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Abstract
Recently, many ℓ1-norm based PCA methods have
been developed for dimensionality reduction, but
they do not explicitly consider the reconstruction
error. Moreover, they do not take into account the
relationship between reconstruction error and vari-
ance of projected data. This reduces the robust-
ness of algorithms. To handle this problem, a novel
formulation for PCA, namely angle PCA, is pro-
posed. Angle PCA employs ℓ2-norm to measure
reconstruction error and variance of projected da-
ta and maximizes the summation of ratio between
variance and reconstruction error of each data. An-
gle PCA not only is robust to outliers but also re-
tains PCA’s desirable property such as rotational
invariance. To solve Angle PCA, we propose an
iterative algorithm, which has closed-form solution
in each iteration. Extensive experiments on sever-
al face image databases illustrate that our method is
overall superior to the other robust PCA algorithms,
such as PCA, PCA-L1 greedy, PCA-L1 nongreedy
and HQ-PCA.

1 Introduction
Automated learning of low-dimensional linear models from
training data has become a standard paradigm in pattern
recognition and machine learning community. Principal com-
ponent analysis (PCA) [Turk and Pentland, 1991], linear dis-
criminant analysis (LDA) [Belhumeur et al., 1997], locali-
ty preserving projection (LPP) [He and Niyogi, 2005] and
neighborhood preserving embedding (NPE) [He et al., 2005]
are four of the most representative linear models for different
tasks. Unlike the other three methods, PCA is also usually
employed as a pre-processing step in many models, including
LDA, LPP, and NPE. The derived features in PCA are linear
combinations of the original features, where the coefficients
are from the projection matrix. The optimal projection ma-
trix in PCA is composed of the eigenvectors of the covariance
matrix. It has been applied successfully in many applications
including face representation and recognition and gene ex-
pression data analysis.

*Corresponding author: Q. Gao

Applying PCA to image representation and recognition,
we need to transform each image into 1D image vector by
concatenating all rows/ columns of image. So, these meth-
ods cannot well exploit the spatial structure information that
is embedded in pixels [Zhang et al., 2015]. To handle this
problem, many two-dimensional subspace learning method-
s or tensor methods have been developed. The representa-
tive two-dimensional methods include two-dimensional PCA
(2DPCA) [Yang et al., 2004] and multi-linear PCA [Lu et
al., 2008]. These methods minimize the summation of the
reconstruction errors of data in the least-squares sense. It is
commonly known that least-squares techniques are not robust
to outliers.
Recently, ℓ1-norm based subspace learning technique is

considered to be capable of obtaining the robust projection
vectors and has become an active topic in dimensionali-
ty reduction and machine learning. For example, Ke and
Kanade [Ke and Kanade, 2005] proposed L1-PCA which us-
es ℓ1-norm to measure reconstruction error in the objective
function. Kwak [Kwak, 2008] used ℓ1-norm to measure vari-
ance and proposed PCA-L1 with greedy algorithm. Nie et
al. [Nie et al., 2011] proposed a non-greedy iterative to solve
PCA-L1. To well exploit the spatial structure embedded in
image, Li et al. [Li et al., 2010] and Wang et al. [Wang et
al., 2015] respectively extended PCA-L1 to 2DPCA-L1. Ju et
al. [Ju et al., 2015] proposed ℓ1-norm based 2D probabilistic
PCA for dimensionality reduction.
However, ℓ1-norm is not rotational invariant [Ding et al.,

2006], which has been emphasized in the context of learn-
ing algorithms [Ng, 2004]. Since data geometric distribution
remains unchanged under a rotational transformation of the
sample space, the features, which are extracted by criterion
function of subspace learning technique, should remain un-
changed. It helps avoid performance degradation of subspace
learning technique. Based on this content, Half-Quadratic P-
CA (HQ-PCA) is introduced in [He et al., 2011], which uses
the maximum correntropy criterion to extract features. D-
ing et al. [Ding et al., 2006] proposed the rotational invariant
ℓ1-norm for feature extraction and developedR1-PCA. Wang
and Gao [Wang and Gao, 2017] employed F-norm as dis-
tance metric and proposed robust 2DPCA with F-norm min-
imization. These robust PCA algorithms implicitly consider
that all the reconstruction errors or variance of data are equal-
ly important. This reduces the flexibility of algorithms.
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In this paper, we propose a novel formula for PCA, namely
angle PCA. Angle PCA employs ℓ2-norm to measure recon-
struction error and variance and maximizes the summation of
ratio between the variance and reconstruction error of each
data. Moreover, Angle PCA assigns a small weight to large
reconstruction error. Thus, our proposed method not only is
robust to outliers but also well characterizes the relationship
between reconstruction error and variance. To solve Angle
PCA, we propose a fast iterative algorithm, which has closed-
form solution in each iteration. Experiments on several face
databases show the effectiveness of our proposed algorithm.

