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Abstract 
This paper presents an interactive image segmenta-
tion approach where the segmentation problem is 
formulated as a probabilistic estimation manner. 
Instead of measuring the distances between un-
seeded pixels and seeded pixels, we measure the 
similarities between pixel pairs and seed pairs to 
improve the robustness to the seeds. The unary prior 
probability of each pixel belonging to the fore-
ground F  and background B  can be effectively 
estimated based on the similarities with label pairs 
( , )F F , ( , )F B , ( , )B F  and ( , )B B . Then a like-
lihood learning framework is proposed to fuse the 
region and boundary information of the image by 
imposing the smoothing constraint on the unary 
potentials. Experiments on challenging data sets 
demonstrate that the proposed method can obtain 
better performance than state-of-the-art methods. 

1 Introduction 
Image segmentation aims to separate the desired foreground 
object from the background. Segmented semantic regions or 
contours associated with real-word entities or scenes are the 
basis for further advanced image processing such as image 
editing, object tracking and recognition. Segmentation 
schemes can be classified into unsupervised [Comaniciu and 
Meer, 2002], semi-supervised [Wu et al., 2014] and fully 
supervised [Zhang et al., 2013; Zhao and Fu, 2015] 
approaches. Compared with the other two schemes, the 
advantage of semi-supervised schemes is the ability to add 
the users’ intentions in order to obtain results meeting their 
demands. This paper considers semi-supervised (interactive) 
schemes for foreground-background segmentation. 

During the last decades, many interactive segmentation 
approaches have been proposed, such as graph cut (GC) 
[Boykov and Jolly, 2001] and random walk (RW) [Grady, 
2006]. In these approaches, unary and pairwise potentials are 
constructed for the segmentation. A unary potential measures 
the similarity of a pixel to the labels F  and B , while the 
pairwise potential quantifies the similarity between pairs of  
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Figure 1: Overview of the segmentation framework. 

pixels. Since the prior information of each class is provided 
by the user, the unary potential is generally quantified as the 
distances between unseeded pixels and seeded pixels via 
some clustering algorithms, such as Gaussian mixture model 
(GMM). If enough seeds are given, GMM can accurately 
estimate the potential distribution of each label. However, 
when the user’s interaction is limited, it is hard to capture the 
accurate label information.  

As an effective strategy to solve the above problems, 
methods based on superpixels have been proposed [He et al., 
2006; Kohli et al., 2007]. However, superpixels tend not to 
emphasis sufficiently the proximity, and thereby generate 
isolated regions. In order to obtain reliable results, the 
relationships among pixels and superpixels are fused to 
enforce proximity and continuity [Kim et al., 2010; Kohli 
and Torr, 2009; Wang et al., 2016a; Wang et al., 2016b]. 
Both geometrical adjacency and long range cue are critical 
for the segmentation. However, more superpixel variables 
need to be defined and more relationships between pixels and 
superpixels need to be computed in these approaches, which 
increases the additional algorithm complexity. Furthermore, 
several parameters are utilized to control the influence of 
pixel-level and superpixel-level relationships, and the 
segmentation results are generally sensitive to these 
controlling parameters [Wang et al., 2016b].  

To address the above problems, in this work, we propose 
an interactive image segmentation method based on 
probabilistic estimation. Fig. 1 shows the block diagram of 
the proposed algorithm. Instead of measuring the distances 
between pixels and seeds, we measure the similarities 
between pixel pairs and seed pairs to estimate the prior label 
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information. The contributions of the proposed approach are 
concluded as: 
First, similarities between pixel pairs are utilized to capture 
the prior information. Pixel-pair-level relationships can be 
regarded as the higher-order information of pixel-level 
relationships, which can help to improve the robustness to 
user inputs. Second, instead of the original two labels F  and 
B , four label pairs ( , )F F , ( , )F B , ( , )B F  and ( , )B B  are 
utilized for more accurate estimates of relationships between 
unseeded pixels and seeded pixels. Third, the unary potential 
of a pixel to the classes F  and B  can be effectively 
obtained based on the similarities with label pairs ( , )F F , 
( , )F B , ( , )B F  and ( , )B B . Last, to further improve the 
segmentation accuracy, a likelihood learning framework is 
proposed to impose the smoothing constraint on unary 
potentials based on the pairwise similarities of pixels. 

