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Abstract

Clustering is inherently ill-posed: there often ex-
ist multiple valid clusterings of a single dataset,
and without any additional information a cluster-
ing system has no way of knowing which clustering
it should produce. This motivates the use of con-
straints in clustering, as they allow users to commu-
nicate their interests to the clustering system. Ac-
tive constraint-based clustering algorithms select
the most useful constraints to query, aiming to pro-
duce a good clustering using as few constraints as
possible. We propose COBRA, an active method
that first over-clusters the data by running K-means
with a K that is intended to be too large, and sub-
sequently merges the resulting small clusters into
larger ones based on pairwise constraints. In its
merging step, COBRA is able to keep the number
of pairwise queries low by maximally exploiting
constraint transitivity and entailment. We experi-
mentally show that COBRA outperforms the state
of the art in terms of clustering quality and runtime,
without requiring the number of clusters in advance.

1 Introduction

Clustering is inherently subjective [Caruana et al., 2006; von
Luxburg et al., 2014]: a single dataset can often be clustered in
multiple ways, and different users may prefer different cluster-
ings. This subjectivity is one of the motivations for constraint-
based (or semi-supervised) clustering [Wagstaff et al., 2001;
Bilenko et al., 2004]. Methods in this setting exploit back-
ground knowledge to obtain clusterings that are more aligned
with the user’s preferences. Often, this knowledge is given in
the form of pairwise constraints that indicate whether two in-
stances should be in the same cluster (a must-link constraint) or
not (a cannot-link constraint) [Wagstaff et al., 2001]. In tradi-
tional constraint-based clustering systems the set of constraints
is assumed to be given a priori, and in practice, the pairs that
are queried are often selected randomly. In contrast, in ac-
tive clustering [Basu et al., 2004a; Mallapragada et al., 2008;
Xiong et al., 2014] it is the method itself that decides which
pairs to query. Typically, active methods query pairs that are
more informative than random ones, which improves cluster-
ing quality.

This work introduces an active constraint-based clustering
method named Constraint-Based Repeated Aggregation (CO-
BRA). It differs from existing approaches in several ways.
First, it aims to maximally exploit constraint transitivity and
entailment [Wagstaff et al., 2001], two properties that allow
deriving additional constraints from a given set of constraints.
By doing this, the actual number of pairwise constraints that
COBRA works with is typically much larger than the number
of pairwise constraints that are queried from the user. Sec-
ondly, COBRA introduces the assumption that there exist
small local regions in the data that are grouped together in
all potential clusterings. To clarify this, consider the exam-
ple of clustering images of people taking different poses (e.g.
facing left or right). There are at least two natural cluster-
ing targets for this data: one might want to cluster based on
identity or pose. In an appropriate feature space, one expects
images that agree on both criteria (i.e. of a single person, tak-
ing a single pose) to be close. There is no need to consider
all of these instances individually, as they will end up in the
same cluster for each of the two targets that the user might
be interested in. COBRA aims to group such instances into
a super-instance, such that they can be treated jointly in the
clustering process. Doing so substantially reduces the number
of pairwise queries. Thirdly, COBRA is an inherently active
method: the constraints are selected during the execution of
the algorithm itself, as constraint selection and algorithm exe-
cution are intertwined. In contrast, existing approaches consist
of a component that selects constraints and another one that
uses them during clustering.

Our experiments show that COBRA outperforms state-of-
the-art active clustering methods in terms of both clustering
quality and runtime. Furthermore, it has the distinct advan-
tage that it does not require knowing the number of clusters
beforehand, as the competitors do. In many realistic clustering
scenarios this number is not known, and running an algorithm
with the wrong number of clusters often results in a significant
decrease in clustering quality.