2 PCA and PCA-L1
2.1 PCA
Assume that we have a set of N sample images X =
{x1, x2, x3, · · · , xN}, where xi ∈ Rm denotes the ith train-
ing image. Without loss of generality, we assume the data set
are centralized, i.e.,

∑N
i=1 xi = 0. PCA aims to seek projec-

tion matrix W ∈ Rm×p by solving the following objective
function [Turk and Pentland, 1991].

argmin
WTW=Ip

∑N

i=1

∥∥xi −WWT xi
∥∥2
2

(1)

where ∥·∥22 denotes the squared ℓ2-norm, Ip denotes a p
dimensional identity matrix. It is easy to see that, the
model (1) is equivalent to the model (2) due to the fact∑N

i=1

∥∥xi −WWT xi
∥∥2
2
+
∑N

i=1

∥∥WT xi
∥∥2
2
=

∑N
i=1 ∥xi∥

2
2 .

argmax
WTW=Ip

tr
(
WTStW

)
= argmax

WTW=Ip

∑N

i=1

∥∥WT xi
∥∥2
2

(2)
where St =

∑N
i=1 xixi

T is the covariance matrix of data,
tr(·) is the trace operator of a matrix,
Solution of Eq. (1) or Eq. (2) is composed of the eigen-

vectors of St corresponding to the first p largest eigenvalues.
As can be seen in the objective functions (1) and (2), PCA
employs squared ℓ2-norm, which is sensitive to outliers, as
distance metric in the criterion function. Thus, solution of the
objective function (1) is not robust in the sense that outlying
measurements skew the solution from the desired solution.

2.2 PCA-L1
To improve robustness of PCA, ℓ1-norm based PCA tech-
nique was proposed by using ℓ1-norm as distance metric in
the criterion function. It has the following two different for-
mulations [Ke and Kanade, 2005; Kwak, 2008].
(a) Reconstruction error based approach. This technique

calculates the reconstruction error by using ℓ1-norm as the
distance metric and obtains the principal directions by

argmin
WTW=Ip

∑N

i=1

∥∥xi −WWT xi
∥∥
1

(3)

(b) Covariance based approach. This technique employs
ℓ1-norm to measure the variance and the principal directions
are obtained as

argmax
WTW=Ip

∥∥WTX
∥∥
L1

(4)

where ∥·∥1 denotes 1-norm of a vector, ∥·∥L1
denotes ℓ1-

norm of a matrix, which can be defined as follows.

∥Q∥L1
=

∑m

i=1

∑n

j=1
|Q(i, j)| (5)

where Q(i, j) denotes the element of the ith row jth column
of matrixQ .
Compared with traditional PCA, the objective functions (3)

and (4) are robust to outliers, but they do not have rotation-
al invariance [Ding et al., 2006], while traditional PCA has
this nice property. Moreover, the objective function (3) is
not equivalent to the objective function (4) due to the fact∑N

i=1

∥∥xi −WWT xi
∥∥
1
+
∑N

i=1

∥∥WT xi
∥∥
1
̸=

∑N
i=1 ∥xi∥1.

It illustrates that solution of Eq. (4) does not minimize the
reconstruction error of data, which is true goal of PCA. How-
ever, it is difficult to solve Eq. (3). Thus, many algorithms
have been proposed to solve the model (4). Finally, both E-
q. (3) and Eq. (4) do not take into account the relationship
between reconstruction error and variance of projected data.

3 Angle PCA
3.1 Motivation and Objective Function
The objective function (1) shows that PCA minimizes the
summation of each squared reconstruction error ∥ei∥22, where
ei = xi −WWT xi, and implicitly considers that the re-
construction errors of all data points are equally important.
Thus, the squared large reconstruction errors, i.e. distances
will dominate the objective function (1). In the presence of
outliers, which deviate significantly from the rest data, the re-
al projection solution will remarkably deviate from the ideal
solution because the outliers have large reconstruction errors
under the ideal projection vectors. This results in sensitiv-
ity of PCA to outliers. Figure1(b) shows some clean data
points and outliers, which are constructed by Matlab func-
tion, and plots the optimal projection vector of PCA and op-
timal projection vector of our method, where WPCA refers
to the projection vector of PCA without outliers, Woutlier

