of h(L) is therefore:

2AS 0y [ Ll Ly > 0
—2XA Y04 [ Ll Lij < 0
N N
€ [=2A > iy [ Lwjls 23 30y [ Lkg [, L

The sub-gradient of the whole optimization function now
can be written as:

Vh(L)yj =
=0
)

>k Liej (Ski + 2sgn(Lij)A), Lij > 0

Zk ij(Ski — QSgﬂ(ij))\), Lij <0

sgn(Z)max(0,|Z|—2XY", |Lij|), Lij =0
(14)

VI(L)i; =

where Z = >, Ly;Sk; and i # j. Therefore, if following
condition is satisfied:

1> LijSkil< 23 | Lyl (15)
k k
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parameter L;; will be zero. For the sub-gradient VI(L);; the
following equation holds (using the fact that L;; must be pos-
itive, therefore always larger than zero):

N
1
VI(L)ii = Lii(Ski + 2sgn(Lei)\) — — 0
k=1 kX3

Few important observations: first, to update L;; only el-
ements from the ¢-th column of the data covariance matrix
need to be accessed; second, L;; depends only on elements
from the j-th column of L. Therefore, updates for param-
eters belonging to different columns of L can be efficiently
updated in parallel.

In order to find zero of the first order condition (14), coor-
dinate descent can be used. If the condition (15) is satisfied
and L;; = 0, no update for L;; is needed, so the active set
method fits naturally into our setup. In all other cases, we
equate (14) and (16) with zero and find exact update equa-
tions for each coordinate:

D L Sin + sgn(Lig) 20 34 L |

Li; = - 17)
1
Lii = 55~ = LpiSki — 20> |Lyil+
wn ki ki
(18)
+ [O ] LiiSki + 20| Liil)? + 485,
ki ki

3.3 Selecting the Active Set

To further improve the time complexity of the learning al-
gorithm, we resort to a similar approach as in [Hsieh er al.,
2013]. If we can efficiently select variables that have a sub-
gradient equal to zero (e.g. variables for whom inequal-
ity (15) holds) we can safely ignore them. Therefore, we can
partition all variables into free and fixed sets. Full coordinate
descent sweeping across all variables can be seen as a consec-
utive descent over fixed variables, followed by descent over
the free variable set, while satisfying convergence is guaran-
teed as already shown in [Hsieh et al., 2011].

In our model, a further step can be taken because a subset
of the fixed set can be estimated directly from the covariance
matrix, independently from the current state. The size of this
set depends directly on sparsity parameter A. Also, it can be
shown that the size of this pre-estimated fixed set does not
increase over time, which enables us to discard a significant
portion of the search space. This differs from existing solu-
tions based on the active set method [Wen et al., 2012] be-
cause once removed from the free set, no further sub-gradient
calculation needs to be done for that variable. This is crucial
for scalability of the approach. Finally, since optimizations
over distinct columns of L are independent of each other,
additional improvements can be made. Once every variable
from the free set corresponding to the same column has con-
verged, every node from that group can be removed from the
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active set. When running the algorithm sequentially (in a sin-
gle thread), this convenient property results in accelerating
(time-wise, not convergence wise) the later iterations, thus
enabling our model to successfully compete with models with
a higher rate of convergence (Newton-based methods).

Algorithm 1 CoordinateDescent

1: procedure SPARSECHOL

2 As(*V(i,j),|S1;j|<>\

3 AJ ~— 1..N

4 main loop:

5: for j € Ay do

6: fori € A;(J) do

7 L;;j < min(f(l,As,N)) > Egs. (17) & (18)
8: if [VL,;|< € then

9: Aj+ Ay \ {j}

10:  if A; = {0} then return
11: else
12: goto main loop.

The time complexity of a learning algorithm consists of
two parts: the preprocessing stage, during which covariance
thresholding and initial active set selection are done, and the
optimization itself. Initial active set selection has O(N?)
complexity, since the whole covariance matrix needs to be
examined. Optimization consists of three nested loops (Algo-
rithm 1). The outer loop iterates until convergence, therefore
bears complexity O(T), where T is the time needed for con-
vergence to be established. As it can be seen from (17) and
(18), coordinate descent is done independently over each col-
umn of L, therefore 7' is the time the longest variable group
needs to reach convergence criteria.

The inner loop iterates over active columns which are ini-
tially the whole set, therefore yielding O(NN) complexity.
This loop can be efficiently parallelized, since variables from
each column are calculated independently. Either way, this
set of active columns shrinks as more and more groups of
variables converge. Finally, the innermost loop iterates over
active variables in the selected column, and has time com-
plexity O(A;) where A, corresponds to the sparsity in col-
umn j. Total complexity is therefore O(N? + N A,T). Pseu-
docode of an overall coordinate gradient descent approach
with an active set update formula is presented in Algorithm 1.

