
A Sequence Labeling Convolutional Network and Its Application to Handwritten
String Recognition∗

Qingqing Wang, Yue Lu
Shanghai Key Laboratory of Multidimensional Information Processing

Department of Computer Science and Technology, East China Normal University
3663 North Zhongshan Road, Shanghai 200062, P. R. China

ylu@cs.ecnu.edu.cn

Abstract
Handwritten string recognition has been struggling
with connected patterns fiercely. Segmentation-
free and over-segmentation frameworks are com-
monly applied to deal with this issue. For the
past years, RNN combining with CTC has occupied
the domain of segmentation-free handwritten string
recognition, while CNN is just employed as a sin-
gle character recognizer in the over-segmentation
framework. The main challenges for CNN to di-
rectly recognize handwritten strings are the appro-
priate processing of arbitrary input string length,
which implies arbitrary input image size, and rea-
sonable design of the output layer. In this paper, we
propose a sequence labeling convolutional network
for the recognition of handwritten strings, in par-
ticular, the connected patterns. We properly design
the structure of the network to predict how many
characters present in the input images and what ex-
actly they are at every position. Spatial pyramid
pooling (SPP) is utilized with a new implementa-
tion to handle arbitrary string length. Moreover,
we propose a more flexible pooling strategy called
FSPP to adapt the network to the straightforward
recognition of long strings better. Experiments
conducted on handwritten digital strings from two
benchmark datasets and our own cell-phone num-
ber dataset demonstrate the superiority of the pro-
posed network.

1 Introduction
Handwritten string recognition has attracted intensive atten-
tion in recent years due to its vast applications in both indus-
trial projects and financial transactions, such as mail sorting
system and bank check processing. A straightforward solu-
tion is to segment strings into components which correspond
to single characters or part of them, and then analyze the
recognition results of each component or their combination

∗Corresponding author (ylu@cs.ecnu.edu.cn). This work is
jointly supported by the Science and Technology Commission of
Shanghai Municipality under research grant 14511105500 and the
Natural Science Foundation of Shanghai No. 17ZR1408200.

to calculate the optimal integrated result. This traditional s-
trategy is called over-segmentation framework. The alterna-
tive methods resort to segmentation-free framework, which
directly recognizes the whole input strings without segment-
ing. For example, some researchers try to obviate segmenting
by utilizing Recurrent Neural Network (RNN)/Long Short-
Term Memory (LSTM) combining with Connectionist Tem-
poral Classification (CTC) in the task of handwritten string
recognition. This strategy has been flourishing since the re-
vival of deep learning due to its integrated structure. For these
two frameworks, the former requires sophisticated techniques
about over segmenting, touch splitting, single character rec-
ognizing and best path searching, while the latter needs plenty
of training data.

Liu’s group has proposed many efficient algorithms based
on the over-segmentation framework such as [Liu et al.,
2004] [Wang et al., 2012]. Particularly, one of their al-
gorithms won the first place on the ICFHR2014 handwrit-
ten digit string recognition (HDSR) competition [Diem et
al., 2014]. Keysers et al. [Keysers et al., 2016] present-
ed Google’s online handwriting recognition system that cur-
rently supports 22 scripts and 97 languages. This system al-
so followed the over-segmentation framework and has been
publicly available in several Google products such as Google
Translate. In these methods, classifiers are trained only for s-
ingle characters, therefore at the previous stage, it is expected
to form intact single characters by over segmenting strokes
and combing consecutive ones. Segmentation-free methods
based on RNN/LSTM/CTC also achieved comparable per-
formance in the ICFHR2014 HDSR competition [Diem et
al., 2014] and showed its superiority to the winner on the
most challenging CAR-B dataset. Additionally, this kind of
methods are also widely used in other languages such as En-
glish [Graves et al., 2009], Arabic [Graves and Schmidhuber,
2008], Chinese [Messina and Louradour, 2015] and so forth.
It is remarkable that, on the recent ICFHR2016 handwritten
text recognition competition [Sanchez et al., 2016], all of the
six submissions are RNN/LSTM/CTC based. In these meth-
ods, RNN maps current input to corresponding output with
considering its history (namely previous inputs), and CTC
is assembled at the output layer to perform sequence label-
ing without requirement of pre-segmenting inputs and post-
processing network’s outputs. To cope with the problem of
gradient vanishing, LSTM is proposed as an improvement of