We discuss related work on (active) constraint-based clus-
tering in section 2. In section 3 we elaborate the key ideas in
COBRA and describe the method in more detail. We present
our experimental evaluation in section 4, and conclude in
section 5.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2871



2 Background and Related Work

Most existing constraint-based methods are extensions of well-
known unsupervised clustering algorithms. They use the con-
straints either in an adapted clustering procedure [Wagstaff et
al., 2001; Rangapuram and Hein, 2012; Wang et al., 2014], to
learn a similarity metric [Xing et al., 2003; Davis et al., 2007],
or both [Bilenko et al., 2004; Basu et al., 2004b]. Constraint-
based extensions have been developed for most clustering
algorithms, including K-means [Wagstaff et al., 2001; Bilenko
et al., 2004], spectral clustering [Rangapuram and Hein, 2012;
Wang et al., 2014], DBSCAN [Lelis and Sander, 2009;
Campello et al., 2013] and EM [Shental et al., 2004].

Basu et al. [2004a] introduce a strategy to select the
most informative constraints, prior to performing a sin-
gle run of a constraint-based clustering algorithm. They
show that active constraint selection can improve cluster-
ing performance. Several selection strategies have been pro-
posed since [Mallapragada et al., 2008; Xu et al., 2005;
Xiong et al., 2014], most of which are based on the classic
approach of uncertainty sampling. As COBRA also chooses
which pairs to query, we consider it to be an active method,
and in our experiments we compare to other methods in this
setting. Note, however, that COBRA is quite different from
existing methods in active constrained clustering and active
learning in general. For COBRA, selecting which pairs to
query is inherent to the clustering procedure, whereas for most
other methods the selection strategy is optional and considered
to be a separate component.

In its core, COBRA is related to hierarchical clustering as it
follows the same procedure of sequentially trying to merge the
two closest clusters. Constraints have been used in hierarchical
clustering before but in different ways. Davidson et al. [2009],
for example, present an algorithm to find a clustering hierarchy
that is consistent with a given set of constraints. Nogueira
et al. [2012] propose an active semi-supervised hierarchical
clustering algorithm that is based on merge confidence. Also
related to ours is the work of Campello et al. [2013], who have
developed a framework to extract from a given hierarchy a flat
clustering that is consistent with a given set of constraints. The
key difference is that COBRA starts from super-instances, i.e.
small clusters produced by K-means, and that each merging
decision is settled by a pairwise constraint.

The idea of working with a small number of representatives
(in our case the super-instance medoids, as will be discussed
in section 3) instead of all individual instances has been used
before, but for very different purposes. For example, Yan et
al. [2009] use it to speed up unsupervised spectral clustering,
whereas we use it to reduce the number of pairwise queries.

3 Constraint-Based Repeated Aggregation

Constraint-based clustering algorithms aim to produce a clus-
tering of a dataset that resembles an unknown target clustering
Y as close as possible. The algorithm cannot query the cluster
labels in Y directly, but can query the relation between pairs of
instances. A must-link constraint is obtained if the instances
have the same cluster label in Y , a cannot-link constraint oth-
erwise. The aim is to produce a clustering that is close to the
target clustering Y , using as few pairwise queries as possible.

Several strategies can be used to exploit constraints in clus-
tering. Figure 1 illustrates some of them. The most naive
strategy is to query all pairwise relations, and construct clus-
ters as sets of instances that are connected by a must-link
constraint (Figure 1a). Though this is clearly not a good strat-
egy in any scenario, it allows us to formulate a baseline for
further improvements. It always results in a perfect clustering,

but at a very high cost: for a dataset of N instances,
(

N

2

)

questions are asked.
The previous strategy can be improved by exploiting con-

straint transitivity and entailment, two well known proper-
ties in constraint-based clustering [Wagstaff et al., 2001;
Bilenko et al., 2004]. Must-link constraints are known to
be transitive:

must-link(A,B) ∧ must-link(B,C) ⇒
must-link(A,C),

whereas cannot-link constraints have an entailment property:

must-link(A,B) ∧ cannot-link(B,C) ⇒
cannot-link(A,C).

