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Abstract

Hashing has attracted broad research interests in
large scale image retrieval due to its high search
speed and efficient storage.  Recently, many
deep hashing methods have been proposed to per-
form simultaneous nonlinear feature learning and
hash projection learning, which have shown supe-
rior performance compared to hand-crafted feature
based hashing methods. Nonlinear projection func-
tions have shown their advantages over linear ones
due to their powerful generalization capabilities. To
improve the performance of deep hashing methods
by generalizing projection functions, we propose
the idea of implementing a pure nonlinear deep
hashing network architecture. By consolidating
the above idea, this paper presents a Deep Super-
vised Hashing architecture with Nonlinear Projec-
tions (DSHNP). In particular, soft decision trees are
adopted as the nonlinear projection functions, since
they can generate differentiable nonlinear outputs
and can be trained with deep neural networks in an
end-to-end way. Moreover, to make the hash codes
as independent as possible, we design two regu-
larizers imposed on the parameter matrices of the
leaves in the soft decision trees. Extensive evalua-
tions on two benchmark image datasets show that
the proposed DSHNP outperforms several state-of-
the-art hashing methods.

1 Introduction

With the explosive growth in the volume of images on the
Web, large scale image retrieval has become an emerging
need and attracted increasing attention. Among the exist-
ing techniques for large scale image retrieval, hashing is a
popular and effective solution, which enables fast search and
efficient storage. The basic idea of hashing methods is to
construct a set of hash functions to map images into binary
hashes such that similar images are mapped into similar hash
codes, then the hamming distance between every two hash
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codes is used for fast approximate similarity computations
and nearest neighbor searches. Most existing hashing meth-
ods for image retrieval can be divided into three phases. First,
each input image is represented by a vector of feature de-
scriptors. Second, projection functions [Wang et al., 2010b;
Kong and Li, 2012] are generated or learned to encode
the feature vector into a low-dimensional real-valued vector.
Third, the real-valued vector obtained in the second phase
is quantized into a binary code. In this paper, we focus on
the first and second phases, and adopt the common single bit
quantization which is generally used in hashing methods for
the third phase.

For the first phase, lots of existing methods utilize hand-
crafted descriptors as feature representations of the images.
Since the hand-crafted feature construction is independent of
the second phase of hashing, the hand-crafted representations
may not be tailored to the coding process. Since deep con-
volutional neural networks (DCNN) have achieved great suc-
cess in image classification task, many deep hashing methods
have been proposed recently to adopt a deep model for fea-
ture learning [Xia et al., 2014; Lai et al., 2015; Zhao et al.,
2015; Zhang et al., 2015; Li et al., 2016; Yao et al., 2016;
Cao et al., 2016]. For the second phase, the hash task needs
a projection process which projects the high-dimensional
deep feature vector into a low-dimensional approximate hash
codes, which is different from the image classification task
which directly optimizes the deep features by classification
loss (e.g., softmax loss). While linear perceptron func-
tions are widely adopted in existing deep hashing methods,
nonlinear projection functions have shown improved perfor-
mance over linear ones [Salakhutdinov and Hinton, 2009;
Liu et al., 2012; Lin et al., 2013; 2014; Shen et al., 2015;
Liong et al., 2015]. Thus, we seek to improve the perfor-
mance of deep hashing methods by generalizing projection
functions. In this paper, we investigate how to design a pure
nonlinear network for hash task to combine nonlinear feature
learning models with nonlinear projection functions.

To implement the idea of unifying nonlinear feature learn-
ing with nonlinear projection learning, this paper proposes a
Deep Supervised Hashing architecture with Nonlinear Pro-
jections, which is referred to as DSHNP. In particular, we use
deep convolutional neural network to learn feature represen-
tations from pixels, and utilize soft decision trees as projec-
tion functions which map the learned image representations
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into the intermediate real-valued results of hash codes in a
nonlinear way. The reasons for choosing soft decision trees
lie in that they not only inherit the nonlinear mapping capac-
ity of decision trees, but also make the outputs differentiable
such that they can be combined with deep learning architec-
tures whose learning process is performed by back propaga-
tion. In addition, to handle the redundancy problem in the
hash codes, we design two novel regularizers, i.e., parallel
and orthogonal regularizers, which are imposed on the pa-
rameter matrices of leaf nodes in soft decision trees. To train
DSHNP, we adopt pair-like samples and utilize the negative
log-likelihood loss as the object function along with the above
two regularizers.
Our main contributions are outlined as follows:

¢ We propose a pure nonlinear deep hashing network ar-
chitecture (DSHNP) for supervised hashing. In partic-
ular, DSHNP uses a deep convolutional neural network
for feature learning, utilizes soft decision trees for non-
linear projection, and is trained end-to-end by optimiz-
ing a pairwise loss function.

e To reduce the redundancy in the learned hash codes, we
propose two novel regularizers, i.e., parallel and orthog-
onal regularizers, which are imposed on the weighting
parameters of leaf nodes in the soft decision trees.

¢ We conduct extensive experiments on real datasets to
evaluate DSHNP, and the experimental results demon-
strate the superior performance of DSHNP over state-
of-the-art hashing methods.

2 Related Work

Here we mainly discuss the recent works on deep hashing
methods. Xia et al. [Xia et al., 2014] extend TSH [Lin et al.,
2013] to propose a deep hashing method CNNH. They first
learn hash codes from the pairwise labels, then regard projec-
tion function learning as a classification problem solved along
with feature learning by deep convolutional neural network
(DCNN) which is proposed for image classification. Realiz-
ing the limitations of CNNH which solves the hashing prob-
lem in a two-stage way, Lai et al. [Lai er al., 2015] propose
a one-stage supervised hashing method NINH via a deep ar-
chitecture, and design a divide-and-encode strategy to reduce
the redundancy among the hash bits. Zhao et al. [Zhao et
al., 2015] combine semantic ranking and deep learning model
in the proposed DSRH to address the problem of preserv-
ing multilevel semantic similarity between multilabel images.
Zhang et al. [Zhang et al., 2015] pose hashing learning as a
problem of regularized similarity learning, and propose a su-
pervised bit-scalable deep hashing framework DRSCH with
an extra weight matrix learned to calculate the weighted ham-
ming affinity. Li et al. [Li ez al., 2016] propose an end-to-end
hashing learning framework DPSH which performs simulta-
neous feature learning and projection function learning for
applications with pairwise labels. Cao et al. [Cao et al.,
2016] propose a novel Deep Quantization Network (DQN)
architecture for supervised hashing, which learns image rep-
resentations for hash coding and formally controls the quan-
tization error. Liu et al. [Liu er al., 2016] design a novel
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Figure 1: the architecture of Deep Supervised Hashing with Non-
linear Projections (DSHNP). The input to DSHNP is in the form of
image pairs. A shared DCNN is implemented for learning image
feature representations. Shared soft decision trees are utilized as the
projection layer, which nonlinearly maps the constructed features
into dimensional-reduced projections. A pairwise loss with orthog-
onality constraints is minimized to get the optimal hash function.

loss function to preserve the pairwise similarity and reduce
the discrepancy between the real-valued outputs and the de-
sired discrete values. Yao et al. [Yao et al., 2016] propose the
idea of co-training for hashing, by jointly learning projections
from image representations to hash codes and classification,
and present a novel deep semantic-preserving and ranking-
based hashing (DSPRH) architecture. However, the above
feature learning based deep hashing methods directly impose
a fully-connected layer as the projection function which lin-
early maps the learned features to approximate hash codes.
The proposed pure nonlinear deep hashing network architec-
ture DSHNP in this paper advances the above deep hashing
methods in the coupling of nonlinear feature learning and
nonlinear projections.

Recently, quite a few works have paid attention to a dif-
ferentiable use of tree structures in deep learning, which are
related to our DSHNP. Irsoy et al. [Irsoy and Alpaydin,
2014] implement autoencoder by soft decision trees instead
of multilayer perceptron. In the DNDF model proposed by
Kontschieder et al. [Kontschieder et al., 20151, decision trees
play the role of classifier in DCNN instead of the softmax
layer. Lee et al. [Lee et al, 2015] redesign the pooling
layer of convolutional neural network by learning a pooling
function in the form of a tree-structured fusion of pooling fil-
ters. Thus, these works are different from our DSHNP which
adopts decision trees as the nonlinear projection part of hash-
ing.