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2950

the original RNN.
Convolutional Neural Network (CNN) is a popular topic

in the field of deep learning and has played dominant roles
in many tasks. Numerous sophisticated techniques are stud-
ied to promote its expression ability and recognition accura-
cy. However, few strategies are proposed for sequence label-
ing with CNN except Goodfellow et al. [Goodfellow et al.,
2014]. The main difficulties are posed by the arbitrary in-
put size and the reasonable structure design. Goodfellow et
al. [Goodfellow et al., 2014] recognized Street View House
Number (SVHN) with CNN by assembling multiple softmax
classifiers at the output layer. The first one was employed
to predict string length and its prediction result determined
how many following classifiers should be taken to figure out
target string. But this method separately trained individual
classifiers, and saved separate weight matrix for each separate
digit classifier. As discussed in [Goodfellow et al., 2014], for
long sequences this could incur too high of a memory cost.
Moreover, this method resized input images into a fixed size
and alleviated deformation caused by resizing with addition-
al background pixels. This operation also limited the capa-
bility of this method. As pointed out by Goodfellow et al.,
for large maximum length, their method was unlikely to s-
cale well. Besides, the resizing operation is not suitable for
handwritten string recognition since the lengths of handwrit-
ten strings are significant different, and any resizing operation
can cause serious deformation of characters. And in this case,
easing deformation by padding additional background pixels
will result in heavy computation burden. SPP proposed by
He et al. [He et al., 2015] has the capability to handle the ar-
bitrary input sizes without resizing operation. Unfortunately,
in order to take advantage of existing GPU implementations
(such as cuda-covnet and caffe), He et al. implemented their
SPP network by two fixed-size networks sharing parameters
and preserved the SPP behaviors by multiple conventional s-
liding window pooling layers with different pooling sizes and
strides. Hence, during the training procedure, training sam-
ples still needed to be resized into fixed sizes.

In this paper, we carefully design a sequence labeling con-
volutional network to recognize handwritten strings, in par-
ticular, the intractable connected patterns. SPP is employed
with a new implementation so that training samples even in
the same batch can own different sizes. For the original SPP,
images with different aspect ratios, which indicate different
string lengths, share the same scale setting. Intuitively, more
features should be extracted for images containing more char-
acters, while fewer features are enough for those with fewer
characters. Toward this end, we propose a more flexible pool-
ing strategy called FSPP, which fixes the vertical scale setting
and designs different horizon scale setting to images accord-
ing to their aspect ratios.

To demonstrate the effectiveness of the proposed network,
we conduct experiments on handwritten digit strings from
CVL and ORAND-CAR datasets. Comparison with all the
participating methods of ICFHR2014 competition shows the
superiority of our proposed network. Furthermore, we col-
lect a cell-phone number dataset named PhPAIS(cell-phone
number dataset collected by Lab of Pattern Analysis and In-
telligence System) from the real China post images to verify

the practicability of FSPP.