PCA

and Woutlier
AnglePCA respectively refer to the projection vector

of PCA and our method when the training data include out-
liers. Figure1(b) illustrates that, Woutlier

PCA remarkably de-
viates from the direction of WPCA, while our method is
close to the ideal directions. Thus, to achieve robustness,
the contribution of distance metric to the criterion function
(1) should reduce the effect of outliers. Moreover, we hope
the low-dimensional representations are not uniquely deter-
mined up to an orthogonal transformation. Finally, it is easy
to see that, compared with squared Euclidean distance, ℓ2-
norm not only can weaken the effect of large distance but
also has rotational invariance, however, in ℓ2-norm, we have∑N

i=1

∥∥xi −WWT xi
∥∥
2
+
∑N

i=1

∥∥WT xi
∥∥
2
̸=

∑N
i=1 ∥xi∥2.

Combining the aforementioned analysis, we propose a
novel formulation for PCA. It not only integrates the rela-
tionship between variance and reconstruction error in the ob-
jective function but also is robustness to outliers. Specifically,
we aim to seek the projection matrixW by the model (6).

argmax
WTW=Ip

∑N

i=1
Fi(W) (6)
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(a) Reconstruction error vs.variance.
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(b) Projection vectors of PCA and Angle PCA on artificial dataset
with/without outliers.

Figure 1: Diagram of Angle PCA

where Fi(W) =
Hi(W)

Mi(W)
, Hi(W) =

∥∥WT xi
∥∥
2
,

Mi(W) = ∥ei∥2.
It is easy to see thatFi(W) is the cotangent value of the an-

gle between reconstruction error and variance of the ith data
(See Figure 1(a)), i.e.,Fi(W) = cotαi . Thus, the objective
function (6) is called angle PCA (Angle PCA).

3.2 Algorithm

Before solving the objective function (6), we first introduce
the following theorem [Guo et al., 2003; Wang et al., 2007].
Theorem 1. Suppose Aw and Bw are related to W, then the
optimal solution of Eq. (7)

argmax
WTW=Ip

∥Aw∥2
∥Bw∥2

(7)

can be obtained by iteratively solving the model (8).

argmax
WTW=Ip,λw

∥Aw∥2 − λw∥Bw∥2 (8)

where λw relates toW.
Now, we consider how to solve the objective function (6).

Motivated by Theorem 1, the optimal solution of the objec-
tive function (6) can be obtained by iteratively solving the
objective function (9)

G(W, λi) = argmax
WTW=Ip

∑N

i=1
{Hi(W)− λiMi(W)} (9)

where λi relates to Hi(W) and Mi(W).

By simple algebra, we have∑N
i=1 {Hi(W)− λiMi(W)}

=
∑N

i=1

{∥∥WT xi
∥∥2
2

∥WT xi∥2
− λi

∥∥xi −WWT xi
∥∥2
2

∥xi −WWT xi∥2

}
= tr(WTZW)− tr(XDXT )

(10)

where Z =
∑N

i=1 xi(
1

∥WT xi∥2
+

λi

∥xi −WWT xi∥2
)xTi ,

and D is a diagonal matrix whose diagonal elements are

di =
λi

∥xi −WWT xi∥2
.

Algorithm 1: Angle PCA
Input: X={x1, x2, x3, · · · , xN} ∈ Rm×N , p .
Initialize: W1 ∈ Rm×p which satisfiesWTW=I, k=
1, ε=10−1, J(W0)=1, and J(W)=

∑N
i=1 Fi(W).

while J(Wk)− J(Wk−1) ≥ ε do
1.For all training samples, calculate

λk
i =

∥∥∥(Wk−1)
T xi

∥∥∥
2∥∥∥xi −Wk−1(Wk−1)
T xi

∥∥∥
2

.

2.Calculate Zk and Dkby Eq. (10).
3.Solve Wk by Eq.(12).
4. If J(Wk)≥J(Wk−1), go to step 6, else go to step 5.
5. Find Wk that satisfies J(Wk)≥J(Wk−1) by using
sub-gradient method with Armigo line search [Liu et al.,
2017]. If there is no solution, go to step 7, else go to step
6.
6.Update k ← k + 1.
end while
7. Output Wk ∈ Rm×p.

