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Abstract
3D object classification with multi-view represen-
tation has become very popular, thanks to the
progress on computer techniques and graphic hard-
ware, and attracted much research attention in re-
cent years. Regarding this task, there are mainly
two challenging issues, i.e., the complex correla-
tion among multiple views and the possible im-
balance data issue. In this work, we propose to
employ the hypergraph structure to formulate the
relationship among 3D objects, taking the advan-
tage of hypergraph on high-order correlation mod-
elling. However, traditional hypergraph learning
method may suffer from the imbalance data is-
sue. To this end, we propose a vertex-weighted
hypergraph learning algorithm for multi-view 3D
object classification, introducing an updated hy-
pergraph structure. In our method, the correla-
tion among different objects is formulated in a hy-
pergraph structure and each object (vertex) is as-
sociated with a corresponding weight, weighting
the importance of each sample in the learning pro-
cess. The learning process is conducted on the
vertex-weighted hypergraph and the estimated ob-
ject relevance is employed for object classifica-
tion. The proposed method has been evaluated on
two public benchmarks, i.e., the NTU and the PSB
datasets. Experimental results and comparison with
the state-of-the-art methods and recent deep learn-
ing method demonstrate the effectiveness of our
proposed method.

1 Introduction
Recent advances on computer techniques and graphic hard-
ware have prompted wide applications of 3D objects in var-
ious domains [Bimbo and Pala., 2006], such as architecture
design, entertainment and the medical industry. Confronting
the increasing 3D big data, effective 3D object classification
and retrieval techniques [Guo et al., 2014; Chen and Bhanu,
2009] have become an urgent requirement for both the re-
search society and industrial practice. Recently, multi-view
based object representation [Chen et al., 2003] has attracted
much attention due to its superior performance on visual con-
tent description of 3D objects. In multi-view 3D object clas-

.
Figure 1: Three examples of multi-views of 3D objects.

sification, each object is represented by multiple images, and
Figure 1 provides three examples of multi-views of 3D ob-
jects. In this work, we focus on multi-view 3D object classi-
fication.

Existing methods [Wang et al., 2012b; Gao et al., 2012]
proposed to train classifiers, or employ graph/manifold struc-
ture to predict the object category. Although there have been
much attention on this task, it is still an challenging task.
The main challenges of multi-view 3D object classification
are two-fold, i.e., the relationship modeling among different
objects and the possible imbalance training data, which also
exists in other applications [Shao et al., 2014]. First, each
3D object is represented by a set of images, leading to much
complicated comparison between 3D objects. How to formu-
late the correlation among 3D objects with multiple views is
a hard task. Second, the 3D data from different categories
may vary significantly. Here we take the popular Princeton
Shape Benchmark (PSB) [Shilane et al., 2004] as an exam-
ple. With average 11.26 3D objects for each category, the
standard deviation of the number of samples for each cate-
gory is 13.02, indicating a highly imbalance issue. Existing
works may work well when the training data for different data
categories are comparable but may degrade the performance
when they are not.

To formulate the complex correlation among 3D objects,
we propose to employ the hypergraph structure for data mod-
elling. In recent years, hypergraph learning [Zhou et al.,
2007] has shown superior performance in many computer
vision tasks, such as image retrieval [Huang et al., 2010],
object segmentation [Huang et al., 2009] and classification
[Gao et al., 2012]. However, traditional hypergraph struc-
ture cannot handle the data imbalance issue, which can de-
grade the performance of hypergraph modeling. To this end,
we propose a vertex-weighted hypergraph learning algorithm
for multi-view 3D object classification, which introduces an
updated hypergraph structure considering the vertex weights.
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In our method, the correlation among 3D objects is formu-
lated in a hypergraph structure, and the weights for both ver-
tices and hyperedges are associated with the hypergraph. The
vertex weights are used to define the influence of different
samples on the learning process, and the hyperedge weights
are used to generate optimal representation. The learning
process is conducted on the vertex-weighted hypergraph and
the learned object relevance is used for classification. The
proposed method has been evaluated on two public bench-
marks, i.e., the National Taiwan University (NTU) 3D model
dataset [Chen et al., 2003] and the Princeton Shape Bench-
mark (PSB) [Shilane et al., 2004]. Experimental results and
comparison with the state-of-the-art methods demonstrate the
effectiveness of our proposed method.