2 Proposed Network
Architecture of the proposed network is depicted in Figure 1.
Four convolutional layers and two mean pooling layers are
designed before an Inception module, which is followed by a
SPP or FSPP layer. Then the fixed-length features extracted
by the SPP or FSPP layer are fed into two fully-connected
layers that assembled before the final classifier layer. If we
regard SPP or FSPP layer as extracting global features at mul-
tiple scales, and Inception module as extracting local features
at multiple scales, setting a SPP or FSPP layer after an In-
ception module [Szegedy et al., 2015] will be beneficial for
the model to extract richer information. The goal of the target
network is to predict the order concerned sequential charac-
ters. Intuitionally, information from two aspects needs to be
extracted: (1) how many characters are contained in the in-
put images, and (2) what exactly it is at each position. So we
equip the proposed network with two modules named CM,
which is short for ‘counting module’, and PM, which is short
for ‘prediction module’, to predict corresponding informa-
tion. Apparently, the proposed network is supposed to have a
cluster of classifiers rather than a single one. Therefore, we
need to blend prediction errors of these classifiers into one
structure when we design the cost function for the network.

2.1 Model Prediction
Considering an input image X containing N characters D =
{d1, d2, ..., dN}, the objective of the basic approach is to pre-
dictN and digit di at position pi correctly. Suppose the maxi-
mal input sequence length asK, which is pre-determined, we
designK nodes at CM andK softmax classifiers at PM. Let’s
denote the prediction result of CM as L, L 6 K, and K pre-
diction results of PM as S = {s1, ..., sK}, si ∈ Φ ∪ {NAN},
where Φ represents the alphabet of characters needed to be
predicted and NAN means there is no character showing at
this position. In this architecture, we assume that characters
are independent from each other. So for a specific sequence
with l characters G = {l, g1, ..., gl}, l ≤ K, its probability
output can be defined as

P (G|X) = p(L = l|X)

l∏
i=1

p(si = gi|X)

K∏
j=l+1

p(sj = NAN|X)

(1)

where p(·) is the probability output of softmax classifiers.
The optimal prediction result G′ = {l′, g′1, ..., g′l′} of the ar-
chitecture is determined by

G′ = (l′, g′1, ..., g
′
l′) = argmax

l,g1,...,gl

logP (G|X) (2)

At backward propagating stage, the gradients are back
propagated with Stochastic Gradient Descent (SGD) with
momentum. We denote the batch size as m, then the cost
function of the proposed network can be formulated as

J =− 1

m
[

m∑
i=1

log(p(L = N (i)|X(i))

N(i)∏
k=1

p(s
(i)
k = d

(i)
k |X

(i))

K∏
k=N(i)+1

p(s
(i)
k = NAN|X(i)))]

(3)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2951

...

Images with
arbitrary sizes

Conv:
128@3x3

Conv:
128@3x3

Pooling:
2x2+2

Conv:
256@1x1

Conv:
256@3x3

Pooling:
2x2+1

Conv:
64@1x1

Conv:
96@1x1

Conv:
32@1x1

Pooling:
2x2+1

Conv:
128@3x3

Conv:
64@5x5

Conv:
32@1x1 SPP layer

or FSPP layer
FC:
320

FC:
512

CM

PM

Figure 1: Structure of the proposed network

where X(i) is the input image of the ith sample, which con-
tains N (i) characters {d(i)1 , ..., d

(i)

N(i)}, and s
(i)
k denotes the

prediction result of the kth classifier in PM for the ith sample.
This cost function fuses prediction errors of CM and PM into
one structure, so we can train all of the softmax classifiers si-
multaneously by minimizing this function. In order to prevent
overfitting, we introduce a weight decay term and rewrite the
cost function as

J =− 1

m
[

m∑
i=1

log(p(L = N (i)|X(i))

N(i)∏
k=1

p(s
(i)
k = d

(i)
k |X

(i))

K∏
k=N(i)+1

p(s
(i)
k = NAN|X(i)))] +

λ

2

∑
w2

s.t. w ∈W
(4)

where λ is the weight decay used to control the relative im-
portance of this item, and W denotes the set of weight coef-
ficients of the network. Parameters θ including weight coef-
ficients W and bias b are updated by θ = θ − α∇θJ , where
α is the learning rate.