Combining Eq. (10) and Eq. (9), the model (6) finally
becomes
G(W,Z,D)= argmax

WTW=Ip

(tr(WTZW)−tr(XDXT )) (11)

In the objective function (11), we have three unknown vari-
ablesW, Z andD, where Z andD relate toW. Thus, it has
no closed-form solution and is difficult to directly solve the
solution of the model (11). An algorithm can be develope-
d for alternatively updating W (while fixing Z and D), Z
(while fixing W and D) and D (while fixing W and Z). To
be specific, in the kth iteration, when Z andD are known, we
can update W by maximizing the objective function (11). In
this case, the second term in the objective function (11) be-
comes constant. In other words, we updateW by solving the
objective function (12).

W∗ = argmax
WTW=Ip

tr
(
WTZW

)
(12)

According to the matrix theory, solution W∗ of the ob-
jective function (12) are composed of the eigenvectors of Z
corresponding to the p largest eigenvalues. After that, we
calculate Z and D by the updated W. Algorithm 1 lists the
pseudo code of solving the objective function (9), i.e., Angle
PCA.
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3.3 Convergence Analysis
Theorem 2. Algorithm 1 will converge to a stationary point
of the objective function (6).
Proof: The Lagrangian function of the problem (9) is

L =
∑N

i=1
{Hi(W)− λiMi(W)}−tr

(
Λ
(
WTW − Ip

))
(13)

where the Lagrangian multiplies Λ is a diagonal matrix for
enforcing the orthonormal constrains WTW = Ip. In the
kth iteration, when λi (i = 1, · · · , N ) are known, the KKT
condition of the problem (9) specifies that the gradient of L
must be zero, i.e.,

∂L

∂W
= ZW −WΛ = 0 (14)

By simple algebra, we have

ZW = WΛ (15)

According to step 3 in Algorithm 1, we find the optimal
solution of the objective function (12). Thus the converged
solution of Algorithm 1 satisfies the KKT condition of the
problem (12). The Lagrangian function of Eq. (12) is

L2(W) = tr(WTZW)− tr(ΛT (WTW − I)) (16)

Taking the derivative w.r.t. W and setting it to zero, we get
the KKT condition of (12) as follows.

ZW −WΛ = 0 (17)

Note that, in (17), matrix Z relates to Wk−1. Suppose
we obtain the local solution W∗ in the kth, thus, we have
W∗ = Wk = Wk−1. In this case, Eq. (17) is just the same
as Eq. (15). It means that the converged solution of Algorithm
1 satisfies the KKT condition of Eq. (9), i.e.,

∂L

∂W

∣∣∣∣
W=W∗

= 0 (18)

Eq. (18) illustrates that the converged solution of Algorith-
m 1 is at least a stationary point of the model (9). Moreover,
according to Theorem 1, we have that solution of the objec-
tive function (6) can be approximately obtained by solving E-
q. (9). Thus, the converged solution of Algorithm 1 is also a s-
tationary point of the model (6), i.e., Angle PCA.
Step 4 and step 5 in Algorithm 1 illustrate that the objec-

tive function value of angle PCA is non-decreasing in each
iteration. Combining the theorems 1 and 2, we have that Al-
gorithm 1 may converge to a local solution of Angle PCA in
some cases.

3.4 Rotational Invariance
We show that our proposed approach has nice rotation-
al invariance. Rotational invariance means that the low-
dimensional representations remain unchanged under a rota-
tional transformation of the sample space. Given an arbitrary
rotation matrix Γ (ΓTΓ = I ). Then, the rotational transfor-
mation of W and xi is defined as follows:

W̃ = ΓW, x̃i = Γxi (19)

For each term in the objective function (6), we have∥∥WT xi
∥∥
2

∥xi −WWT xi∥2
=

∥ui∥2
∥(ΓTΓ)(xi −Wui)∥2

=
∥ui∥2

∥Γxi − ΓWui∥2

=
∥ui∥2∥∥∥x̃i − W̃ui

∥∥∥
2

(20)

where ui = WT xi is the low-dimensional representation of
xi. The above equation illustrates that, ifW is the solution of
the objective function of Angle PCA, then W̃ is the projec-
tion matrix of Angle PCA under a rotational transformation
Γ. Thus, we have

W̃T x̃i = WTΓTΓxi = WT xi = ui (21)

Hence, the low-dimensional representation of xi, remains
unchanged in the rotational transformation.

