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Abstract
Most existing survey aggregation methods assume
that the sample data follow Gaussian distribution.
However, these methods are sensitive to outliers,
due to the thin-tailed property of Gaussian distribu-
tion. To address this issue, we propose a robust sur-
vey aggregation method based on Student-t distri-
bution and sparse representation. Specifically, we
assume that the samples follow Student-t distribu-
tion, instead of the common Gaussian distribution.
Due to the Student-t distribution, our method is ro-
bust to outliers, which can be explained from both
Bayesian point of view and non-Bayesian point
of view. In addition, inspired by James-Stain es-
timator (JS) and Compressive Averaging (CAvg),
we propose to sparsely represent the global mean
vector by an adaptive basis comprising both data-
specific basis and combined generic basis. Theoret-
ically, we prove that JS and CAvg are special cases
of our method. Extensive experiments demon-
strate that our proposed method achieves significant
improvement over the state-of-the-art methods on
both synthetic and real datasets.

1 Introduction
Surveys are a common way to investigate the characteristics,
behaviors, or opinions of target population. Nowadays, sur-
veys have been widely used in business [Arnot et al., 2006],
data mining [Benton et al., 2016], etc. Survey-based com-
panies (e.g., Nielsen and Kantar) earn billions of dollars per
year in over 100 countries. However, conducting a survey is
very expensive. For example, each short phone-call interview
of a survey is charged on the order of $20-$30 in the United
States, and thus even small-scale surveys can easily cost up
to tens of thousands of dollars [Chen and Huang, 2006]. In
addition, survey data often contain noise or outliers [Bamnett
and Lewis, 1994], which have considerable effects on survey
aggregation. Such high cost of conducting surveys and the
issue of outliers in the survey data motivate the study of
advanced survey aggregation methods that could utilize the
available samples well while being robust to the outliers.

∗Equal Contribution.

The fundamental problem in aggregating survey data is to
estimate the true mean response of each group of interest.
A natural idea is to estimate the true means with sample
means, that is, simply averaging all the samples collected
within each group, which is usually referred to as sample
Averaging (Avg). In fact, if the number of groups is not larger
than two, Avg is uniformly better than any other method in
terms of mean square error (MSE). However, if the number
of groups is larger than two, it has been proved that Avg
is not necessarily the best according to the Stein’s paradox
[Stein, 1956]. James and Stein [1961] constructed James-
Stein estimator (JS) that recovers each single mean using
information from all groups and outperforms Avg. Efron and
Morris [1972] cast JS into an empirical Bayesian framework
and showed that it is a result of maximum posterior with
a prior regularization. Recently, Shi et al. [2016] proposed
Compressive Averaging (CAvg) to improve JS with the com-
pressive sensing technique [Candès and Wakin, 2008]. Feld-
man et al. [2012] proposed Multi-Task Averaging (MTAvg)
by adding a penalty term to improve Avg, from the perspec-
tive of multi-task learning.

For the convenience of analysis, most existing survey ag-
gregation methods assume that the samples are from Gaussian
distribution. However, these methods do not work well on the
data with outliers or heavy tails, due to the thin-tailed prop-
erty of Gaussian distribution. Unfortunately, real data often
exhibit heavy-tailed phenomena [Nair et al., 2013], and are
common with outliers [Bamnett and Lewis, 1994]. Therefore,
a robust survey aggregation method is highly demanded.

To handle the data with outliers or heavy tails, we propose
a robust survey aggregation method based on Student-t dis-
tribution and sparse representation. Unlike the most existing
methods based on the Gaussian distribution, we assume that
the samples are from Student-t distribution, which has been
proved to be a robust generalization of Gaussian distribution.
Besides, inspired by JS and CAvg, we shrink the sample
means to a global mean vector, and apply a sparse recov-
ery technique to recover the global mean vector. To obtain
a flexible sparse representation of the global mean vector,
we design an adaptive basis which is a union of combined
generic basis and data-specific basis. Theoretically, we show
the robustness of our method from both Bayesian point of
view and non-Bayesian point of view, and prove that both
JS and CAvg are special cases of our method. Experimental
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results on synthetic and real data demonstrate the superiority
(especially on the data with outliers) of the proposed method
over the state-of-the-art methods.