In our design, possibilities of strings with length from 1 to
K are calculated and compared with considering all of the
classifiers’ prediction results. While in Goodfellow’s design,
if the prediction result of the first classifier is k, the prediction
results of the k following classifiers are simply concatenated
to obtain the target string and prediction results of other clas-
sifiers are omitted. Additionally, unlike Goodfellow’s work,
which resizes input images into a fixed size, We utilize the
re-implemented SPP or FSPP to handle arbitrary input image
sizes without any resizing operation.

2.2 Implementation of SPP
The input of the SPP layer is a serial of feature maps, each of
which needs to be pooled into fixed-length representations at
this layer in the way depicted in Figure 2(a). An input feature
map is divided into different bins evenly at each scale, and
for the tth scale, there will be t× t = t2 bins. Then for each
bin, we calculate the mean value or max value (mean value is
chosen in our experiments) as its representation. Obviously,
if we set the overall scale number as T , 1 + 22 + ... + T 2 =
T (T+1)(2T+1)

6 features will be obtained for each feature map.
We denote the size of an input feature map as a × b. For the
tth scale, if a or b cannot be exactly divided by t, bins of the
last column or row will share pixels with the previous ones.

Forward feature

Feature map
of pre-layer

Spatial bins
of each scale

scale1 scale2 scale3

Mean value of
each spatial bin

Fixed-length
representation

Backward error
term

p1

p2

Fixed-length
error term

Mapping into
right spatial bins

Backward error term
to proceeding layer

1 2 3

(a) Procedure of forward propagation (under the setting T=3)

(b) Procedure of backward propagation (under the setting T=3)

(c) Error term contribution of Γ3to point p
col1 col2col3

3_ ij

p

3_ p

row1

row2
row3

Figure 2: Implementation of spatial pyramid pooling

The procedure of back propagating error terms is described
in Figure 2(b). Firstly, elements of error term vector are
mapped into corresponding spatial bins of each scale. Then
error terms of proceeding layer are calculated from values of
bins at different scales. For the tth scale, we denote error ter-
m of bin at position (i, j) as δt ij , and the error term map of
this scale as Γt. δt p means the total error term contribution of
bins at tth scale to pixel p of certain feature map in previous
layer. The final error term of pixel p is calculated by

δp =

T∑
i=1

δi p

ba/ic × bb/ic (5)

Note that in the forward procedure, several bins may share
same pixels. So error terms are also shared by multiple pix-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2952

els in the corresponding backward procedure. Figure 2(c)
demonstrates one of the sharing cases. In this situation, δ3 p
is computed by (6) since there are four bins sharing pixel p in
the forward procedure.

δ3 p = δ3 22 + δ3 33 + δ3 32 + δ3 23 (6)

With above implementation, our network can be trained
with samples in arbitrary sizes directly. In the experiments,
samples within the same batch may have different sizes,
which is different from the implementation in [He et al.,
2015]. Theoretically, our implementation can be used to rec-
ognize handwritten strings with any length, while the origi-
nal training strategy proposed in [He et al., 2015] cannot s-
ince its resizing step will cause deformation of strings. And
the longer the string is, the more serious the deformation be-
comes.

2.3 FSPP Layer
FSPP is different from SPP in the following two aspects: (1)
in the vertical direction, the scale is fixed (set to 3 in our
work), and (2) in the horizontal direction, the setting of s-
cale is dynamically changed according to the aspect ratios of
input images. The procedure of feature extraction is shown in
Figure 3. As we can see, in the SPP strategy, 30 features are
extracted for both images containing ‘78’ and ‘83920’ when
the sale is set to 4. While in the FSPP strategy, 18 features are
extracted for the former and 45 features are extracted for the
latter when the scale is set to 3 and 5 for them, respectively.