3 Deep Supervised Hashing with Nonlinear
Projections

In this section, we will present the proposed DSHNP in de-
tails. Figure 1 illustrates an overview of DSHNP, which con-
sists of three components: (1) a shared DCNN for learning
image representations; (2) shared soft decision trees to non-
linearly map image representations into dimension-reduced
projections; (3) a pairwise loss subject to orthogonality con-
straints. In what follows, we will give a description of model
formulation, then discuss the details of soft decision trees and
orthogonality constraints, at last present the loss function and
its relaxation.
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3.1 Formulation

Suppose there is an image ¢ whose raw image data is de-
noted by x;. The feature representation vector extracted by
the shared DCNN is denoted as y; = ¢(z;;©), where ©
is the set of all parameters in the DCNN architecture, and
¢(z;; ©) denotes the output of the shared DCNN associated
with image . The projection layer is used to map the feature
representation vector y; into the low-dimensional real-valued
projections F'(y;; W), where F'(-) is the set of the projection
functions, W is the set of parameters in the projection layer
and F; is denoted as the hash projections of image ¢ for nota-
tion brevity. Specifically, the projection layer is consisted of
K soft decision trees, where K is the length of hash codes.
Finally the real-valued projections are converted into a binary
code by quantization. In this paper, to calculate the hamming
distance conveniently, the binary digits are set as {—1,1} in-
stead of {0, 1}. In particular, the hash code h; of image i is
computed by:

hi = sgn(F(¢(xs;0); W)), )

where sgn(-) is the element-wise sign function which returns
1 if the input is positive and returns —1 otherwise. The ham-
ming distance d;; between the hash codes of images i and j
is calculated as:

1
dij = 5(K - hlh;). 2)

3.2 Nonlinear Projection Functions

Decision trees which are efficient models for classification
and regression [Bosch et al., 2007; Criminisi and Shotton,
2013] have played a central role in artificial intelligence for
applications that require “discrete” reasoning, and are often
intuitively appealing. Thus, it is intuitively suitable to adopt
decision trees as hash projections which are preferred to di-
rectly map the high-dimensional feature vectors into discrete
hamming spaces. Moreover, since decision trees can eas-
ily deal with a large number of data [Caruana et al., 2008]
and have the nonlinear mapping capacity, we choose deci-
sion trees as the nonlinear projection functions. Furthermore,
to unify decision trees with deep learning architecture in this
paper, we adopt the soft decision trees [Irsoy et al., 2012]
instead of the hard ones. As opposed to the hard internal
node which makes a hard choice to redirect samples to one of
its children, a soft internal node redirects samples to both of
its children with probabilities calculated by a sigmoid gating
function o(z) = H% For the left child, the probability
is o(x); for the right one, it is 1 — o(x). In fact, the hard
decision tree is a special case where g(z) € {0,1}. As the
outputs of soft decision trees are differentiable, we can train
a deep neural network combined with soft decision trees via
backpropagation in an end-to-end way.

In this paper, we leverage the soft decision trees as nonlin-
ear projection functions in the following manner. We denote
the mth node in the /th level of the kth soft decision tree (i.e.,
the node at the position (I, m) in the kth tree) as node (I, m)k.
The root node of the kth tree is (1,1)k. Each tree node is
multivariate, which takes the feature representation vector y;
of image ¢ as input instead of a single feature. The output of

node (I, m)k is recursively calculated as the weighted average
of the outputs of its left and right children:

W'(,Iim),cyi, if (I,m)k is leaf node;

f([w’)k(yl) - U(W(zT,m)/cZIi)f(1,1n,)1c,L(Zli> .
otherwise,
+ (1= (W nyoi) Fitmye. e (i),
3)
where W(; )i, is the parameter vector of node (I, m)k. Bias
b(1,m)k 1s included in W, ..y, with a corresponding fixed in-
put of 1 for simplicity. The parameter vectors at the position
(I, m) of all K soft decision trees can compose a parameter
matrix W(; ), then W, ..y, can be regarded as the kth col-
umn vector of W(; ,,,). The root node is the terminal node
to produce the overall output of the tree. The output of each
soft decision tree is considered as a single real-valued hash
bit. All K soft decision trees are of the same structure. In
particular, the level of the leaf node is pre-specified to be I
rather than “grown” as in the traditional decision trees. When
Il is set to 1, the projection layer made of soft decision trees
is equivalent to a fully-connected layer (i.e., linear projection
function). The output of the projection layer for image ¢ is
calculated as follows:

Fi= fa,n(yi)
= U(W(jlﬂyl)yz) 0...0 W(jlﬂlyl)yz + ...
+ (1 — U(W(jil)yi)) 0.0 W(jlﬂlzzzfl)yi

) “)

where o is the Hadamard product (i.e., element-wise product).