4 Experimental Results
We validate our approach on three face databases (Extended
Yale B, CMU PIE and AR) and compared it with traditional
PCA [Turk and Pentland, 1991] and recently proposed ro-
bust PCA methods including PCA-L1 greedy [Kwak, 2008],
PCA-L1 non-greedy [Nie et al., 2011], and HQ-PCA [He et
al., 2011]. In our experiments, we use 1-nearest neighbor
(1NN) for classification and set the number of projection vec-
tors from 10 to 200. We estimate the performance by both
recognition accuracy which is obtained by 1NN classifier and
reconstruction error. In our experiments, we calculate the re-
construction error of clean data by

error =
1

N

∑N

i=1

∥∥xiclean −WWT xiclean
∥∥
2

(22)

where N is the number of training data, W ∈ Rm×p is the
projection matrix. xiclean is the i-th clean training sample.

4.1 Experiments on The Extended Yale B
Database

The Extended Yale B database [Georghiades et al., 2001]
consists of 2144 frontal-face pictures of 38 individuals with
different illuminations. There are 64 pictures for each per-
son except 60 for the 11th and 13th, 59 for the 12th, 62 for
the 15th and 63 for the 14th, 16th and 17th. In the experi-
ments, each image was normalized to 32× 32 pixels [He and
Niyogi, 2005]. 14 images of each individual were random-
ly selected and noised by black and white dots with random
distribution. The location of noise is random and ratio of the
pixels of noise to number of image pixels is intervenient 0.05
to 0.15. We randomly select 32 images, which include 7 noisy
images, per person for training, and the remaining images for
testing. PCA, PCA-L1 greedy, PCA-L1 nongreedy, HQ-PCA
and our approach Angle PCA are used to extract features, re-
spectively. We repeat this process 10 times.
Table 1 lists the average reconstruction error, recognition

accuracy and the corresponding standard deviation of each
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Table 1: The average reconstruction error and recognition accuracy
of each method on the Extended Yale B database.

Methods Error Accuracy
PCA 323.34±2.76 55.98±0.55

PCA-L1 greedy 277.83±2.26 57.90±0.43
PCA-L1 nongreedy 337.92±3.08 55.22±0.5

HQ-PCA 310.57±2.76 57.05±0.49
Angle PCA 216.99±1.62 59.12±0.35

method on the Extended Yale B database. Figure 3 (a),(b)
respectively plots the reconstruction error and recognition ac-
curacy vs. number of projection vectors on the Extended Yale
B database. Table 1 and Figure 3 (a),(b) show that our method
Angle PCA obviously outperforms the other four method-
s both in terms of reconstruction error and recognition ac-
curacy. The reason is that Angle PCA employs ℓ2-norm as
distance metric to measure reconstruction error and variance,
which is robust to outliers and has rotational invariance, in the
criterion function. Moreover, Angle PCA explicitly considers
the relationship between reconstruction error and variance of
projected data, which is important for data representation and
classification.

4.2 Experiments on The CMU PIE Database
The CMU PIE database [Sim et al., 2002] consists of 2856
frontal-face images of 68 individuals with different illumi-
nations. In the experiments, each image was normalized to
32 × 32 pixels, we randomly selected 10 images and added
the same noise as that in the Extended Yale B database. We
randomly selected 21 images, which include 16 noise-free
images, per person for training and the remaining images for
testing. This process is repeated 10 times.
Table 2 lists the average reconstruction error, recognition

accuracy and the corresponding standard deviation of each
method on the CMU PIE databases. Figure 3 (c),(d) plots
the curve of reconstruction error and recognition accuracy vs.
dimension on the CMU PIE databases, respectively. Table 3
and Figure 3 (c),(d) show that our proposed method is supe-
rior to the other methods under the reconstruction error and
recognition accuracy. Traditional PCA is inferior to PCA-L1
and HQ-PCA. These conclusions are consistent with that in
the Extended Yale B database. The main reason may be that
large distance dominates the criterion function in PCA, and
the variations between images, which have the same class la-
bel with different illumination, is larger than the change of
face identity.

4.3 Experiments on The AR Database

Figure 2: Some samples of one person in the AR database

Table 2: The average reconstruction error and recognition accuracy
of each method on the CMU PIE database.