2 Related Work 
Graph Cut: The interactive GC method was first proposed 
to segment the grayscale medical images [Boykov and Jolly, 
2001]. Certain pixels are labeled by the user as foreground or 
background to provide the hard constraints, which helps to 
make the resulting segmentation adhere with the user’s 
intention. Lazy snapping (LS) [Li et al., 2004] replaced 
pixels with superpixels to improve efficiency. A 
coarse-to-fine user interface is also designed to provide 
instant visual feedback. GrabCut [Rother et al., 2004] 
extended GC to color images by utilizing GMMs to model 
the F  and B  regions. Incomplete trimaps are also provided 
to simplify the user interaction through an iterative 
optimization process. Texture aware model (TAM) [Zhou et 
al., 2012] combined the color and texture information to 
overcome the difficulties in handling images containing 
textures. ACP-cut [Jian and Jung, 2016] utilized 
semi-supervised kernel matrix learning to better preserve the 
details around object boundaries. Moreover, the seed 
information is also propagated to achieve discriminative 
structure learning and reduce the computational complexity.  
Random Walk: Grady et al. [Grady and Funkalea, 2004] 
first proposed the interactive RW method for medical image 
segmentation and extended it for general image segmentation 
in [Grady, 2006]. To overcome the weak boundary and 
texture problems of RW, Random walk with restart [Kim et 
al., 2008] constructed a generative segmentation model by 
utilizing the steady-state probability to reduce dependence on 
the seeds. Lazy random walk (LRW) [Shen et al., 2014] 
considered the global relationships between all the pixels and 
seeds to solve the superpixel segmentation problem in weak 
boundary and texture regions. Sub-Markov random walk 
(SMRW) [Dong et al., 2016] introduced the label prior by 
adding auxiliary nodes to further improve the segmentation 
accuracy especially in thin and elongated regions. 
Constrained random walk (CRW) [Yang et al., 2010] 
advocated the use of multiple intuitive user inputs to better 
reflect a user’s intention. Laplacian Coordinates (LC) 
[Casaca et al., 2014] minimized the average of distances 
while better controlling anisotropic propagation of labels, 

which ensures better fitting on image boundaries as well as a 
pretty good neighborhood preservation.  
Higher-orderModel: As shown in [Jian and Jung, 2016], the 
quality of these interactive methods is strongly affected by 
seed quantity and position, and they are likely to fail to keep 
global data coherence due to the bias caused by limited 
interactions. In order to improve the robustness to user inputs, 
many perceptual grouping methods have been proposed by 
utilizing superpixels to capture long range grouping cues. 
Robust Pn model (RPn) [Kohli and Torr, 2009] constructed 
parametric higher-order potentials based on multiple 
superpixels by utilizing higher-order condition random fields 
in a principled manner. Unlike RPn estimating the number of 
pixels in the superpixel that do not belong to the dominant 
label, in this work [Wang et al., 2016c], the sum of weights 
for pixels in the superpixel not taking the dominant label is 
measured, which helps to produce finer higher-order 
potentials. Nonparametric higher-order model (NHO) [Kim 
et al., 2010] utilized the pairwise relationship between pixels 
and their corresponding superpixels by a multi-layer graph. A 
higher-order cost function of pixel likelihoods is designed to 
enforce the label consistency inside the superpixels. To 
further improve the segmentation performance, Multi-layer 
graph constraints model (MGC) [Wang et al., 2016a] 
introduced the prior label information into the nonparametric 
higher-order model, and the multi-layer relationships among 
pixels, superpixels and labels are fused for the segmentation. 
As pointed out in [Kim et al., 2010], these superpixel-based 
methods are less sensitive to user inputs and produce 
high-quality segmentation results. However, the generation 
of multiple superpixels and the computation of higher-order 
relationships cause them limited to high algorithm 
complexity.  

3 Image Segmentation by Pairwise Likelihood 
Learning  

An input image I  can be represented by a graph 
(X, )G W , where  

N

1
X i i

x


  is a collection of pixels, 
N N[ ]ijW W   represents the relationships of pairwise pixels, 

and N  is the number of pixels. The task of the segmentation 
is to classify each image element ix  as the label F  or B . 
The core of the proposed approach is to estimate the marginal 
assignment probabilities ( )ip x F  and ( )ip x B  based on 
paired relationship metric and pairwise likelihood learning.  