2 Preliminaries
In a typical survey problem, it is common to study the char-
acteristics of different groups, such as working time, age, or
income in different regions. Specifically, assume that there
are T groups in total and ni samples in group i. The quantity
of interest is the true mean of certain characteristic (e.g., the
mean of working hours) within each group, denoted as µi
for group i (i = 1, 2, . . . , T ). Samples from group i are
denoted as xij (j = 1, 2, . . . , ni). The task is to estimate
µ = {µi|i = 1, . . . , T} from the dataset D = {xij |i =
1, . . . , T ; j = 1, . . . , ni} as accurately as possible.

2.1 Sample Averaging
A straightforward method is to estimate the true mean µi with
the sample mean x̄i, namely, µ̂Avgi = x̄i = 1

ni

∑ni

j=1 xij . It
can be proved that sample Averaging (Avg) can be interpreted
as maximum likelihood estimation, given that the samples of
each group are from independent and identically distributed
(i.i.d.) Gaussian distribution, i.e.,

xij
ind∼ N (µi, σ

2
i ),

i = 1, 2, . . . , T
j = 1, 2, ..., ni.

(1)

Formally, µ̂Avgi is the result of maximum likelihood estima-
tion with the assumption (1), i.e.,

min
µi

− ln

ni∏
j=1

p(xij |µi, σi)⇔ min
µi

ni∑
j=1

(xij − µi)2

σ2
i

. (2)

According to the analysis in [Stein, 1956], when the number
of groups is one or two (i.e., T ≤ 2), Avg is uniformly
better than any other method in terms of MSE. Otherwise,
Avg cannot be guaranteed to be the best.

2.2 James-Stein Estimator
To improve Avg when the number of groups is larger than
two, James-Stein estimator1 (JS) was proposed in [James and
Stein, 1961], which estimates the true mean of each group as

µ̂JSi = f + (1− γ)+ · (x̄i − f) , (3)

where f = 1
T

∑T
i=1 x̄i is the global mean, γ = (T −

3)
(∑T

i=1
ni

σ2
i
(x̄i − f)

2
)−1

, and (·)+ = max(0, ·); σ2
i is the

variance of group i (usually unknown in real data) and is re-
placed by a standard unbiased estimate. Note that unlike Avg,
JS shrinks the sample means x̄i’s towards the global mean
f . Efron and Morris [1972] proved that JS is the maximum
posterior estimation with the Gaussian sample assumption (1)
and the following assumption,

µi
ind∼ N (f,A), i = 1, 2, . . . , T, (4)

where A is the variance of the prior. Compared with Avg, JS
adds the prior assumption (4) with respect to µi.

1The original James-Stein estimator has many variants. Follow-
ing [Feldman et al., 2012; Shi et al., 2016], in this paper, we use
the positive part James-Stein estimator with independent unequal
variances [Bock, 1975; Casella, 1985].

2.3 Compressive Averaging
It has been shown in [Shi et al., 2016] that JS performs poorly
when the distance between x̄i and f becomes large (see the
example in [Shi et al., 2016], Section 3.1). To overcome this
drawback, Shi et al. [2016] proposed an improvement of JS
based on compressive sensing, named Compressive Averag-
ing (CAvg). Specifically, CAvg assumes

µi
ind∼ N (fi, A) , i = 1, 2, . . . , T, (5)

where {f1, f2, . . . , fT }, denoted as f , is the global mean vec-
tor, which is assumed to be sparsely represented by a given
basis. Besides, CAvg assumes that the sample means x̄i’s
follow Gaussian distribution, i.e.,

x̄i
ind∼ N

(
µi, σ

2
i /ni

)
, i = 1, 2, . . . , T. (6)

At the first glance, the assumptions (6) and (1) seem differ-
ent ((1) can lead to (6) directly, but not vice versa). How-
ever, these two assumptions actually make no difference for
maximum posterior (to estimate µi) and maximum marginal
likelihood (to estimate parameters f and A), which will be
explained next separately. For the maximum posterior, its
result in CAvg is (see (11) in [Shi et al., 2016])

µ̂CAvgi = fi +

(
1− σ2

i

Ani + σ2
i

)
(x̄i − fi), (7)

which is also the result of maximum posterior based on the
assumptions (1) and (5), i.e.,

min
µi

− ln

 ni∏
j=1

p (xij |µi, σi) p (µi|fi, A)


⇔ min

µi

ni∑
j=1

(xij − µi)2

2σ2
i

+
(µi − fi)2

2A
. (8)

For the maximum marginal likelihood, we will show that
the assumptions (6) and (1) have no difference in Section
4. Since the assumptions (6) and (1) have no difference for
both maximum posterior and maximum marginal likelihood,
we claim that CAvg is consistent with the Gaussian sample
assumption (1).