2 Related Work
On multi-view object classification, a manifold-to-manifold
distance (MMD) was introduced in [Wang et al., 2012b].
Each group of images can be represented in three levels, i.e.,
point, subspace and manifold. In this method, the compared
multi-views of objects were formulated by manifolds and
the corresponding manifold-to-manifold distance was calcu-
lated to measure the distance between two groups of im-
ages. Huang et al. [Huang et al., 2014] introduced a hy-
brid metric learning approach to jointly employ heterogenous
statistics, i.e., mean, covariance matrix and Gaussian distri-
bution, multi-view classification. Gao et al. [Gao et al., 2012]
proposed to employ the hypergraph structure to formulate
the relationship among different objects, where the connec-
tion among objects were built using view clustering. In this
work, multiple hypergraphs were constructed and the rele-
vance among objects and the hypergraph weights were jointly
learned. A covariance discriminative learning (CDL) method
was introduced in [Wang et al., 2012a]. In this method,
the covariance matrix of multiple views was extracted for
object representation and the linear discriminant analysis
was conducted to measure the distance between two sets of
views. Huang et al. [Huang et al., 2015] proposed a Log-
Euclidean metric learning (LEML) method, which learned
a Log-Euclidean metric to transform the matrix logarithms
from the raw tangent space of multiple views to a discrim-
inative tangent space for the objects. Regarding the repre-
sentation of multi-view objects, much research attention has
been attracted. Ji et al. [Ji et al., 2014] proposed a compact
bag-of-patterns descriptor (CBoP) to mine the discriminative
visual patterns from 3D point clouds, which innovatively alle-
viates the ill-posed pattern configurations from 2D images. It
is a breakthrough that such descriptor well address both com-
pactness and discriminativity in multi-view representation.

In recent years, there have been successful and serial
achievements [Tao et al., 2006; 2007; 2009; Yu et al., 2016]
on learning optimal subspace or metric for data modeling.
Other works [Liu et al., 2015; Xu et al., 2015; Shao et
al., 2016; Liu et al., 2017] further explore the multi-task,
multi-view learning algorithms. Recently, hypergraph learn-
ing has been widely applied in many applications. Huang et
al. [Huang et al., 2010] proposed to employ the hypergraph
structure to formulate the relationship among images. In this
work, only the vertex relevance was learned for image rank-
ing. Huang et al. [Huang et al., 2009] also proposed to use the

hypergraph structure to represent the spatial-temporal neigh-
borhood correlation among image patches. In this method,
hypergraph cut was used for object segmentation in videos.
Existing hypergraph learning methods only focus on learning
the vertex correlation only or joint learning the vertex rele-
vance and the hyperedge weights simultaneously. There is
no effort targeting on considering the vertex weighting issue,
which is an important direction to further improve the repre-
sentation ability of hypergraph.

3 The Proposed Method
In this section, we introduce our vertex-weighted hypergraph
learning for multi-view 3D object classification. First, the
features are extracted for all images of the 3D objects, and
then the pairwise 3D object distance is measured. Based on
the distance, a hypergraph is constructed, where the vertex
weights are calculated based on the distribution of training
samples for each class respectively. Then, the learning pro-
cess is conducted on the hypergraph to estimate the optimal
relevance of each 3D object to each class and the hyperedge
weight simultaneously.

3.1 View Feature Extraction and Pairwise Object
Distance Measure

For n 3D objects in the database {O1,O2, . . . ,On}, each ob-
ject Oi is represented by a set of views {vi1, vi2, . . . , vini

}.
Here two features, i.e., Zernike moment and histogram of ori-
ented gradient (HOG), which have been widely used in 3D
object analysis tasks, are employed to represent each view in
this work. We note that the employed features are flexible and
can be replaced/expanded based on the hypergraph structure.

Given two sets of images and corresponding features, we
employ the Hausdorff distance to measure the 3D object dis-
tance between two objects O1 and O2 . It is noted that other
distance measures can be also used here. As we have two
types of features for each view, there are two distances for
each pair of 3D objects based on Zernike moment and HOG,
respectively.

