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Abstract
In this paper, we propose a principled Tag Dis-
entangled Generative Adversarial Networks (TD-
GAN) for re-rendering new images for the object
of interest from a single image of it by specifying
multiple scene properties (such as viewpoint, illu-
mination, expression, etc.). The whole framework
consists of a disentangling network, a generative
network, a tag mapping net, and a discriminative
network, which are trained jointly based on a given
set of images that are completely/partially tagged
(i.e., supervised/semi-supervised setting). Given an
input image, the disentangling network extracts dis-
entangled and interpretable representations, which
are then used to generate images by the generative
network. In order to boost the quality of disentan-
gled representations, the tag mapping net is inte-
grated to explore the consistency between the im-
age and its tags. Furthermore, the discriminative
network is introduced to implement the adversar-
ial training strategy for generating more realistic
images. Experiments on two challenging datasets
demonstrate the state-of-the-art performance of the
proposed framework in the problem of interest.

1 Introduction
The re-rendering of new images for the object of interest from
a single image of it by specifying expected scene properties
(such as viewpoint, illumination, expression, etc.) is of fun-
damental interest in computer vision and graphics. For exam-
ple, re-rendering of faces for the continuous pose, illumina-
tion directions, and various expressions would be an essential
component for virtual reality systems, where one tends to nat-
urally “paste” persons into a virtual environment. More ap-
plications of image re-rendering can be found in architecture,
simulators, video games, movies, visual effects, etc.

Conventional approaches to addressing the object image
re-rendering problem are generally based on the following
scheme: a 3D (static or dynamic) model of the object of inter-
est is first reconstructed from the given image(s) and is then
projected onto the 2D image plane corresponding to a speci-
fied configuration of scene properties. However, 3D model
reconstruction from a single 2D object image is a highly

ill-posed and challenging problem. Taking the 3D surface
reconstruction of the static object for an example, it relies
on the exploitation of class-specific statistical priors on the
3D representation of the object of interest [Kar et al., 2015;
Vicente et al., 2014; Wang et al., 2011], while the modeling
of such 3D priors necessitates very high expenses in building
the training data. Also considering the current state-of-the-
art in the study of 3D reconstruction, it is desirable to directly
integrate the 3D model reconstruction and 3D-2D projection
process together so as to be able to focus on the 2D data only.

Recent works (e.g., [Cheung et al., 2014; Kulkarni et al.,
2015]) have shown the promise of deep learning models in
achieving the goal of interest. The basic idea is based on
learning interpretable and disentangled representations [Ben-
gio et al., 2013] of images. Unlike most deep learning mod-
els which focus on the learning of hierarchical representa-
tions [Bengio et al., 2015], these models aim to extract disen-
tangled representations which correspond to different factors
(e.g., identity, viewpoint, etc.) from the input image. Learn-
ing the disentangled representations aims to express the ob-
jective factors with different high-level representations. Us-
ing the human brain to make an analogy, the human under-
stands the world by projecting real-world objects into abstract
concepts of different factors and can generate new object im-
ages with these concepts via generalization.

Despite the great progress achieved in image re-rendering,
existing methods share some important limitations. The first
one is regarding the effectiveness and independence of the
(disentangled) representations extracted from the input im-
age. For most existing methods, (disentangled) representa-
tions are mostly extracted from images themselves, and the
valuable tag information (e.g., photograph conditions and ob-
ject characterizations) associated with images has not been
finely explored. Besides, there was little attempt to make the
re-rendering result more realistic by increasing the difficulty
in distinguishing genuine and re-rendered images. Last but
not least, previous works mostly focused on performing ob-
ject image re-rendering w.r.t. a single scene property and the
extension of the developed methods to the setting of multiple
scene properties is not straightforward.