2.4 Multi-Task Averaging
The idea of using information from all groups to improve the
estimate of some quantities of a single group falls into the
realm of multi-task learning in artificial intelligence and ma-
chine learning community. From this perspective, Feldman et
al. [2012] proposed Multi-Task Averaging (MTAvg), which
estimates µi (i = 1, 2, . . . , T ) by minimizing

1

T

T∑
i=1

ni∑
j=1

(xij − µi)2

σ2
i

+
γ

T 2

T∑
r=1

T∑
s=1

Srs(µr − µs)2, (9)

where S is a pairwise task similarity matrix. MTAvg can be
interpreted as estimating the means of T Gaussians with an
intrinsic Gaussian Markov random field prior [Feldman et al.,
2012]. Note that the square loss in MTAvg corresponds to the
Gaussian sample assumption (1).
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3 Robust Survey Aggregation
3.1 Motivation
As discussed in Section 2, all the above methods, including
Avg, JS, CAvg, and MTAvg, share the common Gaussian
sample assumption (1) explicitly or implicitly. Based on such
assumption, the inference is relatively easy. However, this
assumption results in severe problems in practice. I) Real data
often exhibit heavy-tailed phenomena, which are beyond the
Gaussian distribution. Fig. 1(a) shows the heavy-tailed phe-
nomenon in real dataset Hrs1 from the yearly General Social
Survey [Smith et al., 2015]. The density of Hrs1 is estimated
by kernel density estimation [Silverman, 1986]. Student-t
distribution and Gaussian distribution fit the data respectively
with the method of moments. It can be observed that the
Student-t fitting density is much closer to the estimated den-
sity of Hrs1 than the Gaussian fitting density, because the real
distribution has heavy tails; II) real data often contain noise
or outliers, which deteriorate the performance of Gaussian
based methods. The effect of outliers can be seen in Table
1 (the experimental details will be introduced in Section 5),
from which we can observe that MSEs of Avg, JS, CAvg, and
MTAvg increase a lot (all over 60%) when 2% of the data are
contaminated with outliers.
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Figure 1: (a) Heavy-tailed phenomenon in the real data Hrs1. (b)
Sparse recovery results by OMP with different bases.

The issues caused by the Gaussian sample assumption (1)
motivate us to design a robust survey aggregation method.

3.2 Derivation of Robust Survey Aggregation
To handle the survey data with outliers or heavy tails, we
propose Robust Averaging (RAvg), in which the samples are
assumed to follow Student-t distribution, i.e.,

xij
ind∼ St

(
µi, ν, σ

2
i

)
,

i = 1, 2, . . . , T
j = 1, 2, ..., ni,

(10)

where ν is degrees of freedom; σ2 = {σ2
i |i = 1, . . . , T}

is the set of scale parameters, which can be replaced by a
standard unbiased estimate, similarly as in JS and CAvg.

The reasons for using the Student-t sample assumption
(10) instead of the Gaussian sample assumption (1) are as
follows: I) Student-t sample assumption (10) is a natural
generalization of Gaussian sample assumption (1). When
degrees of freedom ν approaches +∞, Student-t sample as-
sumption (10) reduces to Gaussian sample assumption (1).
II) Student-t distribution, which is a heavy-tailed distribu-
tion, has been proved to be a robust alternative to Gaus-
sian distribution in [O’Hagan, 1979; Shah et al., 2014;

Tang et al., 2016], from Bayesian point of view. Besides,
the robustness from Student-t sample assumption (10) can be
also shown from non-Bayesian view, which will be discussed
in detail in Section 4.

Therefore, we expect our method based on the Student-t
sample assumption (10) is more robust to outliers and can be
applied to more types of data.

