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Abstract
Multiple kernel clustering (MKC) algorithms have
been successfully applied into various application-
s. However, these successes are largely depen-
dent on the quality of pre-defined base kernels,
which cannot be guaranteed in practical applica-
tions. This may adversely affect the clustering per-
formance. To address this issue, we propose a
simple while effective framework to adaptively im-
prove the quality of base kernels. Under our frame-
work, we instantiate three MKC algorithms based
on the widely used multiple kernel k-means cluster-
ing (MKKM), MKKM with matrix-induced regu-
larization (MKKM-MR) and co-regularized multi-
view spectral clustering (CRSC). After that, we de-
sign the corresponding algorithms with proved con-
vergence to solve the resultant optimization prob-
lems. To the best of our knowledge, our framework
fills the gap between kernel adaption and cluster-
ing procedure for the first time in the literature and
is readily extendable. Extensive experimental re-
search has been conducted on 7 MKC benchmark-
s. As is shown, our algorithms consistently and
significantly improve the performance of the base
MKC algorithms, indicating the effectiveness of the
proposed framework. Meanwhile, our framework
shows better performance than compared ones with
imperfect kernels.

1 Introduction
Multiple view clustering (MVC) [Zhou and Burges, 2007;
Weiran et al., 2015; Jinglin et al., 2016; Cao et al., 2015;
Zhang et al., 2015; Yu et al., 2016] and multiple kernel clus-
tering (MKC) algorithms [Zhao et al., 2009; Huang et al.,
2012; Lu et al., 2014; Xia et al., 2014; Zhou et al., 2015;
Kumar et al., 2011] have been extensively studied due to their
efficiency and effectiveness. Although existing MKC algo-
rithms have demonstrated promising performance in various
scenarios, we observe that the success of these algorithms is
largely dependent on the quality of base kernels. In existing
MKC algorithms, the base kernels are usually pre-calculated
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Figure 1: Proposed MKC framework with improved kernels
(MKCF-IK). Given m pre-defined noisy kernels of a data set, we:
i) find out outliers in each kernel, ii) design an alternative algorith-
m to recover those inappropriate kernel values, and iii) use MKC
algorithms on refined kernels.

and kept unchanged during the learning procedure, which in-
dicates that the clustering performance would be poor when
the quality of pre-defined kernels is low. Unfortunately, in
many practical applications, the quality of pre-specified base
kernels cannot be guaranteed due to that: i) some views of
a sample may be missing, leading to the incomplete base k-
ernels, i.e. some rows or columns of the base kernels shall
be absent; ii) the extracted features may not be able to pro-
duce good clustering performance even when none view of
any samples is missing; and iii) inappropriate kernel types in
generating base kernels, for example, some applications get
better performance using linear kernels, while other applica-
tions obtain better performance using Gaussian kernels. All
these factors may adversely affect the quality of base kernels,
leading to unsatisfying clustering performance.

To reduce the influence of base kernels, we propose a sim-
ple while effective framework to adaptively improve the qual-
ity of the base kernels during the learning process of multiple
kernel clustering, as illustrated in Figure 1. Our framework
firstly discovers outliers in each kernel based on the previous
clustering results, and then designs an alternative algorith-
m to optimize them iteratively. In this way, our framework
enhances the negotiation between the resultant base kernels
and the clustering, leading to the improvement on clustering
performance. To implement this framework, two issues are
naturally raised: i) how to find outliers reducing the perfor-
mance; and ii) how to optimize base kernels. To address the
first issue, we exploit the connections between base kernels
and clustering results, and find that the samples with further
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distance to their clustering center are more unascertainable.
This is rather intuitive since these unascertainable samples
could be considered as outliers. To address the second is-
sue, we propose an alternative algorithm to optimize base k-
ernels and recover those inappropriate values in each kernel.
Under our framework, we instantiate three MKC algorithm-
s based on the widely used multiple kernel k-means clus-
tering (MKKM) [Huang et al., 2012], MKKM with matrix-
induced regularization (MKKM-MR) [Liu et al., 2016] and
co-regularized multi-view spectral clustering (CRSC) [Ku-
mar et al., 2011], and design three efficient algorithms with
proved convergence to solve the resultant optimization prob-
lems, respectively. To the best of our knowledge, our frame-
work bridges the gap between kernel adaption and clustering
procedure for the first time in the literature. More impor-
tantly, our framework is flexible and readily extendable for
generating better MKC algorithms. Extensive experimental
results show that our framework improves the performance
of existing MKC algorithms on most datasets. Meanwhile,
our framework shows better performance than compared ones
with imperfect kernels.

2 Related Work
Existing MKC algorithms can roughly be grouped into t-
wo categories. The first category optimizes a group of ker-
nel coefficients, and uses the combined kernel for clustering,
called pre-fusion category, including MKKM [Huang et al.,
2012] and its variants such as MKKM-MR [Liu et al., 2016],
RMKC [Zhou et al., 2015], and localized multiple kernel
k-means (LMKKM) [Gönen and Margolin, 2014]. By fol-
lowing multiple kernel learning (MKL) framework, the other
category learns the indicating matrix H without explicitly ob-
taining the combined kernel, like CRSC [Kumar et al., 2011].
In this section, we give a brief introduction of three typical
representatives belonging to these categories.