In order to boost the performance in re-rendering new
images for the object of interest from a single image of
it by specifying multiple scene properties, in this paper,
we propose a principled Tag Disentangled Generative Ad-
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versarial Networks (TD-GAN). The whole framework con-
sists of four parts: a disentangling network, a generative
network, a tag mapping net, and a discriminative network,
which are trained jointly based on a given set of images
that are completely/partially tagged (corresponding to the
supervised/semi-supervised setting). Given an input image,
the disentangling network extracts disentangled and inter-
pretable representations, which are then used to generate im-
ages by the generative network. In order to boost the qual-
ity of the obtained disentangled representations, the tag map-
ping net is integrated to explore the consistency between the
image and its tags. Considering that the image and its tags
record the same object from two different perspectives [Xu
et al., 2015], they should share the same disentangled repre-
sentations. Furthermore, the discriminative network is intro-
duced to implement the adversarial training strategy for gen-
erating more realistic images. Experiments on two challeng-
ing datasets demonstrate the state-of-the-art performance of
our framework in the problem of interest.

2 Related Works
The last decade has witnessed the emergence of algo-
rithms for image modeling and rendering (e.g., [Kingma and
Welling, 2013; Dosovitskiy et al., 2015; Liu et al., 2017]). In
particular, a large effort has been devoted to the new view
synthesis problem and quality results can be obtained for
real-world objects, even provided with only one single ob-
ject image. To name a few, by integrating auto-encoder with
recurrent neural networks, [Yang et al., 2015] proposed the
recurrent convolutional encoder-decoder network (RCEDN)
to synthesize novel views of 3D objects through rotating the
input image with a fixed angle. [Tatarchenko et al., 2016]
also adopted convolutional network to generate novel object
images using a single object image as input.

Besides the viewpoint, other factors, including illumina-
tion and scale, have also been studied in re-rendering object
images. Transforming auto-encoders [Hinton et al., 2011]
is among the earliest works that attempted to learn a whole
vector of instantiation parameters, which is then used to gen-
erate a transformed version of the input image, through train-
ing auto-encoder capsules. [Cheung et al., 2014] introduced
an unsupervised cross-covariance penalty (XCov) for learning
disentangled representations of input images through the hid-
den layers of deep networks. Novel images can then be gen-
erated by resetting these disentangled representations accord-
ing to specified configurations. [Kulkarni et al., 2015] pro-
posed the deep convolutional inverse graphics network (DC-
IGN), which employs convolutional layers to de-render the
input images and then re-render the output images using de-
convolutional layers. Neurons of the graphics codes layer be-
tween convolutional and de-convolutional layers are encour-
aged to represent disentangled factors (identity, illumination,
etc.) of the input image. Although the XCov and DC-IGN
methods utilize label (tag) information to guide their models
to learn disentangled representations from the input image,
they do not consider the consistency between the image and
its tags, i.e., the fact that the image and its tags share the same
latent (disentangled) representation. In our framework, be-

sides learning disentangled representations from images, we
dig up the correlation between tags and disentangled repre-
sentations, which enables our proposed TD-GAN to achieve
better performance in learning disentangled representations.

Moreover, image re-rendering is related to image gen-
eration, which aims to generate images using scene-level
features. [Dosovitskiy et al., 2015] proposed an ‘up-
convolutional’ network to generate images of chairs given the
label of chair style and sine (cosine) value of azimuth an-
gle. Experimentally, the ‘up-convolutional’ network has ex-
hibited strong ability to generate images with specified fea-
tures. However, it can only generate images for the objects
existing in the training set and simply interpolate between
them. Similarly, generative adversarial nets (GANs) [Good-
fellow et al., 2014] and GANs-based models [Gauthier, 2014;
Chen et al., 2016] are trained to generate images from dif-
ferent variables, such as, unstructured noise vector [Radford
et al., 2015], text [Reed et al., 2016], latent code [Chen et
al., 2016], etc. Based on the adversarial training strategy, the
generative network in GANs maps input variables into image
space through playing a minimax optimization with the dis-
criminative network.