Similar to CAvg, we also assume the true means

µi
ind∼ N (fi, A) i = 1, 2, ..., T, (11)

where fi encodes a flexible prior about µi, and A controls
how strong the prior is.

Based on the assumptions (10) and (11), we minimize the
negative log marginal likelihood of RAvg to learn the param-
eters A, ν, f = {fi|i = 1, . . . , T}, followed by estimating the
target µi via minimum negative log posterior.

The marginal likelihood can be derived as follows based on
the assumptions (10) and (11),

p(D|f , A, ν) =

∫
p(D|µ,σ, ν)p(µ|f , A)dµ

=

∫
exp (Ψ(µ)) dµ, (12)

where Ψ(µ) =
T∑
i=1

(
ni∑
j=1

ln p(xij |µi, σi, ν) + ln p(µi|fi, A)

)
.

Since (12) is analytically intractable, we rely on Laplace
approximation [Jylänki et al., 2011] for approximate
inference. Particularly, we use a second order Taylor
expansion of Ψ(µ) locally around µ̂=argµ max Ψ(µ), and
obtain Ψ(µ)'Ψ(µ̂)− 1

2 (µ − µ̂)>Σ−1(µ − µ̂). Thus, an
approximation, q(D|f , A, ν), to the marginal likelihood is

p(D|f , A, ν) ' q(D|f , A, ν)

= exp (Ψ(µ̂))

∫
exp

(
−1

2
(µ− µ̂)>Σ−1(µ− µ̂)

)
dµ,

where Σ−1 is the negative Hessian matrix of Ψ(µ) at µ̂.
Particularly, Σ−1 is a diagonal matrix with

Σ−1ii =

ni∑
j=1

(ν+ 1)
νσ2

i − (µ̂i − xij)2

(νσ2
i + (µ̂i − xij)2)

2 +
1

A
(i = 1, . . . , T ).

Based on the following fact,∫
1

(2π)T/2|Σ|1/2
exp

(
−1

2
(µ− µ̂)>Σ−1(µ− µ̂)

)
dµ=1,

an approximation to the negative log marginal likelihood is

− ln q(D|f , A, ν) = −Ψ(µ̂)− ln
(

(2π)T/2|Σ|1/2
)

(13)

=
T∑
i=1

[
ν + 1

2

ni∑
j=1

ln

(
1 +

1

νσ2
i

(xij − µ̂i)2
)

+
(µ̂i − fi)2

2A

− ni ln

(
Γ((ν + 1)/2)√
νπσiΓ(ν/2)

)
+ ln
√
A+

1

2
ln Σ−1ii

]
.
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The details of learning the parameters A, ν, and f by
minimizing (13) will be introduced in Section 3.3. Once the
parameters A, ν, and f are learned, the estimation of µi can
be obtained by minimum negative log posterior of RAvg, i.e.,
minimizing the following objective:

− ln(

ni∏
j=1

p (xij |µi, σi, ν) p (µi|fi, A))

∝ ν + 1

2

ni∑
j=1

ln

(
1 +

1

νσ2
i

(xij − µi)2
)

+
(µi − fi)2

2A
. (14)

The exponent of (14) is a product of positive convex func-
tions, and thus minimizing the exponent of (14) (equivalent
to minimizing (14)) belongs to the convex multiplicative pro-
gramming [Konno and Kuno, 1995], which can be efficiently
obtained by the method in [Kuno et al., 1993] (also refer
to the convex multiplicative programming in robust logistic
regression [Ding and Vishwanathan, 2010]).

3.3 Parameter Learning
When minimizing the negative log marginal likelihood in (13)
to learn the parametersA, ν, f , we need to restrict f by adding
some assumptions. Inspired by [Shi et al., 2016], we assume
that f can be sparsely represented by a given basis Φ =

{φ1, . . . ,φK} with φi ∈ RT×1, i.e., f = Φα =
∑K
i=1 αiφi,

where α = {α1, . . . , αK} is a sparse coefficient vector with
||α||0 ≤ k � K, in which ||α||0 is `0 norm that counts the
non-zero elements in α.

Then, we solve the minimum negative log marginal likeli-
hood in (13) by updating two sets of parameters {A, ν} and
α alternatively until the objective of (13) converges.