Thus, every time a constraint is queried and added to the
set of constraints, transitivity and entailment can be applied
to expand the set. This strategy is illustrated in Figure 1b.
Exploiting transitivity and entailment significantly reduces
the number of pairwise queries needed to obtain a clustering,
without a loss in clustering quality.

The order in which constraints are queried strongly influ-
ences the number of constraints that can be derived. In general,
it is better to obtain must-link constraints early on. That way,
any future query involving one of the instances connected by
a must-link also applies to all others. This suggests querying
the closest pairs first, as they are more likely to belong to the
same cluster and hence be connected by a must-link constraint.
This is strategy is illustrated in Figure 1c.

The previous strategies all obtain a perfect clustering, but re-
quire a high number of queries which makes them inapplicable
for reasonably sized datasets. To further reduce the number of
queries, COBRA groups similar instances into super-instances
and only clusters their representatives, i.e. medoids. It as-
sumes that all instances within a super-instance are connected
by a must-link constraint. While clustering the medoids, CO-
BRA uses both previously discussed strategies of querying the
closest pairs and exploiting transitivity and entailment. This
strategy, illustrated in Figure 1d, results in a substantial reduc-
tion of the number of queries. It does not always result in a
perfect clustering as it is possible that the instances within a
particular super-instance should not be grouped together w.r.t.
the target clustering.

Table 1 illustrates to what extent each of the improvements
described above reduces the number of queries. We perform
an extensive evaluation of the quality of the clusterings that
COBRA produces in section 4.

3.1 Algorithmic Description

After presenting the main motivations for each step of CO-
BRA, we now give a more detailed description in Algorithm 1.
Let X = {xi}

N
i=1

, xi ∈ R
m the instances to be clustered. The

set of instances X is first over-clustered into NS disjoint sub-

sets, namely super-instances {Si}
NS

i=1
, such that

⋃

i
Si = X .
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Table 2: Wins and losses aggregated over all 21 clustering tasks. After each win (loss) count, we report the average margin by which COBRA
wins (loses). For win counts marked with an asterisk, the differences are significant according to the Wilcoxon test with p < 0.05.

25 super-instances 50 super-instances 100 super-instances
win loss win loss win loss

COBRA vs. MPCKM-MinMax 13 (0.14) 8 (0.12) 13 (0.16) 8 (0.09) 12 (0.19) 9 (0.05)
COBRA vs. MPCKM-NPU 11 (0.16) 10 (0.11) 17* (0.12) 4 (0.09) 12 (0.17) 9 (0.06)
COBRA vs. COSC-MinMax 15* (0.21) 6 (0.05) 16* (0.21) 5 (0.06) 14* (0.21) 7 (0.04)

COBRA vs. COSC-NPU 15* (0.20) 6 (0.04) 14* (0.23) 7 (0.04) 13* (0.23) 8 (0.03)

Hence, this dataset has 4 target clusterings: identity, pose,
expression and sunglasses. We extract a 2048-value feature
vector for each image by running it through the pre-trained
Inception-V3 network [Szegedy et al., 2015] and storing the
output of the second last layer. Finally, we also cluster the 20
newsgroups text data. For this dataset, we consider two tasks:
clustering documents from 3 newsgroups on related topics
(the target clusters are comp.graphics, comp.os.ms-windows
and comp.windows.x, as in [Basu et al., 2004a; Mallapragada
et al., 2008]), and clustering documents from 3 newsgroups
on very different topics (alt.atheism, rec.sport.baseball and
sci.space, as in [Basu et al., 2004a; Mallapragada et al., 2008]).
We first extract tf-idf features, and next apply latent semantic
indexing (as in [Mallapragada et al., 2008]) to reduce the
dimensionality to 10. This brings the total to 17 datasets, for
which 21 clustering tasks are defined (15 UCI datasets with a
single target, CMU faces with 4 targets, and 2 subsets of the
20 newsgroups data).