3 The Proposed Approach
A set XL of tagged images is considered in the super-
vised setting. Let {(x1,C1), · · · , (x|XL|,C|XL|)} denote the
whole training dataset, where xi ∈ XL denotes the ith image
and Ci ∈ C its corresponding tag codes which can be rep-
resented as: Ci = (cide

i , cview
i , cexp

i , . . . ). One-hot encoding
vectors are employed to describe tag information (e.g., in the
case of expression tag with three candidates [neutral, smile,
disgust], cexp

i = [0, 1, 0] for an image with “smile” tag). An
additional untagged training image set XU is considered in
the semi-supervised setting.

3.1 Main Framework
As shown in Fig. 1, TD-GAN is composed of four parts: a
tag mapping net g, a generative network G, a disentangling
network R and a discriminative network D. The tag mapping
net g and the disentangling network R aim to map tag codes
and real-world images into latent disentangled representa-
tions, which can then be decoded by the generative network
G. Finally, the discriminative networkD is introduced to per-
form the adversarial training strategy which plays a minimax
game with the networks R and G. There are three interre-
lated objectives in the framework of TD-GAN for realizing
the optimal image re-rendering task.

Exploring consistency between the image and its tags.
In practice, the image provides a visual approach to recording
the real-world object. Meanwhile, tags (identity, viewpoint,
illumination, etc.) accompanied with the image can describe
object in a textual or parametric way. The image and its tags
consistently represent the same object, despite the difference
in physical properties. It is therefore meaningful to explore
the consistency between the image and its tags in the image
re-rendering task. In the training procedure, the disentangling
network R aims to extract the disentangled representations
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Figure 1: Model architecture. TD-GAN is composed of four parts: a tag mapping net g, a disentangling network R, a generative network G and
a discriminative network D. (a) During training, the tag mapping net g and the generative network G are trained to render images with their
tags. The disentangling network R aims to extract disentangled representations, which can be decoded by the network G. The discriminative
network D plays a minimax game with networks G and R based on the adversarial training strategy. (b) During test, the disentangling
network R extracts disentangled representations from the input image. After replacing one or multiple disentangled representations with the
specified representations generated by the tag mapping net g, the image can be re-rendered through the generative network G.

R(x) of the input image x1. Besides, tag codes C are fed
through the tag mapping net g to obtain the disentangled rep-
resentations2 g(C) of the tags. The first objective of TD-GAN
is to penalize the discrepancy between the disentangled rep-
resentationsR(x) and g(C) generated from the image and its
tags. Using the L2 norm to penalize such a discrepancy, the
energy function is defined as follows:

f1(R, g) =
1

|XL|
∑

xi∈XL

‖ R(xi)− g(Ci) ‖22 (1)

Compared with valuable tag information, lots of untagged
images can be easily harvested in practice. In order to ex-
plore useful information contained in these untagged images
for network learning in the semi-supervised setting, by apply-
ing the generative network G on their disentangled represen-
tationsR(x), we utilize the following objective function so as
to encourage the reconstructed image from the disentangled
representations R(xi) to be close to the genuine image xi:

f̃1(G,R) =
1

|XU |
∑

xi∈XU

‖ G(R(xi))− xi ‖22 (2)

Maximizing image rendering capability.
Given image tag codes C, the generative network G should
have the capability to render the image with its disentangled
representations g(C). Note that the disentangled representa-
tions extracted from the image and its tags have already been
encouraged to be the same (see Eq. (1)). To maximize the ren-
dering capability of network G, we tend to minimize the dis-

1Formally, R(x) = (ride, rview, . . . ), where those r∗ denote dis-
entangled representations extracted from the input image.