4 Empirical Evaluation

To characterize capabilities of the proposed SCHL method,
we compared it against state-of-the-art approaches for sparse
inverse covariance selection QUIC [Hsieh et al., 2011],
BCDIC [Treister and Turek, 2014] and CSEPNL [Huang et
al., 2006]. For that purpose we conducted a number of com-
putational experiments on synthetic and real datasets, which
are described in the following two subsections. In com-
putational experiments, we used the code for the QUIC!
and BCDIC? provided by their respective authors. The

"http://www.cs.utexas.edu/ - sustik/QUIC/
*https://github.com/erantreister/Multilevel-BCDIC.m
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H problem H SCHL H QUIC H BCDIC H CSEPNL H
size nnz time nnz time nnz time nnz time nnz
1,000 35,234 1.5 35,372 2.9 35,324 7.0 35,324 14.1 35,480
5,000 | 178,570 24.1 173,542 116.6 175,000 179.4 187,478 567.1 169,774
10,000 | 358,174 100.8 338,274 526.1 387,102 920.2 386,898 3,311.9 352,526
15,000 | 733,368 450.2 745,792 1,699.5 | 688,936 3,381.7 734914 9,540.2 718,432
20,000 | 979,534 || 1,237.0 | 1,021,962 || 4,600.4 | 1,053,550 || 10,390.8 | 1,031,074 || 25,561.3 | 1,116,954

Table 1: Run time comparison for SCHL vs QUIC, BCDIC and CSEPNL methods when learning the sparse precision matrix. Underlying

sparse random graphs have from 1,000 to 20,000 nodes and 1,000 samples were used for learning.

[ algorithm | Jaccard Index | R? [ Precision | Recall | Accuracy | Lambda | nnz - true | nnz - est |
SCHL 0.80784 0.55633 | 0.89523 | 0.89219 | 0.99998 0.4 29998 29930
QUIC 0.76987 0.6611 0.87309 | 0.86689 | 0.99997 0.4125 29998 29856
BCDIC 0.76933 0.66104 | 0.87238 | 0.86689 | 0.99997 0.4125 29998 29872

CSEPNL 0.77594 0.70376 | 0.88162 | 0.86619 | 0.99997 0.347 29998 29648

Table 2: Comparison of quality indicators for SCHL and three alternative methods for learning the sparse precision matrix. All approaches

produced solutions of comparable quality according to five metrics.

code for CSEPNL was not readily available, so we have
re-implemented the approach based on the details provided
at [Huang et al., 2006]. We do not compare with Big & QUIC
as it is more suited for large scale problems, while for the
problems that can fit memory QUIC is recommended.

4.1 Synthetic Data

For our evaluation of computational efficiency, we replicated
settings used in [Hsieh et al., 2011]. We constructed sparse
adjacency matrices with randomly assigned off-diagonal non-
zero entries. We ensured positive definiteness of the adja-
cency matrices by making them diagonally dominant. Sub-
sequently, we used such matrices to generate a certain num-
ber of samples, from which the approaches should learn the
inverse covariance matrix. Samples were randomly selected
from multivariate Gaussian distribution and “colored” with
a designed adjacency matrix to assure the underlying struc-
ture in observations. We generated several problems of vary-
ing sizes using the underlying structure of a random graph.
Graph sizes spanning 1,000 to 20,000 nodes (variables) were
selected in order to characterize the computational efficiency
and scalability of competing approaches. In sparse random
graph datasets the average node degree was set to belong in
the interval of 15-20. In each experiment, an empirical co-
variance matrix was created from 1000 samples generated
from a multivariate normal distribution with zero mean and
a corresponding precision matrix. All experiments were con-
ducted in a single thread Intel(R) Core(TM) i7-4770 CPU @
3.40GHz machine with 32 GB RAM. Results can be seen at
Figure 1, and additional details are provided in Table 1. Syn-
thetic problems were generated to contain a certain amount of
edges in the connectivity graph. In the evaluation of compet-
ing algorithms, we tuned the penalty parameter A such that
each approach learns the structure with a number of non-zero
elements (“nnz”) close to the targeted sparsity (true number
of non-zeros). The results provide evidence that our SCHL
algorithm is fastest, and scales better with the increase in a
number of variables. According to the literature [Treister and

10000 | ) ]
------------- CSEPNL 3
8000 f SCHL
- ==.QUIC
% 6000 BCDIC
()
£ R ®
= 4000 e
< X 7’
7
2000 ‘
o
O 1 1 1 1 1
1,000 5,000 10,000 15,000 20,000
# Variables

Figure 1: Run time comparison for SCHL vs QUIC, BCDIC and
CSEPNL methods when learning the sparse precision matrix. The
underlying sparse random graphs have from 1,000 to 20,000 nodes
and are learned from 1,000 samples.

Turek, 2014], BCDIC is expected to be faster than QUIC,
however, in our study it is slower, most probably because our
problem setups are denser.