3.2 Hypergraph Construction
Given the 3D object pairwise distances, the relationship
among the nt training objects and the testing object is for-
mulated in a hypergraph structure G = (V, E ,W). In G, V
is the vertex set, where each vertex denotes one object, and
there are nt + 1 vertices in total. E is the hyperedge set and
W is the matrix of hyperedge weights. To generate the con-
nection among vertices, i.e., hyperedges, each time one vertex
is selected as the centroid, and one hyperedge is constructed
to connect the centroid and itsK nearest neighbors in the cor-
responding feature space. This process repeats twice for the
two types of features and generates 2(nt + 1) hyperedges for
G.

An incidence matrix H is then generated to represent the
relationship among different vertices. The (a, b)-th entry of
the incidence matrix H indicates whether the a-th vertex is
connected via the b-th hyperedge to other vertices. The in-
cidence matrix H of hypergraph G = (V, E ,W) is gener-

ated as H (v, e) =

{
1 if v ∈ e
0 if v /∈ e . In traditional hypergraph
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structure, all the vertices are regarded as equal weights. We
note that different training samples could have varied impor-
tance and those categories with too many training samples
may dominate the classification process. Existing hypergraph
learning methods fail to deal with the imbalance data issue.
To this end, we propose to a vertex weighting matrix U to
weight different vertices, where U(v) is the vertex weight of
vertex v.

Here, the vertex degree of the a-th vertex va ∈ V and
hyperedge degree of the b-th hyperedge eb ∈ E are calcu-
lated, respectively, as d (va) =

∑
e∈EW (e) H (va, e), and

δ(eb) =
∑
v∈VU (v) H(v, eb). We note that different from

traditional hypergraph structure, where the hyperedge degree
is fully determined by the connection from H, the hyperedge
degree δ here takes both the connections on H and the corre-
sponding vertex weights into consideration simultaneously.

Now, two diagonal matrices Dv and De can be generated
with every entry along the diagonal corresponds to the vertex
degree and hyperedge degree, respectively. Note that all the
hyperedges are initialized with an equal weight, e.g., 1.

Traditional hypergraph-based methods do not take the im-
portance of vertices into consideration, which may degrade
the representative ability. In our method, we introduce the
vertex importance in the hypergraph structure. The main
idea for vertex weighting is to enhance the samples that may
convey discriminative information and weaken the samples
which may be redundancy, such as repeated/closed training
samples, and bring in little information but much bias. Before
conducting hypergraph learning, we first initialize the vertex
weights.

For the ith category, here we let {Oti1,Oti2, . . . ,Otim} de-
note all m training data. We can then measure all the pair-
wise distances do (Otia,Otib) between each two objects based
on the two features, respectively. The mean distance from
Otia to all other training samples for the ith category can cal-

culated as d (Otia) = 1
m

m∑
b=1

∑
Zernike,HOG

do (Otia, O
t
ib). The

vertex weight for the training sample Otia can be written as

U (Otia) =
d(Ot

ia)
m∑

b=1

d(Ot
ib)

.

These vertex weighs are further normalized for each class
respectively. This initialization approach can provide higher
weights to the samples which are not close to others and lower
weights to the samples which are similar to others. In this
way, the repeated/close samples will have relatively smaller
influence and the individual samples could becomes more im-
portant on the hypergraph learning process.

3.3 Vertex-Weighted Hypergraph Learning

Given the hypergraph, the relationship among vertices can be
modeled based on how they are connected via hyperedges.
The relevance matrix F for hypergraph G = (V, E ,W) is the
to-be-learned matrix, which indicates the relevance of each
object to the categories. In this work, it can be learned from a
joint optimization process considering the hypergraph struc-
ture regularizer, the empirical loss based on labeled data, and
the hyperedge weights simultaneously.