2The function g actually consists of a set of independent sub-
functions designed to translate the tags into the corresponding rep-
resentations, i.e., g(C) = (gide(c

ide), gview(c
view), . . . ).

crepancy between genuine images and rendered images via
the following objective function:

f2(G, g) =
1

|XL|
∑

xi∈XL

‖ G(g(Ci))− xi ‖22 (3)

We can re-render images based on the networks R, G and
g discussed above. However, such a way lacks strong driv-
ing force for continuously improving the re-rendering perfor-
mance. Therefore, we introduce the discriminative network
D into TD-GAN so as to minimize genuine image recogni-
tion loss, the detail of which is shown below.

Minimizing genuine image recognition loss.
Ideally, image re-rendering should be able to mix re-rendered
images with genuine images so that they cannot be distin-
guished. To this end, we adopt the adversarial training strat-
egy, based on the GANs model [Goodfellow et al., 2014].
Adversarial training suggests the use of the discriminative
network D as an adversary of the networks R and G. The
discriminative network D outputs the probability that the in-
put image is genuine, and tries its best to detect all those re-
rendered images. Competition in this game encourages R, G
and D to improve their solutions until the re-rendered images
are indistinguishable from those genuine ones. Formally, the
objective function can be formulated as:

f3(R,G,D) = E[logD(x)]+E[log(1−D(G(R(x)))] (4)
where E is computed over those genuine images in the train-
ing set. Higher values of f3 indicates better discriminative
abilities, and vice versa.

3.2 Training Process
TD-GAN is composed of R, D, G and g, which can be opti-
mized and learned using the alternating optimization strategy.
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Disentangling Net R Discriminative Net D
Input: Image x – (128× 128× 3)
[Layer 1] Conv. (3, 3, 64) Stride=2. LReLU BatchNorm
[Layer 2] Conv. (3, 3, 128) Stride=2. LReLU BatchNorm
[Layer 3] Conv. (3, 3, 256) Stride=2. LReLU BatchNorm
[Layer 4] Conv. (3, 3, 256) Stride=1. LReLU BatchNorm
[Layer 5] Conv. (3, 3, 256) Stride=1. LReLU BatchNorm
[Layer 6] Conv. (3, 3, 512) Stride=2. LReLU BatchNorm
[Layer 7] Conv. (3, 3, 512) Stride=1. ReLU BatchNorm
[Layer 8] FC. 5120 LReLU FC. 2560 LReLU
[Layer 9] FC. separate Tanh FC. 1 Sigmoid
Output: Disentagnled Probability of being

Representations R(x) genuine D(x)

Generative Network G
Input: Disentangled representations R(x)
[Layer 1] Concatenate Layer
[Layer 2] FC. (4, 4, 1024) ReLU BatchNorm
[Layer 3] Deconv. (4, 4, 512) Stride=2 ReLU BatchNorm
[Layer 4] Deconv. (4, 4, 256) Stride=2 ReLU BatchNorm
[Layer 5] Deconv. (4, 4, 128) Stride=2 ReLU BatchNorm
[Layer 6] Deconv. (4, 4, 64) Stride=2 ReLU BatchNorm
[Layer 7] Deconv. (4, 4, 3) Stride=2 Tanh.
Output: Generated Image G(R(x)) – (128× 128× 3)

Table 1: Details of the disentangling, discriminative and generative
networks used for all the experiments.

In the following, we first present the optimization with respect
to each component of TD-GAN at each iteration in the con-
text of the supervised setting, and then clarify the difference
in the optimization for the semi-supervised setting.

We optimize the tag mapping net g, by fixing G∗, R∗ and
D∗. Since g maps tags to disentangled representations, opti-
mizing g involves the first and second objectives (f1 and f2):

Lg = min
g

λ1f1(R
∗, g) + λ2f2(G

∗, g) (5)

Here, those λ’s are hyper-parameters balancing the influence
of the corresponding terms, and R∗ and G∗ are fixed as the
configurations obtained from the previous iteration (similarly
for the other optimization steps presented below).