3.3 Orthogonality Constraints

One way to reduce redundancy in hash codes is to make
the projection directions orthogonal [Wang et al., 2010a;
Tang et al., 2015]. Since W(T”‘m)yi in Eq.(4) can be con-
sidered as linear projections of the feature representation ;,
the projection output F; can be regarded as the weighted sum
of linear projections of y;. Note that the routing weights have
nothing to do with the projection directions. Therefore, to
make the projection directions orthogonal, each linear pro-
jection (i.e., the leaf parameter matrix W(;; ,,)) should satisfy
the following two constraints: (1) all the parameter vectors
of the leaf nodes belonging to the same soft decision tree are
parallel; (2) the parameter vectors of the leaf nodes belonging
to every two soft decision trees are orthogonal. In this way,
we can make the whole projection directions orthogonal, and
achieve the goal of reducing redundancy in the learned hash
codes.

To satisfy the parallel constraint, we can impose the fol-
lowing constraint on the parameter vectors of every two leaf
nodes at different positions (e.g., (I, m), ([, m’)) belonging
to the same soft decision tree (e.g., the kth soft decision tree):

Wity Wit mo)k _
IWarmyell - (Wt mo |

In addition, to satisfy the orthogonal constraint, as the pa-
rameter vectors at the position (II, m) of all K decision trees
constitute the leaf parameter matrix W(y; ,,), we just need to
guarantee this leaf parameter matrix is orthogonal. Thus, we

1. 4)
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can impose the following constraint on this leaf parameter
matrix:
Wity Wiatm) = 1. (6)

Under the parallel constraints imposed on every two leaf pa-
rameter vectors at different positions belonging to the same
tree, we do not need to consider the orthogonal constraints
between the leaf parameter matrices at different positions.
Proposition 1 (projection orthogonality condition). If the
leaf parameter matrices in the soft decision trees which are
used as projection functions satisfy (5) and (6), then the pro-
jection directions are orthogonal.

Proof.  Due to the parallel constraint (5), all leaf pa-
rameter vectors of the kth soft decision tree can be linearly-
represented by a single vector 3. The parameter vector
W(i1,m)x can be calculated as follows:

Wamyk = a@,m)x Bk, @)

where a ;)1 denotes the weight of the leaf parameter vector
Wi,m)x relative to By, which is a scalar value. Due to the or-
thogonal constraint (6), the K vectors [B31, ..., B, ..., Bk ] are
orthogonal. The nonlinear weighting coefficients by which
the linear projections are multiplied in Eq.(4) can be regarded
as a K-dimensional vector associated with y which is denoted
by I'(;1,m)(y). For example, when the level of the leaf node
is 2, the nonlinear weighting coefficients of the leaf param-
eter matrix Wy o), i.e., 1 — U(W(jlﬂ‘l)y), can be denoted by
I‘(2,2) (v).

For any image i, the projection output F; of its kth hash
bit A, can be defined as:

2” 1

zk*Zrllm Yi)

zll 1

Zrllm Y )aamyr) - Br' Y-

) W(ll m)kYi
®

Fir in the above equation can be regarded as the product of
the linear projection of image feature representation y; at the
direction of 3 and the sum of the corresponding nonlinear
weighting coefficients. Since the vectors [By, ..., Bk, .., Bk ]
are orthogonal to each other, the ultimate projection direc-
tions are orthogonal based on these two constraints.

3.4 Loss Function

As proved in [Li et al., 2016; Cao et al., 2016], taking the
pairwise loss as the training objective can bring higher accu-
racy and be optimized more easily than the triplet loss. Thus,
we adopt the pairwise negative log-likelihood loss proposed
in [Li et al., 2016] to train our deep hashing model.