(a) Images with different numbers of characters
Input
image

Feature
map Scale=1 Scale=2 Scale=3 Scale=4

(b) Converting feature map into fixed-length representation
by standard SPP

Input
image

Feature
map

Scale=1 Scale=2 Scale=3 Scale=4

(c) Converting feature map into fixed-length representation
by the proposed FSPP

Scale=5

Figure 3: Feature extraction of the SPP layer and FSPP layer from
feature maps with arbitrary sizes

Then we send the extracted features into the next fully-
connected layer by the way shown in Figure 4, where FMi

represents the converted features of ith feature map. In this
figure, the scale is set to 2, 3 and 4 (or larger) for images
with aspect ratio (denoted by AR) within the interval (0, τ1],

Scale=1

Scale=2

Scale=3

Scale=4

1(0,]AR 

...

FM1FMM

...

1 2(,]AR  

2(,)AR  

Nd

Figure 4: Connection of the FSPP layer to the next fully-connected
layer

(τ1, τ2] and (τ2,∞), respectively. Each node Nd in the next
layer needs to connect with all of the extracted features in the
FSPP layer. For example, if the aspect ratio of certain input
image is within (τ1, τ2], the scale will be set as 3 in the FSPP
layer, and each node Nd will connect with 3× (1 + 2 + 3)×
M = 18M features totally. In practice, we need the image
sizes together with raw image pixels flow into the network
together so that the GPU can determine pooling scales for
individual images at this layer directly.

3 Experiments
We conduct experiments on handwritten digit strings ob-
tained from CVL and ORAND-CAR datasets (provided by
Diem et al. [Diem et al., 2014]) to demonstrate the effective-
ness of the proposed network, and compare its performance
with all the participating methods of ICFHR2014 HDSR
competition. To further verify the practicability of the pro-
posed network and the priority of the FSPP layer, we carry out
experiments on our own cell-phone number dataset named
PhPAIS. Figure 5 exhibits some samples, where ORAND-
CAR is split into CAR-A and CAR-B since its images are
obtained from real checks provided by two banks, and some
digits of the PhPAIS dataset are covered for privacy protec-
tion. Distribution of the samples in each dataset with respect
to string length is shown in Table 1.

Our network uses Rectified Linear Units (ReLU) as acti-
vation function, and the learning rate initialized at 0.01 drops
50% after each epoch. The precision is defined as the number
of correctly recognized strings divided by the total number
of strings, which is the same as the hard metric defined in
ICFHR2014 competition [Diem et al., 2014]. The system is
coded in Matlab, C++ and CUDA language without using any
other open framework like caffe.

3.1 Training of the Proposed Network
From Table 1 we can see that the length of digit strings ranges
from 2 to 11. But it does not mean all of the digits are total-
ly connected (as shown in Figure 5). Actually, handwritten

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2953

(a) CVL (b) CAR-A

(c) CAR-B

(d) PhPAIS

Figure 5: Samples from each dataset

Table 1: Distribution of the four different databases with respect to
string length

train test
Len CVL CAR-

A
CAR-

B
PhP-
AIS

CVL CAR-
A

CAR-
B

PhP-
AIS

2 0 22 0 0 0 36 0 0
3 0 204 0 0 0 387 5 0
4 0 704 63 0 0 1425 69 0
5 125 903 1200 0 789 1475 1241 0
6 758 145 1599 828 4144 363 1452 912
7 379 29 137 244 1765 87 157 350
8 0 2 1 264 0 11 2 379
9 0 0 0 178 0 0 0 313

10 0 0 0 364 0 0 0 586
11 0 0 0 3122 0 0 0 3937
total 1262 2009 3000 5000 6698 3784 2926 6477

digit strings usually consist of single digits and connect pat-
terns with shorter length, and it is not hard to split these digit
strings. Therefore, our network only needs to deal with the
single digits and the connected patterns. According to our s-
tatistics, the dominant lengths of connected patterns in CVL
and CAR datasets is 1, 2 and 3, so it is reasonable to set the
maximal input sequence length K = 3 for CVL and CAR
datasets. The connection situation of PhPAIS is more seri-
ous, therefore we set K = 5 for this dataset.