By fixing g∗, D∗ and R∗, the search of the generative net-
work G can be formulated as:

LG = min
G

λ2f2(G, g
∗) + λ3f3(R

∗, G,D∗) (6)

where G determines the re-rendering procedure with disen-
tangled representations as input.

The disentangling network R is trained by fixing g∗, G∗
andD∗. Similarly, the main target of the networkR is to infer
disentangled representations from the input image (i.e., f1),
and it is also a part of adversarial training (i.e., f3). Hence,
the loss function with respect to R should be:

LR = min
R

λ1f1(R, g
∗) + λ3f3(R,G

∗, D∗) (7)
The discriminative network D is introduced to cooperate

with the adversarial training strategy, via the following opti-
mization:

LD = max
D

λ3f3(R
∗, G∗, D) (8)

We can observe that the above processing forms a minimax
game, which aims to maximize the image re-rendering ca-
pability and to minimize the error in distinguishing between
genuine and re-rendered images. In the semi-supervised set-
ting, sinceG andR are used to re-render the untagged images

Tag Hidden layer Disentangled
Chairidentity

fully 500 FC.1024 ReLU FC.1024 Tanh
Chairidentity

semi 100 FC.1024 ReLU FC.1024 Tanh
Chairviewpoint 31 FC. 512 ReLU FC. 512 Tanh
Faceidentity 200 FC.1024 ReLU FC.1024 Tanh
Faceillumination 19 FC. 512 ReLU FC. 512 Tanh
Faceviewpoint 13 FC. 256 ReLU FC. 256 Tanh
Faceexpression 3 FC. 256 ReLU FC. 256 Tanh
Table 2: Experimental settings of the tag mapping net g.

as well, the objective functions in Eqs. (6) and (7) also include
a weighted loss λ4f̃1 for untagged image re-rendering.

3.3 Image Re-rendering
In our framework, the trained disentangling networkR is able
to transform the input image into disentangled representations
corresponding to those scene properties (e.g., identity, view-
point, etc.). Hence, in the test stage, given an unseen image
xtest of the object of interest as input, the disentangling net-
work R will output its disentangled representations. The im-
age re-rendering task is performed simply by replacing one or
multiple disentangled representations with the specified rep-
resentation(s) generated by the tag mapping net g. The ob-
tained disentangled representations are then fed to the gener-
ative network G so as to output the re-rendering result.

4 Experiments
We evaluated the performance of our TD-GAN method based
on two challenging datasets: 3D-chairs dataset [Aubry et
al., 2014] and Multi-PIE database [Gross et al., 2010]. The
obtained results demonstrate the advantage of our method
in learning interpretable disentangled representations and re-
rendering images of unseen objects with tag configurations.

4.1 Implementation Details
In our experiments, all images were resized to 128×128×3.
Meanwhile, all layers, except those fully-connected with dis-
entangled representations were fixed and the details of these
layers, are shown in Table 1. Distinct tag codes (i.e., differ-
ent architecture configurations of the tag mapping net g) were
chosen for different tasks and we summarize in Table 2 all the
settings used in our experiments.

Moreover, our proposed TD-GAN was implemented based
on Theano [Bergstra et al., 2010]. All the parameters were
initialized using a zero-mean Gaussian with variance 0.05.
The same weights (λ1 = 10, λ2 = 10, λ3 = 1, and λ4 = 50)
were used in all the experiments. Based on the training pro-
cess described above, we alternatively updated the disentan-
gling network, the discriminative network and the generative
network (with the tag mapping net). The optimization was
done based on the ADAM solver [Kingma and Ba, 2014] with
momentum 0.5, where the learning rate was set as 0.0005 for
the disentangling network and 0.0002 for all the other net-
works. We utilized a minibatch size of 50 and trained for
around 900 epochs.