A probability P;; that image 4 should be similar to image j
is defined via a s1gm01d function based on the hamming dis-
tance between the hash codes of these two images. In particu-
lar, the larger the hamming distance is, the smaller the similar
probability is. Due to Eq.(2), since K is a preset value, we
use —%h?hj to represent the difference of the hash codes for
simplicity. Then the probability P;; is defined as follows:

1

Py =ott T e BTh

hTh §) = ©)
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The cross entropy cost function is applied which penalizes the
deviation of the model output probabilities from the desired
probabilities:

Cij = =Sijlog Pij — (1 — Sij) log(1 — Fj)

10
= Sy (b)) +log(L+ eBTe D
where S;; € {0,1} is the known desired probability that
and j should be similar, i.e., S;; = 1 if ¢ and j are similar
otherwise S;; = 0. By appending our proposed orthogonality
constraints to the cross entropy cost, we can formulate our
hash learning problem as follows:

min L= Y (=8i;(3hTh;) + log(1 + e3hi 1)),
o,w Si;€{0,1}
st. hie{-1,115 Vi=1,2,...,.N
W satisfies (5)(6)
(11D

3.5 Relaxation

To address the optimization problem caused by the discontin-

uous hamming distance, we relax it by taking a continuous
1pTy 1

form —35h; ‘hj = —3F'F;. Then, the relaxed cross entropy

can be rewritten as:

Cij = —=Sij - (%E-Tf)ﬂog(uezf . (12)

To optimize the problem in Eq.(11), we move the paral-
lel and orthogonal constraints to the following regularization
terms. One is the relaxation of the parallel constraint to make
all leaf parameter vectors belonging to the same soft decision
tree parallel, which is defined as follows:

Rﬁl()llm)k (WizmeWatm+1)x)7, (13)
Rﬁ)um)k Hme)kH HW<u,m+1>k!2, (14)

ll 1
(1) (2)
Z Z (R1 ,(1L,m)k - Ry (A m)k) (15)
(whenm*Q” Lm+1=1)

The other is the relaxation of the orthogonal constraint to keep
the leaf parameter vectors at the same position of all the soft
decision trees orthogonal, which is defined as follows:

-1

2
By = 3 |Wiw Wit =1 . 16
m=1

where ||-||  is the Frobenius norm on matrices.
Thus, the relaxed overall loss function can be rewritten as:

L= Z C”+ (R1 + Ry). (17)
Si;€{0,1}

Given the above objective function Eq.(17), the hashing
model can be trained in a batch-process fashion by mini-batch
gradient descent. The model parameters @ and W can be op-

timized via back-propagation algorithm with the computed

derivatives aa—}ﬁ. and ac (the computations are straightfor-

ward and then omltted due to the space limit).
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4 Experiments

4.1 Datasets and Evaluation Metric

In our experiments, we utilize two benchmark image datasets,
CIFAR-10 and FLICKR. Following [Liu et al., 2012; Lai et
al., 2015; Li et al., 2016], we set up our experiments as the
settings described below.

CIFAR-10

The CIFAR-10 dataset [Krizhevsky, 2009] is a single-label
dataset which consists of 60,000 32 x 32 colour images in 10
classes, with 6,000 images per class. For training, we ran-
domly select 5,000 images with 500 images per class; for
testing, we randomly select 1,000 images with 100 images
per class. Two images will be considered to be similar if they
share the same class label. For hashing methods which use
hand-crafted features, a 512-D GIST vector is used to repre-
sent each image in CIFAR-10. For deep hashing methods, the
raw image pixels are directly utilized as the input.

FLICKR
The FLICKR dataset [Huiskes and Lew, 2008] consists of
25,000 images collected from Flickr, where each image is la-
beled with several labels from the 38 semantic concepts. Two
images are regarded to be similar if they share at least one
common concept and vice versa. We randomly select 1,000
images as the test query set, and 4,000 images as the train-
ing set. Following [Srivastava and Salakhutdinov, 20141, we
use a 3,857-D low-level features extracted from images as
the hand-crafted features to represent these images for hand-
crafted feature based hashing methods. We utilize the raw
pixels of these images as the input of deep hashing methods.
Similar to most existing studies, we utilize the mean aver-
age precision (MAP) to measure the accuracy of DSHNP and
other baselines.