To train the proposed network, we generate new dataset-
s by manually cropping the digit images from CVL, CAR-
A, CAR-B and PhPAIS, and naming them as cropped-

Table 3: Recognition accuracies (%) on the cropped datasets

Len 1 2 3 Mean
croppedCVL 96.37 89.21 78.32 89.11

croppedCAR-A 98.06 95.29 89.61 95.09
croppedCAR-B 98.72 95.97 92.65 96.23

CVL, croppedCAR-A, croppedCAR-B and croppedPhPAIS,
respectively. The new datasets are composed of single digits
and strings with 1 to 5 digits. Corresponding distribution is
presented in Table 2.

Recognition accuracies of the proposed network
with respect to different string length on croppedCVL,
croppedCAR-A and croppedCAR-B datasets are shown in
Table 3. Since the connection situation of these datasets
are not very serious, we just use SPP layer in this network
and set the scale to 4 in this layer. As we can see, though
the background of ORAND-CAR is very complicated, our
proposed network is still capable of achieving the accuracies
higher than 95% on both croppedCAR-A and croppedCAR-B
datasets. We attribute the success to the deep and properly
designed network structure and to the huge amount of
training samples. Additionally, though CAR-B is the most
challenging dataset among CVL, CAR-A and CAR-B, which
is summarized by [Diem et al., 2014], our network achieves
the best performance on croppedCAR-B dataset in Table
3, especially for strings with length of three. The reason is
implied in Table 3, where the amount of training samples in
croppedCAR-B is about two times of that in croppedCVL or
croppedCAR-A. So we can figure out that more samples are
very helpful for improving the performance of the proposed
network, and it is very likely to improve the accuracies on
croppedCVL and croppedCAR-A by providing more training
samples.

3.2 Performance of the Proposed Network
We compare our method with the submissions of ICFHR2014
HDSR competition under the same evaluation metrics. To
recognize handwritten strings in CVL and ORAND-CAR, we
coarsely segment original images into single digits and con-
nected patterns by using horizontal projection and connected
component analysis. Then the trained sequence labeling net-
work is used to recognize each segment and the final results
are obtained by simply joining the recognition results of all
segments together.

Comparison results are shown in Table 4. Obviously, the
proposed method achieves the highest mean accuracy on the

Table 2: Distribution of the cropped datasets with respect to string length

croppedCVL croppedCAR-A croppedCAR-B croppedPhPAIS
Len train test train test train test train test
1 7613 4714 8985 3667 15515 4386 48248 7133
2 6434 3977 6957 2886 13198 3599 42934 6368
3 5267 3206 4985 2088 10489 2802 37710 5630
4 0 0 0 0 0 0 33318 5211
5 0 0 0 0 0 0 28207 4425

total 19314 11897 20927 8641 39202 10787 190417 28767

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2954

Table 4: Recognition accuracies (%) of different methods

Method CAR-
A

CAR-
B

CVL Mean Framework

Tebessa I 37.05 26.62 59.30 40.99 over-segmentation
Tebessa II 39.72 27.72 61.23 42.89 over-segmentation
Singapore 52.30 59.60 50.40 54.10 segmentation free
Pernamb
-uco

78.30 75.43 58.60 70.78 over-segmentation
segmentation free

Beijing 80.73 70.13 85.29 78.72 over-segmentation
Proposed 82.61 83.32 79.23 81.72 —-