4.2 Performance Criteria
We qualitatively and quantitatively evaluated the perfor-
mance of our method. On the one hand, following existing
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Figure 2: Novel view synthesis results of two previous method and
ours. For each method, the leftmost image is the input image, and the
images on its right side were re-rendered under different viewpoints.

works [Tatarchenko et al., 2016; Cheung et al., 2014], we
choose to use the qualitative criteria to evaluate the perfor-
mance of re-rendered images, i.e., evaluating through human
observers. To this end, we directly report the input image and
its re-rendered images for a set of representative test exam-
ples. On the other hand, as for quantitative criteria, same as
previous work [Kulkarni et al., 2015], we measured the mean
squared error (MSE) between the re-rendered images and the
corresponding ground truths over the test set.

4.3 Experimental Results
3D-chairs dataset.
The 3D-chairs dataset [Aubry et al., 2014] contains 86,366
images rendered from 1,393 3D CAD models of different
chairs. For each chair, 62 viewpoints are taken from 31 az-
imuth angles (with a step of 11 or 12 degrees) and 2 eleva-
tion angles (20 and 30 degrees). Since the 3D-chairs dataset
records chair images from different viewpoints, we firstly
performed the novel view synthesis task, which takes a sin-
gle image of an unseen object as input, and attempts to re-
render images under novel viewpoints. Following the exper-
imental setting of existing works [Tatarchenko et al., 2016;
Yang et al., 2015; Dosovitskiy et al., 2015], we selected 809
chair models from all 1,393 chair models by removing near-
duplicate (e.g., those differing only in color) and low-quality
models. The first 500 models were used for training purpose,
while the remaining 309 models for test.

In Fig. 2, we show the novel view synthesis results of TD-
GAN and two previous methods on the 3D-chairs dataset.
Following the comparison in [Tatarchenko et al., 2016], we
adopt the results reported by existing works [Kulkarni et al.,
2015; Tatarchenko et al., 2016] as references, and exhibit our
results over the same (or very similar) test images. Among
them, Multi-View 3D [Tatarchenko et al., 2016] was designed
to re-render unseen viewpoints of 3D objects. Compared with
Multi-View 3D, our method not only achieves comparable
performance in viewpoint transformation, but also be able to

Figure 3: Novel view synthesis results of TD-GAN trained in three
settings. The images are arranged similarly to Fig. 2.

Figure 4: MSE of TD-GAN trained in three settings. MSE was cal-
culated over all the chair images under 0◦ in the test set as inputs.
Chair images are used to indicate target viewpoints.

carry out other image re-rendering tasks, such as illumination
transformation, expression transformation, etc. Despite the
fact that both DC-IGN [Kulkarni et al., 2015] and TD-GAN
were developed to re-render images with multiple different
configurations, the obtained experimental results demonstrate
that TD-GAN achieves much better results. Furthermore,
we evaluated the semi-supervised extension of our TD-GAN
method. To this end, within the aforementioned experimental
setting, we tested the following three representative training
settings: using all the 500 training models and their tags, only
the first 100 models and their tags, and all the 500 training
models but only the tags of the first 100 models (referred to
as fully-500, fully-100, and semi-(100,400), respectively). We
show in Fig. 3 some representative qualitative results on the
same test images, from which we can observe that: (i) the
fully-supervised setting with all the 500 models (i.e., fully-
500) achieves the best performance; (ii) the semi-supervised
setting (i.e., semi-(100,400)) shows slightly degraded perfor-
mance compared to fully-500; and (iii) both of fully-500 and
semi-(100,400) perform much better than the fully-supervised
setting with only the first 100 models (i.e., fully-100). For
quantitative results, we selected all the images of chair ob-
jects under 0◦ in the test set as inputs, and re-rendered the
images under different viewpoints. We report the MSE val-
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Figure 5: Illumination transformation of human face (best view in
color). Given an image (leftmost) of human face, we reported a set
of re-rendered images on its right side.