Hypergraph Structure Regularizer
As we have a new structure with vertex weights compared
with traditional hypergraph, we need to define the new hy-
pergraph ructure regularizer first. Generally, the more two
vertices are connected via hyperedges, the more similar their
relevance scores are and vice versa. And, the higher weights
of the two vertices, the higher cost will be provided. Based on
this, the hypergraph structure regularizer Ω (F) can be written
as

Ω (F) =
ncate∑
k=1

∑
e∈E

∑
u,v∈V

W(e)U(u)H(u,e)U(v)H(v,e)
2δ(e)

(
F(u,k)√
d(u)
− F(v,k)√

d(v)

)2

=
ncate∑
k=1

∑
e∈E

∑
u,v∈V

W(e)U(u)H(u,e)U(v)H(v,e)
δ(e)

(
F(u,k)2

d(u)
− F(u,k)F(v,k)√

d(u)d(v)

)
=
ncate∑
k=1

{∑
u∈V

U (u) F (u, k)2
∑
e∈E

W(e)H(u,e)
d(u)

∑
v∈V

H(v,e)U(v)
δ(e)

−
∑
e∈E

∑
u,v∈V

F(u,k)U(u)H(u,e)W(e)H(v,e)U(v)F(v,k)√
d(u)d(v)δ(e)

}
=
ncate∑
k=1

{∑
u∈V

U (u) F (u, k)2

−
∑
e∈E

∑
u,v∈V

F(u,k)U(u)H(u,e)W(e)H(v,e)U(v)F(v,k)√
d(u)d(v)δ(e)

}
=
ncate∑
k=1

F(:, k)
T

∆F(:, k) = FT∆F

(1)

where F is the to-be-learned relevance matrix, F(:, k)
is the k-th column of F, ncate is the number of 3D
object categories, and ∆ = U − Θ = U −
Dv
− 1

2 UHWDe
−1HTUDv

− 1
2 is called vertex-weighted

hypergraph Laplacian.
Here we note that the hypergraph Laplacian for traditional

hypergraph is ∆t = I − Dv
− 1

2 HWDe
−1HTDv

− 1
2 [Zhou

et al., 2007]. By comparing ∆ and ∆t, we can notice that
the vertex-weighted hypergraph Laplacian takes the weights
of different vertices into account when measuring the cost on
hypergraph structure.

Empirical Loss
The empirical loss term is defined similarity as traditional hy-

pergraphs by Remp (F) =
ncate∑
k=1

‖F(:, k)−Y(:, k)‖2, where

Y ∈ Rn×ncate is the label matrix and each of its entries de-
notes the category a subject belongs to, and Y(:, k) is the
k-th column of Y. If the a-th vertex belongs to the first cate-
gory, then the (a, 1)-th and (a, 2)-th entries in Y are set to 1
and 0, respectively.

Hyperedge Weights
To generate better hypergraph representation, different hy-
peredges should have different influence, and an optimally
learned hyperedge weight can help to improve the represen-
tation ability of the hypergraph structure. Based on this, we
further learn the weights of hyperedges by adding a hyper-
edge weight regularizer tr(WTW).

Here, the learning task on vertex-weighted hypergraph is
composed of three contents, i.e., the hypergraph structure reg-
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ularizer, the empirical loss and the hyperedge weight regular-
izer. We can have the following overall cost function:

Q (F,W) = Ω (F,W) + λ<emp (F) + µtr(WTW)

= FT
(
U−Dv

− 1
2 UHWDe

−1HTUDv
− 1

2

)
F

+λ
nit∑
k=1

‖F(:, k)−Y(:, k)‖2 + µtr(WTW)

(2)
The objective function for the learning task on vertex-

weighted hypergraph can be written as

argminF,WQ (F,W)

s.t. W(e) ≥ 0,
∑
e∈E

H (v, e) W (e) = Dv (v) (3)

3.4 Solution
To solve the optimization task in Eq. (3), we conduct an al-
ternative strategy. We first fix W, and optimize F as

arg min
F
{Ω (F) + λRemp (F)} . (4)

The objective function in Eq. 4 can be rewritten as

arg min
F

FT∆F + λ

ncate∑
k=1

‖F(:, k)−Y(:, k)‖2. (5)

According to [Zhou et al., 2007], F can be solved by F =(
I + 1

λ (I−Θ)
)−1

Y. We then fix F, and optimize W as

argminW Ω (W) + µtr(WTW)

s.t. W(e) ≥ 0,
∑
e∈E

H (v, e) W (e) = Dv (v) (6)

The objective function in Eq. (3) can be rewritten as

argminW FT
(
U−Dv

− 1
2 UHWDe

−1HTUDv
− 1

2

)
F

+µtr(WTW)

s.t. W(e) ≥ 0,
∑
e∈E

H (v, e) W (e) = Dv (v)

(7)
The above optimization task is convex on W and can be

solved via quadratic programming. The above optimization
procedure repeats until convergence. As the objective func-
tion decreases in each step and has a lower bound of 0, the
convergence can be guaranteed.