The similarity ijW  between pairwise pixels ( , )i jx x  is 
defined as a typical Gaussian function:  

 2
exp( ) ( , )

0
i j i

i
j

j

c c if x x

otherwis
W

e

   
 


 (1) 

where ic  and jc  denote the intensity feature at pixel ix  and 
jx , respectively. 0   is a constant that controls the 

strength of the weight.   is the set of all neighboring pixel 
pairs in the image. It can be noticed that if two neighboring 
pixels have similar features, their weight is large, and vice 
versa.  
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Figure 2: Sketch map of prior information estimation from user 
inputs:the left shows the distance measurement between pixels and 
seeds by the conventional methods, the right shows the paired 
relationship measurement between pixel pairs and seed pairs by the 
proposed method. 

3.1 Paired Distance Estimation 
User inputs represent the prior label information, and the 
conventional methods measure the distances between pixels 
and seeds to estimate the unary assignment probabilities with 
labels (shown in Fig. 2 left). These methods are generally 
sensitive to user inputs and it is hard to obtain accurate results 
when the number of seeds is limited. To improve the 
robustness to user inputs, this paper considers the paired 
probability estimation by measuring the similarities between 
pixel pairs and seed pairs (shown in Fig. 2 right). Four types 
of seed pairs are involved, which respectively correspond to 
four label pairs ( , )F F , ( , )F B , ( , )B F  and ( , )B B . 

The sets of seed pairs are generated based on the seeds. For 
simplicity, the k-means algorithm is utilized to cluster the 
seeds respectively from the foreground and background. 
Clustering centers of the foreground 1{ } FKF

i ic 
 and the 

background 1{ } BKB
i ic 

 can be obtained, where FK  and BK  are 
the number of clusters of the foreground and background, 
respectively.  

The sets of seed pairs corresponding to the label pairs 
( , )F F , ( , )F B , ( , )B F  and ( , )B B  are constructed as 

, 1{( , )S } FKF F
i j

F
i

F
jc c  , 1 1,S {( )} F BK KF B

i j
FB

i jc c   , 1 1,S {( )} B FK KB F
i j

BF
i jc c    

and , 1{( , )S } BKB B
i j

B
i

B
jc c  , respectively. For example, it can be 

obtained that 1 1 1 2 2 1 2 2{( , ),( , ),( , ), ( ,S )}F F F F F F FFF Fc c c c c c c c  and 
1 1 1 2 2 1 2 2{( , ),( , ),( , ),( ,S )}F B F B F B FFB Bc c c c c c c c  when 2F BK K  . 

For any pixel pair ( , )i jx x  , the distances FF
ijd , FB

ijd , 
BF
ijd  and BB

ijd  with label pairs ( , )F F , ( , )F B , ( , )B F  and 
( , )B B  are defined as: 
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3.2 Prior Assignment Probabilities 
The values of FF

ijd , FB
ijd , BF

ijd  and BB
ijd  are then normalized 

with the constraint 1FF FB BF BB
ij ij ij ijd d d d     for any pixel pair  

 
         (a)                 (b)                 (c)                 (d)                 (e) 

Figure 3: Comparison of the unary potentials, where (a) shows the 
test image with seeds, (b) and (c) show the probability maps of F 
and B, respectively, based on the pixel-level measurement by GMM, 
(d)-(e) show the probability maps of F and B, respectively, based on 
the proposed pixel-pair-level measurement. 

( , )i jx x  . The pairwise assignment probabilities of the 
pixel pair ( , )i jx x  are defined as: 
 ( , ) FF

i j ijp x F x F d    (6) 

 ( , ) FB
i j ijp x F x B d    (7) 

 ( , ) BF
i j ijp x B x F d    (8) 

 ( , ) BB
i j ijp x B x B d    (9) 

The unary assignment probabilities of the two pixels ix  
and jx  can be estimated from these pairwise assignment 
probabilities. For pixel ix , it has: 
 ( ) ( , ) ( , )i i j i jp x F p x F x F p x F x B        (10) 
 ( ) ( , ) ( , )i i j i jp x B p x B x F p x B x B        (11) 

Then for pixel jx , it has: 
 ( ) ( , ) ( , )j i j i jp x F p x F x F p x B x F        (12) 
 ( ) ( , ) ( , )j i j i jp x B p x F x B p x B x B        (13) 

After the pairwise assignment probabilities of all pixel 
pairs in the set   are transformed into the unary 
probabilities, the value of ( )ip x  for each pixel Xix   is 
normalized with the constraint ( ) ( ) 1i ip x F p x B    . 