XCov TD-GAN TD-GAN
Flash-1 0.5776 0.5623 0.5280
Flash-4 5.0692 0.8972 0.8818
Flash-6 4.3991 1.2509 0.1079
Flash-9 3.4639 0.6145 0.5870
Flash-12 2.4624 0.7142 0.6973
All Flash (mean) 3.8675 0.6966 0.6667

Table 3: MSE (×10−2) of illumination transformation.

ues for a set of individual target viewpoints in Fig. 4, and the
global MSE over all the target viewpoints is 0.03875, 0.04379
and 0.05018 in the fully-500, semi-(100,400) and fully-100
settings, respectively. Finally, from both the qualitative and
quantitative results, we can conclude that the introduction of
untagged data (semi-supervised learning) is indeed beneficial
for improving the performance of the TD-GAN method.

Multi-PIE database.
Multi-PIE [Gross et al., 2010] is a face dataset containing im-
ages of 337 people under 15 camera-poses (13 camera-poses
with 15◦ intervals at head height and 2 additional ones located
above the subject) and 19 illumination conditions in up to four
sessions. Following previous works [Cheung et al., 2014;
Ding et al., 2015], we cropped all face images based on man-
ually annotated landmarks on eyes, nose and mouth. Since
Multi-PIE records several factors (tags) of human faces, it is
suitable for training TD-GAN to perform various image re-
rendering tasks.

We evaluated the performance of TD-GAN in re-rendering
face images under various illuminations. By fixing viewpoint
(0◦) and expression (neutral), we selected all 337 identities in
all four sessions under different illuminations as the data set-
ting. Among the 337 identities, the first 200 ones were used
for training, and the remaining 137 ones for test. Besides
our TD-GAN, we also evaluated XCov [Cheung et al., 2014]
and TD-GAN without the use of generative adversarial loss
(i.e., f3 in Eq. (4)) in the same task (refer to as TD-GAN). In
Fig. 5, we show some images re-rendered by those methods
using the same images as inputs. Table 3 reports MSE for the
images re-rendered with five individual target illuminations
and with all the target illuminations, using the images of all
human faces under a fixed illumination (Flash-1) in the test

Figure 6: Multi-factor transformation (best view in color). Given a
single image as input (the up-left one), its viewpoint and expression
were jointly transformed.
set as inputs. According to Fig. 5 and Table 3, we can draw
the following two conclusions. Firstly, XCov performs much
worse in re-rendering images when the specified illumination
condition is different from that of the input image, while our
method performs well in all those re-rendering with illumi-
nation transformation experiments. Indeed, ideally, the re-
rendering performance should be independent with the scene
properties (e.g., illumination) of the input image, unless the
extracted identity representation is correlated to those prop-
erties. Secondly, the introduction of generative adversarial
loss really helps our method to generate more realistic im-
ages with fine details.

Last but not least, in order to validate the capability of re-
rendering images with multi-factor transformation, we per-
formed an experiment where the viewpoint and expression
were jointly configured. We used the data of session 3 as the
dataset, which contains 230 identities with three expressions
(neutral, smile and disgust). Similarly, the first 200 identi-
ties were used as the training set, and the remaining 30 ones
served as the test set. As shown in Fig. 6, given a test im-
age, our method is able to effectively re-render images of the
same identity with different expressions and viewpoints. The
re-rendered images look quite natural and make us believe
that they are indeed the genuine images of the same face ex-
hibiting in the input image.

5 Conclusion
In this paper, we have investigated the image re-rendering
problem by developing a principled Tag Disentangled Gen-
erative Adversarial Networks (TD-GAN). Images and their
associated tags have been fully and finely explored to dis-
cover the disentangled representations of real-world objects.
The whole framework is established with three interrelated
objectives, and can be effectively optimized with respect to
the involved four essential parts. Experimental results on
real-world datasets demonstrate that the proposed TD-GAN
framework is effective and promising for practical image re-
rendering applications.
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