Based on the learned F, the relevance of the testing 3D
object to 3D categories can be obtained. The testing data can
be classified to the category with highest relevance value.

4 Experiments
4.1 Testing Datasets and Settings
We have conducted experiments on the National Taiwan Uni-
versity (NTU) 3D model dataset [Chen et al., 2003] and the
Princeton Shape Benchmark (PSB) [Shilane et al., 2004].
The NTU dataset consists of 549 3D objects from 46 cat-
egories, e.g., bed, bike, boat, and table. The PSB dataset
contains 1,814 3D models from 161 categories. For each 3D
object, 60 virtual cameras are employed to capture multiple
views, which are located at the vertices of a polyhedron with
the same structure with Buckminsterfullerene (C60). Thus,

(a) On the NTU dataset. (b) On the PSB dataset.

Figure 2: The distributions of sample numbers for each class on the
two datasets.

each 3D object has a group of 60 images. The distributions of
sample numbers for each class on the two datasets are shown
in Figure 2, from which we can notice that the difference
among classes is significant.

For these two datasets, we further generate three subsets
by removing small categories. Here, the standard deviation
std of the number of samples for different categories is used
to measure the class imbalance. The number of object cate-
gory ncate and the number of objects nall for each subset and
corresponding std are provided in the top rows of Table 1 and
Table 2, from where we can notice large variance for the orig-
inal datasets and corresponding subsets.

In the classification task, 10% to 80% samples for each
class are randomly selected as the training data and all left
samples are used as the testing data. This procedure repeats
10 times and the average classification accuracy is reported.

The following methods are employed for comparison.
1. Manifold-to-Manifold distance (MMD) [Wang et al.,

2012b].
2. Covariance Discriminative Learning with Partial Least

Squares (CDL PLS) [Wang et al., 2012a].
3. Log-Euclidean Metric Learning (LEML) [Huang et al.,

2015].
4. Traditional hypergraph learning (HL) [Zhou et al.,

2007].
5. Hypergraph learning with hyperedge weight update

(HL-E) [Gao et al., 2012].
6. Vertex-weighted hypergraph learning (V-HL), i.e., the

proposed method without hyperedge weight update.
7. Vertex-weighted hypergraph learning with hyperedge

weight update (V-HL-E), i.e., the proposed method. In
all hypergraph-based methods, the number of selected
neighbors for hyperedge generation is set as 10, λ is set
as 10, and µ is set as 1, respectively.

Here, MMD, CDL PLS and LEML are the state-of-the-art
methods on object classification based on multi-views. HL
and HL-E are traditional hypergraph learning methods for
comparison.

4.2 Experimental Results
Experimental results are demonstrated in Figure 3 and Fig-
ure 4, respectively. We also compare our V-HL method with
traditional HL method on the subsets for the NTU and the
PSB datasets, respectively, and the results are demonstrated
in Table 1 and Table 2. From these results, we can have the
following observations.
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Table 1: Experimental comparison between HL and V-HL on the
NTU subsets in terms of accuracy (%).

Training

NTU Subset 1 Subset 2 Subset 3
ncate = 50 ncate = 16 ncate = 8 ncate = 6
nall = 549 nall = 401 nall = 291 all = 256

std = 14.21 std = 17.85 std = 19.71 std = 18.82
HL V-HL HL V-HL HL V-HL HL V-HL

10% 35.82 40.63 44.16 48.56 59.79 62.62 68.17 68.43
20% 38.53 45.87 47.90 57.74 63.48 72.05 71.51 75.07
30% 44.31 51.54 57.21 64.77 69.93 77.77 74.92 82.57
40% 47.78 53.40 61.51 69.29 73.35 80.89 78.76 84.17
50% 50.49 56.58 64.09 69.75 78.06 82.04 82.29 84.81
60% 50.77 58.17 66.20 71.59 78.83 84.75 83.29 85.10
70% 51.13 59.77 69.04 74.27 81.88 85.54 83.33 89.01
80% 53.15 60.87 71.92 77.56 81.85 85.48 86.67 87.50

Table 2: Experimental comparison between HL and V-HL on the
PSB subsets in terms of accuracy (%).