three datasets. Especially, the accuracies on both challeng-
ing CAR-A and CAR-B datasets outperform the other meth-
ods by a large margin. According to [Diem et al., 2014],
Beijing along with Pernambuco outperformed the other par-
ticipating methods. Mean accuracy on CAR-A and CAR-
B datasets of the Beijing and Pernambuco are (80.73% +
70.13%)/2 = 75.43% and (78.30%+75.43%)/2 = 76.87%,
respectively. While our method gets a mean accuracy of
(82.61%+83.32%)/2 = 82.97%, which is 7.54% and 6.10%
higher than the Beijing and Pernambuco methods. Beijing
is a well-designed over-segmentation method and Pernambu-
co is a combination of multiple classifiers including a hybrid
classifier combining k-NN and SVM, and a hybrid classifi-
er combining SVM and MDRNN [Graves and Schmidhuber,
2008]. The combination of k-NN and SVM is supposed to be
an over-segmentation method while the combination of SVM
and MDRNN is a segmentation-free method. Besides that,
Pernambuco takes real data extracted from Brazilian bank
checks of last decades into account. Singapore combines
HOG feature and RNN to handle this task, but due to the s-
mall amount of training samples, it doesn’t perform well.

From Figure 5 we can see that both CAR-A and CAR-B
are disturbed by background clutter and suffer from character
connection problem. It seems there is no difference between
these two datasets. However, according to Table 3, the domi-
nant length of CAR-A is four and five, while it is five and six
for CAR-B. The little difference has caused large margin in
recognition accuracy. As shown in Table 4, all the methods
achieved higher accuracy in CAR-A than CAR-B except Sin-
gapore. Apparently, these methods are very sensitive to string
length. However, our method achieves very similar accuracy
on the two datasets, which implies that the proposed method
is more robust to string length. We blame the low accuracy of

Table 5: Recognition accuracies (%) on the croppedPhPAIS and Ph-
PAIS datasets

croppedPhPAIS PhPAIS
Set-
ting

Pooling
&scale

Len=1 Len=2 Len=3 Len=4 Len=5

1 SPP&4 99.45 98.79 97.10 95.30 91.82 84.47
2 SPP&3 99.36 98.38 97.26 94.53 89.99 82.49
3 FSPP

&2,3,4
99.44 98.45 97.19 94.59 91.77 84.31

4 FSPP
&3,4,5

99.48 98.74 97.39 95.16 92.45 84.72

our method on CVL to the lack of diversity of this dataset s-
ince only 26 different strings are included by its 7960 samples
(only 1262 for training). Though it is 6% lower than Beijing
on CVL dataset, our method still achieves an accuracy 20%
higher than Pernanmbuco. Overall, our method outperforms
all of the participating methods of ICFHR2014 competition
with a mean accuracy of 81.72% on the three datasets.

3.3 Comparison of SPP and FSPP on PhPAIS
Dataset

The superiority of the proposed FSPP is evaluated on the Ph-
PAIS dataset. Images in this dataset suffer from much longer
string length (mostly 11) and more serious connection situa-
tion (maximal string length of connected patterns is up to 5).
The proposed network is evaluated under four settings, which
share the same configuration except the SPP/FSPP layer. De-
tails and recognition results are shown in Table 5. Aspect ra-
tio intervals of FSPP in setting 3 and 4 are (0, 0.5), [0.5, 0.9)
and [0.9,∞). Network trained on the croppedPhPAIS is used
to recognize the full-length strings of the PhPAIS dataset by
cooperating with some simple coarse segmentation strategies.

Comparing recognition results of the first two settings we
can figure out that, reducing scales of the SPP layer will
not cause significant performance degradation to the short
strings, which means too many features is redundant and un-
necessary for short strings. In contrast, a larger performance
degradation can be observed on longer strings. Intuitively,
longer strings need richer features to discriminate characters
at each position, so increasing scales is preferable to reduc-
ing them. Overall, scale reduction leads to a performance
degradation of 2% on the PhPAIS dataset. When the more
flexible FSPP is employed, different scales are set according
to aspect ratios that related to string lengths. Obviously, the
performance degradation is alleviated in a large degree and
only 0.16% accuracy reduction is caused. Furthermore, we
can reducing scales for short strings and increasing scales for
long strings at the same time by using FSPP as the forth set-
ting does. By this means, performance is slightly improved
when comparing the first and the last setting. In conclusion,
the proposed FSPP is a better choice for strings with longer
string lengths and more serious connection situation.