• Fix α, solve for A, ν. (13) is differentiable with respect
toA, ν, and thus we can use gradient based optimization
methods. An alternative approach is to estimate a rough
range of A, ν and search the optimum with linear search
algorithm, considering that A, ν are scalars.

• Fix A, ν, solve for α. The optimization problem is

min
α

T∑
i=1

(µ̂i − fi)2

2A
, s.t. : ||α||0 ≤ k. (15)

This problem resembles the sparse recovery formulation in
compressive sensing [Candès and Wakin, 2008], which can
be solved by classical algorithms, such as Orthogonal Match-
ing Pursuit (OMP) [Tropp and Gilbert, 2007]. For simplicity
and efficiency, we adopt the linear search algorithm to solve
for A, ν, and use OMP to solve for α.

3.4 Adaptive Basis
As discussed above, the global mean vector f can be sparsely
represented by a given basis Φ. Nonetheless, it is non-trivial
to choose the basis, since different types of signals typi-
cally have different characteristics [Bruckstein et al., 2009;
Dai et al., 2015]. In CAvg, Shi et al. [2016] empirically
used the single Daubechies least-asymmetric wavelet packet
(WPS), which cannot always lead to sparse solutions. Taking
Fig. 1(b) for example, the WPS basis performs poorly on the

electricity consumption data (“elec35 nor”, a built-in dataset
in Matlab).

The poor performance of WPS motivates us to design a
more generalizable basis that can be used for a wide range of
signals of interest. A straightforward idea is to unify different
types of generic bases (e.g., discrete cosine transform (DCT)
basis, WPS basis, Haar basis) in a combined representation
[Lesage et al., 2005], denoted as combined generic basis Φ̃c,

Φ̃c = [Φ1,Φ2, . . . ,ΦM ],

where Φj ∈ RT×Kj , j = 1, 2, . . . ,M are different types of
generic bases. Compared with the single basis, the major
advantage of the combined generic basis Φ̃c is the relative
simplicity of the pursuit algorithm and better generalization
ability to different signals. However, combined generic basis
Φ̃c generally cannot work well on an arbitrary unseen family
of signals of interest, where an adaptive data-specific basis
usually performs better [Bruckstein et al., 2009].

To obtain a data-specific basis, K-SVD [Aharon et al.,
2006] algorithm has been widely used in sparse representa-
tion. When applying K-SVD algorithm to the survey data,
the problem is that the sample size is usually small for K-
SVD. To address this issue, denoting the data-specific basis
learned by K-SVD algorithm as Φ̃l, we cascade combined
generic basis Φ̃c (a prior) and data-specific basis Φ̃l as

Φ = [Φ̃c, Φ̃l],

which is our final adaptive basis.
To demonstrate the effectiveness of our adaptive basis, we

randomly select 50 samples for training and 1 sample for test-
ing, from the electricity consumption data. The test sample
and sparse recovery results produced by OMP with various
bases, namely DCT basis, WPS basis, Haar basis, combined
generic basis (union of DCT, WPS and Haar basis), and our
adaptive basis are shown in Fig. 1(b), from which we can
observe that our adaptive basis produces the best results while
the generic bases fail to achieve satisfactory results.

4 Theoretical Analysis
In this section, we prove that CAvg and JS are special cases of
our RAvg method, and show that our RAvg method is more
robust to outliers than Avg, JS, CAvg, and MTAvg from the
view of loss and penalty.
Theorem 1 CAvg is a special case of RAvg with ν → +∞
and WPS basis.
Proof. When ν → +∞, the minimum negative log posterior
of RAvg (i.e., (14)) converges to that of CAvg (i.e., (8)).
Then, as long as the parameters A, f in the posterior are also
identical, CAvg and RAvg will generate the same estimation
for µi. As the parameters A, f are learned by minimum nega-
tive log marginal likelihood, we only need to prove that their
minimum negative marginal likelihoods are equivalent when
using the same WPS basis.