Experimental Methodology
We use a cross-validation procedure that is highly similar to the
ones used in e.g. [Basu et al., 2004a] and [Mallapragada et al.,
2008]. In each of 5 folds, 20% of the instances are set aside as
the test set. The clustering algorithm is then run on the entire
dataset, but can only query pairwise constraints for which both
instances are in the training set. To evaluate the quality of
the resulting clustering, we compute the Adjusted Rand index
(ARI, [Hubert and Arabie, 1985]) only on the instances in
the test set. The ARI measures the similarity between two
clusterings, in this case between the one produced by the
constraint-based clustering algorithm and the one indicated by
the class labels. An ARI of 0 means that the clustering is not
better than random, 1 indicates a perfect clustering. The final
score for an algorithm for a particular dataset is computed as
the average ARI over the 5 folds.

The exact number of pairwise queries is not known before-
hand for COBRA, but more super-instances generally results
in more queries. To evaluate COBRA with varying amounts
of user input, we run it with 25, 50 and 100 super-instances.
For each fold, we execute the following steps:

• Run COBRA and count how many constraints it needs.

• Run the competitors with the same number of constraints.

• Evaluate the resulting clusterings by computing the ARI
on the test set.

To make sure that COBRA only queries pairs of which both
instances are in the training set, the medoid of a super-instance
is calculated based on only the training instances in that super-
instance (and as such, test instances are never queried during

clustering). In the rare event that a super-instance contains
only test instances, it is merged with the nearest super-instance
that does contain training instances. For the MinMax and NPU
selection strategies, pairs involving an instance from the test
set are simply excluded from selection.

Results

The results over all 21 clustering tasks are summarized in
Tables 2 and 3. Table 2 reports wins and losses against each
of the 4 competitors. It shows that COBRA tends to produce
better clusterings than its competitors. The difference with
COSC is significant according to the Wilcoxon test with p <
0.05, whereas the difference with MPCKMeans is not. Table
3 shows the average ranks for COBRA and its competitors.
The Friedman aligned rank test [Hodges and Lehmann, 1962],
which has more power than the Friedman test when the number
of algorithms under comparison is low [Garca et al., 2010],
indicates that for 50 and 100 super-instances, the differences
in rank between COBRA and all competitors are significant,
using a posthoc Holm test with p < 0.05.

Table 3: For each dataset, all algorithms are ranked from 1 (best) to
5 (worst). This table shows the average ranks for 25, 50 and 100
super-instances. Algorithms for which the difference with COBRA is
significant according to the Friedman aligned rank test and a post-hoc
Holm test with p < 0.05 are marked with an asterisk.

25 super-instances 50 super-instances 100 super-instances

COBRA 2.43 COBRA 2.14 COBRA 2.52

MPCK-NPU 3.00 MPCK-MM* 3.00 COSC-NPU* 2.98

MPCK-MM 3.07 COSC-NPU* 3.02 MPCK-NPU* 3.00

COSC-MM* 3.12 COSC-MM* 3.26 MPCK-MM* 3.19

COSC-NPU* 3.40 MPCK-NPU* 3.57 COSC-MM* 3.31

Running Competitors with Different Numbers of Queries

In the previous experiments, the competitors are run with the
same number of queries that COBRA required, as for COBRA
this cannot be fixed beforehand. One might wonder whether
this constitutes an advantage for COBRA, and whether the
above conclusions also hold when competitors can be run with
different numbers of constraints. To answer this question, we
run COBRA with a wider range of super-instances, and its
competitors with more numbers of constraints. Figure 3 shows
the results for 4 datasets, but the conclusions that are drawn
here also hold for the others. A first conclusion is that for the
datasets for which COBRA outperforms its competitors in the
experiments discussed above, it also does so for larger numbers
of constraints (e.g. in Figures 3a and 3b). As such, the results
discussed in the previous section are representative. Secondly,
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