4.2 Implementation Details

We implement the DSHNP model based on the open-source
MatConvNet framework [Vedaldi and Lenc, 2015]. The ex-
periments are carried out on a workstation with Intel Xeon
E5-2620, 64GB RAM, and NVIDIA Titan X with CUDA-
7.5 and cuDnn v5.0. We utilize GoogLeNet [Szegedy et
al., 2015] as our basic DCNN architecture and remove its
last linear and softmax layers. We fine-tune the pre-trained
GoogLeNet model', and train soft decision trees, all via back-
propagation. To handle the over-fitting problem in the soft
decision tree layer, we add a batch normalization layer after
each decision tree node. When optimizing the parameters of
DSHNP, we use the mini-batch stochastic gradient descent
with 0.9 momentum, 5¢~# weight decay and 128 mini-batch
size. The parameter settings of tree level I/ and regularization
weight A will be discussed in the section 4.3.

4.3 Empirical Analysis

Effect of the Nonlinear Projections
In this part, we validate the effectiveness of our proposed
nonlinear projection part (i.e., soft decision trees) in DSHNP.

"http://www.vifeat.org/matconvnet/models/imagenet-googlenet-
dag.mat
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Figure 3: Effect of the Orthogonality Regularizers

Without loss of generality, we only test the cases when the
code length K = 12 and 48 in our DSHNP without the
orthogonality regularizers. We evaluate the performance of
DSHNP by varying tree level Il from 1 to 5 (note that when
[l = 1 DSHNP becomes equivalent to a deep hashing model
with linear projections). Figure 2 shows the experimental re-
sults of DSHNP with different tree levels. From the results,
we can find that: first, DSHNP with [l = 1 performs infe-
rior to that with [l = 2, which shows the performance boost
provided by nonlinear projections and demonstrates the ad-
vantage of our pure nonlinear deep hashing network; second,
when [[ becomes larger than 2, the performance of DSHNP
gets worse, the reason may lie in that the larger amount of pa-
rameters in a deeper soft decision tree makes the model eas-
ier to become over-fitting and harder to be optimized. Based
on the above observations, we empirically set the tree level
Il = 2 in the following experiments.

Effect of the Orthogonality Regularizers

In this part, we validate the effectiveness of the proposed or-
thogonality regularizers. Similar to the above experiments of
nonlinear projections, we test the cases when the code length
K = 12 and 48 in our DSHNP with tree level [l = 2. We
test these models without the regulariers (i.e., the weighting
parameter A = 0) and with A = 0.01, 0.1, 1. From the com-
parison results in Figure 3, we can make the following obser-
vations: first, without the orthogonality regularizers (A = 0),
DSHNP gets an inferior performance to those with the regu-
larizers, suggesting that our orthogonality regularizers which
aims to reduce the bit redundancy is advantageous; second,
the MAP performances can be improved when setting A un-
der a reasonable range (e.g. [0.01,0.1]). Based on the above
observations, we empirically set A = 0.01 in the following
experiments.
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Table 1: Mean Average Precision (MAP) of Hamming Ranking for Different Number of Bits on CIFAR-10 and FLICKR

Method - CIFAR' 10 - - - .FLICKR . -

12-bits 24-bits 32-bits 48-Dbits 12-bits 24-bits 32-bits 48-Dbits

DSHNP 0.731 0.758 0.766 0.784 0.831 0.839 0.848 0.853
DSHNP-1 0.720 0.729 0.745 0.759 0.809 0.820 0.824 0.832
DPSH 0.713 0.727 0.744 0.757 0.791 0.800 0.817 0.828
NINH 0.552 0.566 0.558 0.581 0.783 0.789 0.791 0.802
CNNH 0.465 0.521 0.521 0.532 0.749 0.761 0.768 0.776
FastH+DCNN 0.630 0.685 0.705 0.721 0.769 0.799 0.805 0.812
FastH 0.387 0.443 0.463 0.483 0.779 0.782 0.785 0.801
SDH 0.316 0.426 0.434 0.444 0.688 0.691 0.704 0.719
KSH 0.362 0.398 0413 0.426 0.707 0.711 0.723 0.721
ITQ 0.222 0.233 0.235 0.244 0.560 0.563 0.564 0.567
SH 0.190 0.187 0.184 0.189 0.563 0.567 0.571 0.579