Examples of prior probability estimation are shown in Fig. 
3, where (a) shows the test image with seeds, (b)-(c) show the 
results obtained by GMM based on the pixel-level distance, 
and (d)-(e) show the results produced by the proposed 
method based on the pixel-pair-level relationship 
measurement. It can be seen that the pixel-level distances 
between pixels and seeds are not enough to discriminate the 
label information when the user inputs are limited. The 
pixel-pair-level relationships between pixel pairs and seed 
pairs can be regarded as the higher-order information of the 
pixel-level distances, and can produce more accurate 
estimation of the prior probability under the same seed 
information. Furthermore, instead of the two labels F  and 
B , the distances to the four label pairs ( , )F F , ( , )F B , 
( , )B F  and ( , )B B  make the relationships more 
discriminating.  

The relationships between doublets can be naturally 
extended to higher-order relationships. More interactions can 
be considered in higher-order measurement, for example, 
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eight label groups are involved when measuring the distances 
between triplets. However, the number of label groups 
increases exponentially with an increase in order, which 
leads to higher algorithm complexity. To keep computational 
efficiency, in this paper, only the pixel-pair-level 
relationships are considered. 

3.3 Pairwise Likelihood Learning 
The above probability estimation only considers the region 
information regardless of the boundary information of the 
image. To further improve the segmentation accuracy, we 
impose the smoothing constraint on the unary prior potentials 
by a pairwise likelihood learning strategy.  

Let N 1[ ]F F
iP p   and N 1[ ]B B

iP p   denote the prior 
probability vectors where ( )F

i ip p x F   and ( )B
i ip p x B  . 

Let N 1
ˆ ˆ[ ]F F

iP p   and N 1
ˆ ˆ[ ]B B

iP p   denote the novel 
probability vectors after the likelihood learning, where 
ˆ ˆ( )F

i ip p x F   and ˆ ˆ( )B
i ip p x B   represent the probabilities 

of pixel ix  belonging to the labels F  and B , respectively.  
The likelihood learning process of ˆ FP  and ˆ BP  is defined 

as minimizing the following two cost functions: 

2 2 2

( , ) X

ˆ ˆ ˆ( ) ( ) ( )

1ˆ ˆ ˆ ˆ( ) ( ) ( )
i j i

F F F
boundary region

F F F F B F
ij i j i i i i i

x x x i

E P E P E P

W p p d p p p p
d


 

 

 
         

 
 

(14) 

2 2 2

( , ) X

ˆ ˆ ˆ( ) ( ) ( )

1ˆ ˆ ˆ ˆ( ) ( ) ( )
i j i

B B B
boundary region

B B B B F B
ij i j i i i i i

x x x i

E P E P E P

W p p d p p p p
d


 

 

 
         

 
 

(15) 

where boundaryE  represents the boundary energy term, regionE  
represents the region energy term, N

1i ijj
d W


 , and the 

parameter / (1 )     (0 1)   is utilized to balance 
these two energy terms. boundaryE  constrains the neighboring 
pixels with high similarities to have similar likelihood 
probabilities. regionE  constrains the likelihood estimation to 
keep consistent with the prior probabilities. A pixel ix  
should be assigned a high ˆ F

ip  and a low ˆ B
ip  if its prior 

probability F
ip  is high, and vice versa. Both the region and 

boundary information are considered in the likelihood 
learning process, which makes the segmentation results keep 
regional connectivity and piecewise smooth.  

Reformulate the cost functions in equations (14, 15) as the 
matrix forms: 

TTT

ˆ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ) ( )) ( )

F

F F F F F F B F

E P
O OP D W P D P P P P
D D





 
       

 

(16) 

TTT

ˆ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ) ( )) ( )

B

B B B B B B F B

E P
O OP D W P D P P P P
D D





 
       

 

 (17) 

where  1 N( ,..., )D diag d d ,  N 1
= 1O


, ( )F Fdiag P  , and 

( )B Bdiag P  . Differentiating ˆ( )FE P  and ˆ( )BE P  with 
respect to ˆ FP  and ˆ BP , respectively, and set to zero, we 
have: 

 
ˆ( ) ˆ ˆ( ) ( ) 0ˆ

F
F F B F F

F

E P D W P D P O
P

 


       


 (18) 

 
ˆ( ) ˆ ˆ( ) ( ) 0ˆ

B
B F B B B

B

E P D W P D P O
P

 


       


 (19) 

Since ( )F B   is an identity matrix, F FO P  , 
B BO P  , and / (1 )    , it can be derived: 

 ˆ F FP P  (20) 

 ˆ B BP P  (21) 
where 1T ( (1 ) )D W     . It can be seen that the likelihood 
probabilities ˆ FP  and ˆ BP  can be obtained by diffusing the 
prior probabilities FP  and BP  on the transfer matrix T . The 
multiplication of the inversion of a matrix by a single vector 
can be efficiently solved by the MATLAB division operator 
‘\’. 