With ν → +∞, it is not hard to prove that µ̂ and Σ−1 in
the approximate procedure have the forms

µ̂i =
σ2
i fi + niAµ̄i
σ2
i + niA

, Σ−1ii =
ni
σ2
i

+
1

A
. (16)
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By substituting µ̂i and Σii in (16) into (13) and with simpli-
fications, we can obtain

min
f ,A
− ln q(D|f , A, ν)

⇔ min
f ,A

T∑
i=1

[∑ni

j=1 (xij − fi)2

Ani + σ2
i

+
Ani

(∑ni

j=1 x
2
ij − nix̄2i

)
σ2
i (Ani + σ2

i )

+ log

(
A+

σ2
i

ni

)]
. (17)

Recall that σ2
i is replaced by a standard unbiased estimate,

with ν → +∞, we can obtain the following two equations:

σ2
i =

1

ni − 1

ni∑
j=1

(xij − x̄i)2 =

(∑ni

j=1 x
2
ij − nix̄2i

)
ni − 1

, (18)

ni∑
j=1

(xij − fi)2 =

ni∑
j=1

(xij − x̄i + x̄i − fi)2

= (ni − 1)σ2
i + ni (x̄i − fi)2 . (19)

By substituting (18) and (19) into (17) and omitting the con-
stant, we obtain

min
f ,A

T∑
i=1

[
(x̄i − fi)2

A+ σ2
i /ni

+ log

(
A+

σ2
i

ni

)]
, (20)

which is exactly the same as the minimum negative log
marginal likelihood of CAvg (see [Shi et al., 2016], (10)), i.e.,
minimum negative marginal likelihood of RAvg is equivalent
to that of CAvg. So we complete the proof here. �

With (18) and (19), it is easy to prove that CAvg is consis-
tent with the Gaussian sample assumption implicitly, as men-
tioned in Section 2.3. Specifically, for CAvg, when replacing
the assumption (6) with the assumption (1), the minimum
negative log marginal likelihood of CAvg is equivalent to
(20). Besides, as discussed in Section 2.3, the assumptions
(6) and (1) also make no difference for maximum posterior.
Thus, CAvg is consistent with the Gaussian sample assump-
tion (1) implicitly.
Theorem 2 JS is a special case of RAvg with ν → +∞, the
equal elements in f , and identical parameter estimation.
Proof. When ν → +∞, the Student-t sample assumption
(10) reduces to the Gaussian sample assumption (1). When
the elements in f of RAvg, i.e., f1, . . . , fT , are equal, JS and
RAvg have the same assumptions. Furthermore, when the
parameters A and f of RAvg are estimated using the method
in JS (see [Efron and Morris, 1972; Casella, 1985]), RAvg
will produce the same estimation as JS. �

Proposition 1 From the view of loss and penalty, RAvg is
more robust than Avg, JS, CAvg, and MTAvg.
From Bayesian view, we know that RAvg is more robust
than those Gaussian based methods (i.e., Avg, JS, CAvg,
and MTAvg) due to the Student-t sample assumption (10),
as discussed in Section 3.2. In fact, from non-Bayesian view,
the robustness of RAvg can also be explained as follows. The
optimization objectives of all the methods for µi, Avg (2), JS

((8) with all fi’s equal), CAvg (8), MTAvg (9), and RAvg (14)
can be interpreted as a loss term plus a penalty (for Avg, the
penalty is 0). We can see that for Avg, JS, CAvg and MTAvg,
the loss function is square loss. In contrast, the loss function
of RAvg is a log-square loss, which is much more robust.

5 Experiments
In this section, we conduct comprehensive experiments on
both synthetic and real datasets. Our baselines include Avg,
JS, MTAvg, and CAvg. For fair comparison, OMP is also
used to calculate α in CAvg and k is set as 3 for both RAvg
and CAvg, following [Shi et al., 2016]. The evaluation metric
is the mean square error (MSE) between the true mean and
the estimated mean of each group. Note that the true means
are known for synthetic data, but unknown for real data. Fol-
lowing [Shi et al., 2016], the true means are replaced by the
sample means when 100% of the data are used.

5.1 Datasets
The datasets for the experiments include

• Synthetic Data A. This dataset is created according to
the generative procedure in [Shi et al., 2016]. The sam-
ple assumption is Gaussian, in which there are 10 groups
with 100 samples in each group.