4 Conclusions
This paper presents a sequence labeling convolutional neural
network for handwritten string recognition. We re-implement
the SPP layer to handle the arbitrary string length problem,
and design an output layer with multiple softmax classifiers to
deal with sequence labeling issue. Additionally, we propose
a more flexible pooling strategy called FSPP on the basis of
SPP to promote the performance of the proposed network on
long strings. The proposed network directly recognize hand-
written strings without segmenting them, so the challenges
posed by connected patterns are avoided. Experimental re-
sults show that by combining with some simple coarse seg-
mentation strategies, the proposed network can be utilized to
process longer strings. Theoretically, the proposed network
can be generalized to any languages or scripts.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2955

References
[Diem et al., 2014] Markus Diem, Stefan Fiel, Florian Kle-

ber, Robert Sablatnig, Jose M. Saavedra, David Contr-
eras, Juan Manuel Barrios, and Luiz S. Oliveira. ICFHR
2014 competition on handwritten digit string recognition
in challenging datasets (HDSRC 2014). International
Conference on Frontiers in handwriting recognition, pages
779–784, 2014.

[Goodfellow et al., 2014] Ian J. Goodfellow, Yaroslav Bula-
tov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-
digit number recognition from street view imagery using
deep convolutional neural networks. arXiv:1312.6082v4,
Computer Science, 2014.

[Graves and Schmidhuber, 2008] Alex Graves and Jurgen
Schmidhuber. Offline handwriting recognition with multi-
dimensional recurrent neural networks. Advances in Neu-
ral Information Processing Systems, 21:545–552, 2008.

[Graves et al., 2009] Alex Graves, Marcus Liwicki, Santia-
go Femandez, Roman Bertolami, Horst Bunke, and Jurgen
Schmidhuber. A novel connectionist system for uncon-
strained handwriting recognition. IEEE Transaction on
Pattern Recognition and Machine Intelligence, 31(5):855–
868, 2009.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Spatial pyramid pooling in deep con-
volutional networks for visual recognition. IEEE Trans-
action on Pattern Recognition and Machine Intelligence,
37(9):1904–1916, 2015.

[Keysers et al., 2016] Daniel Keysers, Thomas Deselaers,
Henry A. Rowley, Li-Lun Wang, and Victor Carbune.
Multi-language online handwriting recognition. IEEE
Transaction on Pattern Recognition and Machine Intelli-
gence, DOI: 10.1109/TPAMI.2016.2572693, 2016.

[Liu et al., 2004] Cheng-Lin Liu, Hiroshi Sako, and Hi-
romichi Fujisawa. Effects of classifier structures and train-
ing regimes on integrated segmentation and recognition of
handwritten numeral strings. IEEE Transaction on Pat-
tern Recognition and Machine Intelligence, 26(11):1395–
1407, 2004.

[Messina and Louradour, 2015] Ronaldo Messina and
Jerome Louradour. Segmentation-free handwritten Chi-
nese text recognition with LSTM-RNN. International
Conference on Document Analysis and Recognition, pages
171–175, 2015.

[Sanchez et al., 2016] Joan Andreu Sanchez, Veronica
Romero, Alejandro H. Toselli, and Enrique Vidal.
ICFHR2016 competition on handwritten text recognition
on the READ dataset. 15th International Conference on
Frontiers in Handwriting Recognition, pages 630–635,
2016.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing
Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with conclutions. IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–9,
2015.

[Wang et al., 2012] Qiu-Feng Wang, Fei Yin, and Cheng-Lin
Liu. Handwritten Chinese text recognition by integrating
multiple contexts. IEEE Transaction on Pattern Recogni-
tion and Machine Intelligence, 34(8):1469–1481, 2012.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2956