The final segmentation can be produced by assigning 
pixels ˆ ˆ{ | ( ) ( )}i i ix p x F p x B    the foreground label, and 
pixels ˆ ˆ{ | ( ) ( )}i i ix p x B p x F    the background label. 

4 Experimental Results 
The proposed method was experimentally verified by 
comparing it with state-of-the-art approaches: GrabCut 
[Rother et al., 2004], RW [Grady, 2006], LC [Casaca et al., 
2014], SMRW [Dong et al., 2016] and NHO [Kim et al., 
2010] on the Berkeley segmentation data set1 which contains 
500 images with size 481 321  (or 321 481 ) and Microsoft 
GrabCut database2 which contains 50 images with public 
seeds information. Parameters involved in the proposed 
scheme are set as follows: the constant   is fixed as 60, the 
number of clusters FK  and BK  are both set to 3, the 
controlling parameter   is set to 0.1, and the 
4-neighborhood relationship of pixels is considered.  

4.1 Qualitative Benchmark Results 
Fig. 4 shows the comparison to state-of-the-art interactive 
segmentation methods. Fig. 4(a) shows the test images from 
the Berkeley segmentation data set with a few scribbles (red: 
foreground, green: background). Fig. 4(b)-(g) show the 
segmentation results of GrabCut, RW, LC, SMRW, NHO 
and the proposed method, respectively. It can be seen that 
GrabCut and RW cannot obtain satisfactory results when the 
number of seeds is limited. The RW extension methods, i.e. 
LC and SMRW, can obtain better results than RW. However, 
they are also sensitive to the seeds. The pixel-level 
information learnt from limited seeds is not enough to 
discriminate the foreground and background labels. 
Compared with these pixel-level-based approaches, the 
perceptual superpixel-based method NHO obtains more 
robust results by utilizing multiple superpixels to propagate 
long range grouping laws. However, the object details around 
the boundaries cannot be preserved well in NHO, especially 
in many thin and slender regions. It can be clearly seen that 
the proposed method produces the best results with accurate 
object details. The paired distance estimation can help to  
                                                 

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/gr
ouping/segbench/S. 

2http://research.microsoft.com/enus/um/cambridge/projects/visi
onimagevideoediting/segmentation/grabcut.htm 
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Figure 4: Comparison to state-of-the-art approaches with a few scribbles. (a) Test image from the Berkeley segmentation data set with 
scribbles (red: foreground, green: background), (b)-(g) segmentation results of GrabCut, RW, LC, SMRW, NHO and the proposed method.

obtain accurate label prior information even with limited 
seeds, and the pairwise likelihood learning can help to 
produce smooth object boundaries. 

4.2 Quantitative Benchmark Results 
The error rate is utilized to quantitatively evaluate the 
segmentation accuracy, which is defined as the ratio of the 
number of wrongly labeled pixels to the total number of 
unlabeled pixels. Table 1 summarizes the mean, standard 
deviation and the average rank with the Friedman statistical 
test [Friedman, 1937] (with a significance level of 0.05) of 
error rates achieved by various methods on the Microsoft 
GrabCut database. Compared with state-of-the-art methods, 
it can be observed that the proposed method achieves the 
lowest error rate. Friedman test determines the 2  value as 
64.69 and the p-value as 1.3e-12. From 2  distribution table, 
we find the critical value for (6 1) 5   degree of freedom 
with 0.05 significance level is 11.07. Since the 2  value is 
larger than the critical value, H0 is rejected and H1 is accepted, 
which substantiates the significant difference in behavior 

among the compared methods. 