Methods Error Accuracy
PCA 204.94±2.17 84.17±0.78

PCA-L1 greedy 143.16±0.88 85.34±0.7
PCA-L1 nongreedy 205.39±2.00 84.10±0.75

HQ-PCA 185.05±1.34 84.62±0.75
Angle PCA 62.72±0.98 86.57±0.67

The AR database [Martinez, 1998] contains over 4000 col-
or face image of 126 people (70 men and 56women), includ-
ing frontal views of faces with different facial expressions,
lighting conditions and occlusions such as glasses and scarfs.
The pictures of 120 individuals were taken in two session-
s (separated by two weeks). Each session contains 13 color
images, which include 6 images with occlusions and 7 ful-
l facial images with different facial expressions and lighting
conditions. We manually cropped the face portion of the im-
age and then normalized it to 50× 40 pixels. Figure 2 shows
some normalized images of one person, where images (a) to
(m) are from session 1, and the other images are from session
2.
In this database, we do the following three group exper-

iments. In the first group experiment, we select 9 images,
which include images (a)-(h) and image k from the first ses-
sion for training, and the remaining images for testing. In the
second group experiment, we select images from (a) to (h)
per person for training, and 12 images, which include images
from (i) to (j) and images (n) to (w), per person for testing.
In the third group experiment, we select images from (a) to
(g) and image (k) per person for training, the remaining im-
ages, which do not include images with glasses, for testing.
Figure 3 (e),(f) shows the reconstruction error and recogni-
tion accuracy of each method. Figure 3 (e) shows that our
approach Angle PCA has the minimum reconstruction error
and is remarkably superior to the other robust PCA methods.
PCA is remarkably inferior to the other four approaches. This
is because PCA characterizes the similarity between data by
squared ℓ2-norm, which is very sensitive to outliers, while ℓ1-
norm based methods and our approach are robust to outliers.
Figure 3 (f) illustrates that our approach Angle PCA is su-
perior to PCA-L1 greedy, PCA-L1 non-greedy and PCA for
image classification. The reason is that our method not only
is robust to outliers but also has rotational invariance. More-
over, non-greedy PCA-L1 greedy and PCA-L1 non-greedy
do not minimize the reconstruction error, which is real goal
of PCA. As can be seen in Figure 3 (f) , Angle PCA is overall
inferior to HQ-PCA for image classification. The reason may
be that Angle PCA employs the fixed mean value. Moreover,
it is commonly known that PCA extracts the most expressive
features rather discriminant features, thus, it is reconstruction
error that has been widely used to evaluate performance of
PCA.
Table 3 shows the average running time and the corre-

sponding standard deviation of each method on three databas-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2940



Dimension
0 50 100 150 200

R
ec

on
st

ru
ct

io
n 

Er
ro

r

200

300

400

500

600

700

800
PCA
PCA-L1 greedy
PCA-L1 nongreedy
HQ-PCA
Angle PCA

(a) Reconstruction error vs. variation of di-
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(b) Recognition accuracy vs. variation of di-
mension on the Extended Yale B database.
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(e) The reconstruction error under three ex-
periments on the AR database.
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periments on the AR database.

Figure 3: The reconstruction error and recognition accuracy results on three databases.

Table 3: The average running time and the corresponding standard
deviation of each method on three databases.

Methods
Extended

AR CMU PIE
Yale B

PCA 0.01±0.14 4.10±0.05 0.16±0.02
PCA-L1 greedy 23.33±0.51 103.16±1.33 29.44±0.62

PCA-L1 nongreedy 2.72±0.06 7.12±0.27 2.64±0.06
HQ-PCA 3.02±0.10 5.30±0.09 3.43±0.13
Angle PCA 5.65±0.09 27.81±0.81 5.79±0.16

es. To be fair, we set the number of projection vectors 400,
and set the number of iteration 20. From Table 3, we can see
the running time of our method is similar as PCA-L1 non-
greedy, and HQ-PCA. Besides our method is faster than PCA-
L1 greedy. Figure 4 shows the convergence curve of our pro-
posed method vs. number of iteration on three databases. It
can be seen that our method can monotonically increase the
value of the objective function (6) in each iteration. More-
over, in each iteration, our proposed algorithm has a closed-
form solution. Thus, these experiments illustrate that our pro-
posed algorithm overall has a local solution.

5 Conclusions
We propose a novel formula for PCA, called Angle PCA, for
data representation and classification. Angle PCA employs
ℓ2-norm as distance metric to measure reconstruction error
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Figure 4: Convergence curve of our method.

and variance and aims to seek projection matrix that maxi-
mizes the summation of the ratio between variance and recon-
struction error of each data. It explicitly takes into account the
relationship between reconstruction error and variance. To
solve Angle PCA, we propose an iterative algorithm, which
is fast and has closed-form solution in each iteration. Exper-
iments on the several databases illustrate that Angle PCA is
superior to the other methods.
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