Training

PSB Subset 1 Subset 2 Subset 3
ncate = 161 ncate = 51 ncate = 30 ncate = 18
nall = 1813 nall = 1168 nall = 898 nall = 679
std = 13.02 std = 18.26 std = 21.21 std = 24.60

HL V-HL HL V-HL HL V-HL HL V-HL
10% 29.83 34.00 35.38 46.27 42.86 56.00 53.64 66.46
20% 34.19 37.88 48.61 54.70 58.83 63.82 67.92 74.81
30% 37.32 40.59 54.13 59.80 64.90 67.48 73.80 78.10
40% 39.70 44.20 57.19 62.88 68.39 70.27 77.59 79.89
50% 43.58 47.61 61.32 64.87 71.33 72.25 80.89 82.08
60% 43.93 49.60 63.29 67.35 73.04 74.50 81.72 83.69
70% 45.89 50.27 64.54 67.41 73.65 75.73 83.95 84.35
80% 45.92 53.18 66.17 69.16 75.31 76.80 84.31 85.03

Figure 3: Comparison of different methods on NTU.

Figure 4: Comparison of different methods on PSB.

1. The proposed V-HL and V-HL-E methods outperform
all other compared approaches. Here we take the re-
sults with 20% data for training as an example. V-HL-E
achieves gains of 72.37%, 19.78%, and 52.10% com-
pared with MMD, CDL PLS and LEML on the NTU
dataset, where the improvements are 22.23%, 88.43%,
and 66.74% on the PSB dataset, respectively.

2. The vertex weights on hypergraph leads to improvement
of the classification performance. On the NTU dataset,
V-HL outperforms HL by 13.4%, 16.3%, 12.1%, and
16.9% when 10%, 30%, 50%, and 70% samples are
used as training data, respectively. Similar results can
be observed when compare V-HL-E with HL-E. These
results can justify that the proposed vertex-weighted hy-
pergraph structure can have better representation for ob-
ject relevance modeling.

3. Hyperedge weight learning can improve the classifica-
tion performance. For example, V-HL-E outperforms V-
HL by 2.3% and 4.4% when 10% and 50% samples are
used as training data on the NTU dataset.

The better performance of our proposed method can be
attributed to the following two reasons. First, the hyper-
graph structure is able to explore complex relationship among
3D objects, which leads to the superior performance of all
hypergraph-based methods over other methods. Second, our
vertex-weighted hypergraph structure takes the vertex impact
into consideration. In our work, we aim to reduce the in-
fluence of repeated training data which could be redundancy
and illy dominate the classification process. In this way, even
the minority of the training samples in the original dataset
can have better impact on the classification decision. When
some classes have too more samples than others, giving equal
weights for all samples will focus more on the huge classes
and decrease the classification performance. Compared with
traditional hypergraph which ignores the vertex weights, the
proposed method is able to measure a more optimal hyper-
graph Laplician and accordingly generate a better data corre-
lation. We note that the proposed method is a general exten-
sion of traditional hypergraph learning methods, and it can be
used in other tasks besides 3D object classification.

The limitation of the proposed method lies in the computa-
tional load from the relevance learning and hyperedge weight
learning procedure when dealing with large datasets. It is
noted that both effectiveness and efficiency are important in
practice. In this work, we mainly focus on building a robust
learning framework towards better effectiveness and put ef-
ficiency as our future work. Confronting the computational
cost issue, there are two possible solutions. First, data down-
sampling can be conducted to reduce the data size before hy-
pergraph learning. Second, besides conducting hypergraph
learning directly, it is possible to investigate hierarchical hy-
pergraph learning strategy which regards the data in a pyra-
mid structure. Thus, each layer can have less data and the
computational cost can be reduced accordingly. We also note
that 3D object classification is just one application of the pro-
posed vertex-weighted hypergraph learning method and it can
be used in other tasks too.