• GSS. General Social Survey (GSS) is a well-known pub-
lic survey dataset [Smith et al., 2015]. We take out
the variables Age, Hrs1, Paedu, and Spedu from GSS.
Age means the age of the respondent, with 30 groups,
each of which contains 1372 ∼ 4492 samples. Hrs1
refers to the number of working hours the respondent
had last week, with 29 groups, each of which contains
741 ∼ 2739 samples. Paedu stands for the highest
school year completed by the respondent’s father, with
30 groups, each of which contains 1051 ∼ 2258 sam-
ples. Spedu denotes the highest school year completed
by the respondent’s spouse, with 30 groups, each of
which contains 721 ∼ 1458 samples.

5.2 Performance on Synthetic and Real Datasets

Table 1: MSEs of different methods on Synthetic Data A.
Avg JS MTAvg CAvg RAvg

Original data 2.575 2.201 2.131 2.106 2.013
With 2% outliers 4.192 3.656 3.598 3.603 2.372
Increased MSE 1.617 1.455 1.467 1.503 0.359

The experimental results on the Synthetic Data A are re-
ported in Table 1, from which we observe that RAvg has
comparable result with CAvg even though the samples are
from Gaussian distribution. The underlying reason is that
the Student-t sample assumption includes the Gaussian sam-
ple assumption as a special case and our basis is adaptive.
Moreover, when 2% of the samples are contaminated with
outliers, RAvg is statistically better than other methods with
95% confidence.

For the real datasets, we randomly select some samples
from each dataset and use these samples to estimate the true
means (the means when 100% of the data are used). We vary
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Figure 2: Results of different methods on real datasets.
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Figure 3: Results of different methods on the real datasets with 2%
outliers.

the sampling percentage from 3% to 30%, run each method
for 30 runs, and compute the average MSE of 30 runs. The
results of different methods on the real datasets are plotted
in Fig. 2, from which we can observe that our RAvg method
outperforms all the baselines for all percentages of samples.

In the experiments, RAvg takes more time than baselines
(Specifically, 3 ∼ 5 times more than CAvg). However, the
sample size is usually small, since each sample point is ex-
pensive (see Introduction). Thus, time complexity is not the
key issue for survey aggregation.

5.3 Robustness to Outliers
The robustness of RAvg has been shown on the synthetic data,
as demonstrated in Table 1. In order to evaluate the robustness
on real datasets, 2% of the samples are contaminated with
outliers and the results of all methods are reported in Fig. 3.
Comparing Fig. 2 and Fig. 3, we can see that once the data are
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Figure 4: (a) Results of different methods on Hrs1. (b) Results of
different methods on Hrs1 with 2% outliers.

contaminated with outliers, MSEs of Avg, JS, MTAvg, and
CAvg increase significantly while RAvg remains steady and
achieves much better performance than other methods, which
demonstrates the robustness of RAvg on the real datasets.

5.4 Component Analysis
To investigate the individual contribution of the Student-t
sample assumption and the adaptive basis in our proposed
RAvg method, we introduce RAvg with ν → +∞ (in prac-
tice, ν is fixed to 100), which reduces to CAvg except using
adaptive basis, based on Theorem 1. Therefore, the gap
between RAvg with ν → +∞ and RAvg is caused by the
Student-t sample assumption, and the gap between RAvg
with ν → +∞ and CAvg is the contribution of the adaptive
basis. Taking the Hrs1 dataset as an example, Fig. 4 shows
the results, where we can observe that the adaptive basis re-
duces the MSE, and the Student-t sample assumption further
reduces the MSE, since the density of Hrs1 has heavy tails, as
illustrated in Fig. 1(a). It is worth noting that the contribution
of the Student-t assumption is more significant when the data
are contaminated with outliers, as shown in Fig. 4(b).

6 Conclusion
In this paper, we propose a robust survey aggregation method,
RAvg, based on Student-t sample assumption and sparse rep-
resentation. In particular, due to the Student-t sample as-
sumption, our method is robust to outliers, which is analyzed
in detail from Bayesian point of view and loss-penalty point
of view. For a better sparse representation of the global mean
vector, we design a simple yet effective adaptive basis, which
further improves the performance. Theoretically, we have
proved that JS and CAvg are special cases of our method.
Extensive experiments have demonstrated that our method
significantly outperforms the state-of-the-art methods, espe-
cially in the presence of outliers.
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