Methods Error rate 
Mean  Std Average rank 

GrabCut 5.46  4.2  3.8 
RW 6.45  4.8  5.0 
LC 5.04  3.8  3.6 
SMRW 4.61  3.2 3.6 
NHO 4.25  3.7 2.6 
Ours 3.49  2.6 2.3 
GC [Boykov and Jolly, 2001] 6.60 (listed in [Kim et al., 2010]) 
TAM [Zhou et al., 2012] 3.64 (listed in [Zhou et al., 2012]) 
LS [Li et al., 2004] 6.65 (listed in [Yang et al., 2010]) 
CRW [Yang et al., 2010] 4.08 (listed in [Yang et al., 2010]) 
LRW [Shen et al., 2014] 5.70 (listed in [Wang et al., 2016a]) 
RPn [Kohli and Torr, 2009] 6.08 (listed in [Kim et al., 2010]) 
MGC [Wang et al., 2016a] 3.79 (listed in [Wang et al., 2016a]) 

Table 1: Mean  standard deviation (Std) (%) and the average rank 
of error rates for the compared methods on the Microsoft GrabCut 
database. 
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Percent seeds  50% 30% 10% 1% 
oa  (%) 99.8  0.1 99.7  0.5 99.4  0.7 98.2  1.2 

Table 2: Mean  standard deviation (%) of normalized overlap oa  
with 50%, 30%, 10% and 1% percent seeds. 
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Figure 5: Error rates (%) of the Microsoft GrabCut database for a 
varying values of the parameter  .  

4.3 Sensitivity analyzing 
We analyze the sensitivity of the proposed method with 
respect to seed quantity and placement. The standard 
segmentations are achieved from the initial trimaps provided 
by the Microsoft GrabCut database. The initial seeds are then 
randomly taken from 50% to 1% of total seed quantity. The 
perturbed segmentations are recomputed from these selected 
seeds and compared with the standard segmentations. The 
normalized overlap 1 2 1 2/oa F F F F  is used to measure 
the similarity of two segmentations [Kim et al., 2010], where 

1F  and 2F  indicate the sets of pixels in two segmentations. 
Table 2 summarizes the mean and standard deviation of oa  
on the Microsoft GrabCut database with 50%, 30%, 10% and 
1% percent seeds. It can be seen that even with 1% seeds, the 
proposed method can still obtain satisfactory results.  

4.4 Parameter settings 
The parameter   is utilized to control the influence of the 
region and boundary energies. Fig. 5 shows the quantitative 
evaluation of the error rates on the Microsoft GrabCut 
database with different values of  . It can be observed that 
the lowest error rate is obtained when 0.1  . From the 
variation of the error rates, we can find that the segmentation 
results are not sensitive to  in the range of 0.02 to 0.3.  

Fig. 6 shows the average error rates over all 50 images in 
the Microsoft GrabCut database with different number of 
clusters FK  and BK . From the variation range of the error 
rates, it can be seen that the results are not sensitive to the 
number of clusters. The lowest average error rate can be 
obtained as 3.29% when 5FK   and 4BK  . However, the 
algorithm complexity is higher with more number of clusters. 
To obtain accurate segmentation results while keeping low 
algorithm cost, in this paper, FK  and BK  are both set to 3. 
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Figure 6: Average error rates (%) over all 50 images in the 
Microsoft GrabCut database with different number of clusters FK  
and BK . 

Methods GrabCut RW LC SMRW NHO Ours 
Time (s) 0.7 0.8 3.2 5.1 15.1 3.5 

Table 3: Average running times of the compared methods on all 20 
images with size 321 481  in the Microsoft GrabCut database. 

4.5 Runtimes 
Table 3 lists the average running times of GrabCut, RW, LC, 
SMRW, NHO and the proposed method on all 20 test images 
with size 321 481  in the Microsoft GrabCut database on an 
Intel Xeon CPU running at 2.0 GHz in MATLAB. The 
proposed method takes about 3.5 s to segment an image with 
size 321 481 .  

5 Conclusion 
In this work we presented an interactive image segmentation 
method by a probabilistic framework consisting of unary 
potential estimation and likelihood learning. To improve the 
robustness to the seeds, the distances between pixel pairs and 
seed pairs are measured to obtain the prior label information. 
To further improve the segmentation accuracy, the region 
information and boundary information of the image are 
combined by a likelihood learning framework. The 
similarities of pairwise neighboring pixels are utilized to 
impose the smoothing constraint on the unary potentials. The 
qualitative and quantitative comparisons with state-of-the-art 
interactive approaches demonstrate the superior performance 
of the proposed method.  
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