On Hyperedge Generation
In this subsection, we evaluate the influence of the number
K of selected neighbors for hyperedge generation. We vary
K from 3 to 50, and the experimental results are shown in
Figure 5. As shown in the results, the performance is steady
when K varies in a large range. When K is too small or
too large, the performance becomes slightly worse. When K
is too small, such as K = 3, each hyperedge connects too
few vertices and the relationship among vertices cannot be
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(a) (b) (c) (d)
Figure 5: The performance evaluation by varying K. (a) 10% train-
ing data on NTU; (b) 50% training data on NTU; (c) 10% training
data on PSB; (d) 50% training data on PSB.

(a) (b) (c) (d)
Figure 6: The performance evaluation by varying λ. (a) 10% train-
ing data on NTU; (b) 50% training data on NTU; (c) 10% training
data on PSB; (d) 50% training data on PSB.

fully explored. When K is too large, such as K = 50, each
hyperedge connects too many vertices and the discriminative
ability of the hypergraph structure may be limited. Both small
and large K values will degenerate the representation ability
of the hypergraph structure.

On the Weights of Regularizers
In our framework, there are two parameters that control the
relative impact of different regularizers in the objective func-
tion, i.e., λ on empirical loss and µ on hyperedge weights,
respectively.

To evaluate the influence of λ and µ on the object classi-
fication performance, we first keep µ as 1 and vary λ from
0.01 to 1000, and then keep λ as 10 and vary µ from 0.01 to
1000, respectively. Experimental results are demonstrated in
Figure 6 to Figure 7. As shown in these results, the proposed
method can achieve steady performance when λ and µ vary
in a large range. When λ and µ are too small or too large, the
corresponding regulariers will either dominate the objective
function or have quite little influence on the results, which
could degrade the performance.

4.3 Comparison with Deep Learning Method
The previous experiments have demonstrated that the pro-
posed method with traditional features (Zernike Moments and
HOG) can outperform the existing methods. We note that
deep learning methods have been investigated in many com-
puter vision tasks in recent years. Su et al. [Su et al., 2015]
introduced a 3D shape recognition method (MVCNN) using
multi-view convolutional neural networks. Different from the
deep learning methods, which serve as an end-to-end classi-
fication framework, the proposed method mainly works as a
classification method, indicating that the output of the deep
learning algorithm, such as MVCNN in [Su et al., 2015] can
be used as one feature for processing. We have conducted
experiments on the NTU dataset with 10% to 30% training
data to compare the proposed method with deep learning fea-
tures with MVCNN [Su et al., 2015]. Experimental results
are demonstrated in Figure 8, from which we can notice that
1) MVCNN works much better than existing methods, and 2)

(a) (b) (c) (d)
Figure 7: The performance evaluation by varying µ. (a) 10% train-
ing data on NTU; (b) 50% training data on NTU; (c) 10% training
data on PSB; (d) 50% training data on PSB.

Figure 8: Comparison with MVCNN on the NTU dataset.

the proposed method with deep learning features can achieve
better performance compared with MVCNN [Su et al., 2015].
The improvement compared with MVCNN is not very signif-
icant as MVCNN has already achieved very high accuracy.

5 Conclusion and Future Work
In this paper, we propose a vertex-weighted hypergraph learn-
ing approach for multi-view 3D object classification. Our
method formulates the correlation among 3D objects in a hy-
pergraph structure to explore the high-order relationship un-
derneath the multi-view data. By introducing vertex weights,
our method is able to explore the vertex importance in the
hypergraph structure and the learning process on hypergraph
can be more optimal for object classification, especially when
the training data for different categories are not balanced.

To evaluate the proposed method, experiments are con-
ducted on the NTU and the PSB datasets. The proposed
method using traditional features, such as Zernike Moments
and HOG, shows superior performance compared with both
the state-of-the-art methods and traditional hypergraph meth-
ods. We have also tested the proposed method with the deep
learning features. The experiments demonstrate that the pro-
posed method with deep learning features can achieve better
performance compared with the deep learning method.
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