4.4 Comparison with the State-of-the-art

Baseline Methods
To evaluate the effectiveness of DSHNP, we compare it
against several state-of-the-art hashing methods as follows:

¢ Unsupervised hashing methods with hand-crafted fea-
tures: SH [Weiss er al., 2008], ITQ [Gong and Lazebnik,
20111;

¢ Supervised hashing methods with hand-crafted features
and nonlinear projections: KSH [Liu et al., 2012], FastH
[Lin et al., 2014], SDH [Shen et al., 2015];

e Supervised hashing methods with DCNN features and
nonlinear projections: FastH+DCNN which denotes the
best shallow baseline FastH using DCNN features ex-
tracted from the pre-trained GoogLeNet model;

¢ Deep hashing methods with raw image inputs and linear
projections: CNNH [Xia er al., 2014], NINH [Lai et al.,
20151, DPSH [Li er al., 2016].

There are some other deep hashing methods we do not
compare with, such as (1) DQN [Cao et al., 2016], DSH [Liu
et al., 2016] and (2) DSPRH [Yao et al., 2016]. The reasons
are described as follows: (1) DQN, DSH: they focus on the
quantization part instead of the projection part, which are or-
thogonal to our work and can be used to improve our work.
(2) DSPRH: it proposes the idea of co-training between hash-
ing and preserving semantic structures, which is also orthog-
onal to our work and can be adopted to improve our work.

Results

The experiments evaluate the performance of different hash-
ing methods by varying the number of hashing bits in the
range of {12, 24, 32, 48}. All of the MAP results on both
datasets are reported in Table 1. We can find that our DSHNP
achieves better performance than the competitors, including
unsupervised methods, supervised methods with hand-crafted
features and nonlinear projections, and deep hashing meth-
ods with feature learning and linear projections. Specifically,
DSHNP outperforms the hand-crafted feature based meth-
ods with nonlinear projections (FastH, SDH, KSH), which is
mainly achieved by fusing feature learning and nonlinear pro-
jections. In particular, compared to the best one of the base-
lines which uses traditional hand-crafted visual features and

nonlinear projection functions, FastH, DSHNP outperforms it
by very large margins of 31.6% and 5.6% in average MAP on
the CIFAR-10 and FLICKR datasets respectively. Comparing
with the two-stage deep hashing method CNNH, the superior
performance of DSHNP shows the effectiveness of the end-
to-end learning framework. To further verify the importance
of simultaneous feature learning and projection learning, we
report the results of FastH+DCNN, the best hand-crafted fea-
ture based method FastH trained with DCNN features. The
results show that FastH+DCNN achieves improved perfor-
mance than FastH, but it is still inferior to DSHNP, which
further demonstrates the advantage of the end-to-end learning
scheme. Comparing with the deep hashing methods (DPSH,
NINH) which simultaneously learn both features and hash
codes but utilize linear projections, DSHNP shows superior
performance gains in MAP on both datasets, which shows the
effectiveness of unifying feature learning with nonlinear pro-
jections for hashing. Specifically, compared to the state-of-
the-art deep hashing method DPSH, DSHNP achieves abso-
lute increases of 2.4% and 3.4% in average MAP on CIFAR-
10 and FLICKR respectively. We futher report the results of
DSHNP with [l = 1 and A = 0 (denoted by DSHNP-1),
which can be seen as DPSH adopting GoogLeNet instead of
VGG-F [Chatfield et al., 2014]. Once again, the experimental
results demonstrate the effectiveness of nonlinear projections.

5 Conclusion

In this paper, we propose a pure nonlinear deep hashing net-
work architecture DSHNP, which fuses feature learning func-
tionality and nonlinear projection capacity in an end-to-end
learning framework. Particularly, we implement a shared
DCNN to learn feature representations of images and lever-
age soft decision trees to map the learned features into low-
dimensional vectors in a nonlinear way. To train this pure
nonlinear deep hashing model including DCNN and soft deci-
sion trees, we minimize a pairwise loss subject to orthogonal
constraints which aim to make the generated hash codes as in-
dependent as possible. Extensive experiments on real-world
image datasets show that our DSHNP achieves better perfor-
mance than state-of-the-art hashing methods, which demon-
strates the advantage of unifying feature learning with non-
linear projections for hashing.
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