Since we know the underlying process generating synthetic
observations, we were able to characterize how well the algo-
rithms uncovered the structure. We quantified the quality of
obtained solutions by comparing the learned precision matrix
with the ground truth. The measures used are Jaccard Index,
precision, recall and accuracy to quantify the overlap of true
and estimated nonzero elements, and R? for assessing how
well the magnitudes are replicated. For computational evalu-
ation we generated one problem of size 10,000 with the un-
derlying structure of a chain graph, from which we sampled
1,000 samples for precision matrix estimation. The results
are provided in Table 2 and it can be seen that all approaches
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| [ SCHL | QUIC [ BCDIC | CSEPNL |
time | 5,038.6 | 10,011.0 | 15,929.1 | 26,665.7
nnz_| 366,064 | 346,536 | 346,516 | 357,812

Table 3: Graph extraction times for Gene expression data.

MANUALY
CURATED

LEARNED
BY SCHL

PRC1

NUSAP:‘CDKN3

[e(e\]:

Figure 2: Comparison of a manually curated network of sepsis re-
lated genes, and a network obtained by learning the GMRF from
gene expressions using SCHL approach.

produced solutions of comparable quality. The sparsities of
particular methods (nnz - est) were independently adjusted to
approximately match the ground truth (nnz - true).

4.2 Structure Discovery Application

Advances in measuring technology allowed an abundance in
the amount and especially in the dimensionality of data, in-
creasing the need for automatic and unsupervised discovery
of dependencies between the variables. This fosters appli-
cation of learning approaches like SCHL on data from var-
ious domains, to uncover previously unknown connections
and regularities. In the following text, we present application
of our SCHL method to discover the connectivity structure on
real world dataset from biomedical domain.

Gene Expression in Septic Patients The dataset contains
whole blood gene expression profiles collected daily for up
to 5 days from 53 subjects [Parnell ef al., 2013]. A total of
163 samples was taken during the course of the experiment
from patients that were admitted to the ICUs of hospitals in
Sydney, Australia, with a diagnosis of sepsis. Measurements
consist of expression levels of 24,840 probes (genes), and ob-
tained gene expression levels were quantile normalized and
log transformed. We have applied our SCHL approach on
all 163 samples to discover the dependence structure between
expression levels of human genes in sepsis, and again SCHL
was fastest among the compared approaches (Table 3). In
the conducted experiment we set the sparsity to an appropri-
ately high level and obtained the co-expression network of
170,612 edges (out of possible 308,500,380). To check the
plausibility of the obtained co-expression network, we looked
at published literature for an example of a manually curated
network of genes relevant to sepsis condition. We took the
network of 7 genes connected by 7 links [Wang et al., 2016,
that were obtained by literature mining and which were as-
sociated with a sepsis-related acute respiratory distress syn-
drome. In the network derived by our SCHL approach, sub-
network of these 7 genes contains 8 edges. The two networks
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are depicted at Figure 2, and it can be seen that 4 links are
overlapping, which makes a solid recall. Given high spar-
sity of our co-expression network of just 0.05%, 7 node sub-
graph with 8 links makes 689-fold enrichment (only 0.0116
links expected), and is statistically highly unlike to happen
by chance. These results provide evidence that SCHL can be
used for constructing reliable co-expression networks, which
are of high biological interest as co-expressed genes are func-
tionally related, often involved in the same pathways [Stuart
et al., 2003] or controlled by the same regulatory process im-
portant for therapeutic interventions [Stojkovic et al., 2016al.

5 Conclusions

We developed the SCHL, a novel approach for learning the
sparse GMRFs. The SCHL model was built from a suitable
reparametrization based on Cholesky decomposition. The
new method is convex and can be efficiently optimized using
coordinate descent with an active set approach. We show that
SCHL is faster than the state-of-the-art approaches QUIC,
BCDIC and CSEPNL on several examples and demonstrate
its applicability in network discovery. As presented approach
solves very general and widespread problem it can be further
extended for supervised tasks like structured regression [Sto-
jkovic et al., 2016b; Wytock and Kolter, 2013].
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A Convexity

Theorem 1. The following function is convex:

h(L) =YY Ay | LinLjel=tr(A[L|[L]T)  (19)
i g k

where |L|= [ |L;;| ] is the matrix elementwise absolute value.

Proof. While individual terms indeed are non-convex, the
penalty term as a whole is convex, for positive semi-definite
A matrix. First, we observe smooth regions of function A (L)
where L;; # 0,V(i,7). Since A matrix is PSD, it can be
Cholesky decomposed: A = VV7, and using trace algebra,
penalty (19) becomes:

(L) = tr(VV|LI[LT]) = tr(VT|LILTV) = || X]]*
(20)
which is a squared Frobenius norm of matrix V7|L| and,
therefore, the function is convex inside each differentiable re-
gion (since the sign doesn’t change).

Next, two neighboring smooth regions are separated with
non-differentiable region defined when one of the parame-
ters L;; is zero. It can be easily shown that the left deriva-
ag(LL‘i?) is always smaller or equal to the right
Y on(Lyy)

tive limLij 5.0

derivative limp, 10

penalty term as whole.
Here we use positive scalar lambda, which is PSD.

51, granting the convexity to the
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