2.1 Multiple Kernel k-means Clustering (MKKM)
Let {xi}ni=1⊆X be a collection of n samples, and
φ(·):x ∈ X 7→ H be a feature mapping which map-
s x onto a reproducing kernel Hilbert space H. In
the multiple kernel setting, each sample has multiple
feature representations via a group of feature mappings
{φp(·)}mp=1. Specifically, each sample is represented as
φγ(x) = [γ1φ1(x)

>, γ2φ2(x)
>, · · · , γmφm(x)>]>, where

γ = [γ1, γ2, · · · , γm]> denotes the coefficients of each base
kernel.

Given the combined kernel matrix Kγ , the optimization
problem for MKKM can be written as,

minH∈Rn×k,γ Tr(Kγ(In −HH>))

s.t. H>H = Ik, γ
>1m = 1, γ � 0.

(1)

This problem can be solved by alternatively updating H
and γ.

2.2 MKKM Clustering with Matrix-induced
Regularization (MKKM-MR)

By integrating the matrix-induced regularization into the ob-
jective function of existing MKKM, the optimization problem

of MKKM-MR can be obtained as follows,

minH∈Rn×k,γ Tr(Kγ(In −HH>)) +
λ

2
γ>Mγ

s.t.H>H = Ik, γ
>1m = 1,γ � 0.

(2)

where λ is a parameter to trade off the clustering cost function
and the regularization term.

2.3 Co-regularized Spectral Clustering (CRSC)
Co-regularized spectral clustering (CRSC) provides a co-
regularization way to perform spectral clustering. Instead of
explicitly optimizing the combined kernel, it learns the indi-
cating matrix H directly. The objective function can be writ-
ten as:

maxHp, H?

m∑
p=1

(
Tr(H>p KpHp) + λpTr(HpH

>
p H

?H?>)
)

s.t. H>p Hp = Ik, ∀1 ≤ p ≤ m,H?>H? = Ik,
(3)

where λp reflects the importance of Kp. The optimal H? and
Hp can be obtained in an alternative way. In fact, the optimal
problem can be rewritten as the spectral clustering objective
function when H? or Hp fixed.

Existing MKC algorithms have been applied to many clus-
tering tasks successfully. However, the performance of these
algorithms are largely dependent on the quality of pre-defined
base kernels. Moreover, these base kernels are kept un-
changed during the learning process. By this way, the perfor-
mance would be poor if the base kernels have low quality. To
eliminate the limitation, we design a novel clustering frame-
work to adaptively improve the quality of the base kernels
during the learning process.

3 Multiple Kernel Clustering Framework
with Improved Kernels (MKCF-IK)

Although achieving promising performance, the aforemen-
tioned existing MKC algorithms largely depend on the quality
of base kernels. Meanwhile, the pre-calculated kernels would
not be changed during the learning procedure even if they are
imperfect. To adaptively improve the quality of base kernels,
we introduce our multiple kernel clustering framework with
improved kernels (MKCF-IK), as shown in Algorithm 1. The
proposed framework firstly adopts a simple while effective
strategy to discover inappropriate values among each kernel
which may be inappropriate for clustering, as described in
Algorithm 2. After that, we carefully design corresponding
alternative algorithms to recover these values automatically
according to the previous clustering results.

In Algorithm 1, O(t)
p means the indices of outliers, while

S
(t)
p indicates the indices of stable samples, and ρ(0,t) rep-

resents the average kernel alignment value, which indicates
the similarity between original and improved kernels. It is in-
tuitive that the original base kernels would keep some good
properties of data, so we set a threshold for ρ(0,t) to prevent
the original kernels changing too much.

ρ
(t−1,t)

=
1

m

m∑
p=1

Tr(K(t−1)
p K(t)

p

>
)√

Tr(K
(t−1)
p K

(t−1)
p

>
)Tr(K

(t)
p K

(t)
p
>
)

. (4)
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Algorithm 1: Proposed MKCF-IK.
Input: {Kp}mp=1, ε0, η0
Output: H?, {Kp}mp=1

1 K
(0)
p = Kp, p = 1, · · · ,m, t=1.

2 repeat
3 Obtain indices of stable samples S(t)

p and outliers
O

(t)
p using Algorithm 2 with K

(t−1)
p .

4 Optimize K
(t)
p and H? using improved MKC

algorithms with S
(t)
p and K

(t−1)
p .

5 Calculate alignment value ρ(0,t) using Eq.(4).
6 t = t + 1.
7 until

(
ρ(0,t) ≤ η0

)
||
(
(obj(t−1) − obj(t))/obj(t) ≤ ε0

)
;

Algorithm 2: Discovering Outliers.
Input: {Kp}mp=1, r
Output: {Sp,Op}mp=1

1 for each p ≤ m do
2 Compute labels and centers using KKM with Kp.
3 for each clustering center j do
4 Collect Nj samples belongs to this center.
5 Add the Nj ∗ r samples with further distance to

the j-th center to Op.
6 Add other Nj ∗ (1− r) samples to Sp.

3.1 Discovering Outliers
By exploiting the connections between base kernels and clus-
tering results, we observe that samples with further distances
to their clustering centers are more unascertainable. It is
rather intuitive that these unascertainable samples are prone
to become outliers. Moreover, different base kernels describe
different relationships among samples, which implies that we
can obtain different outliers based on different kernels. By
this way, we are able to identify the locations of outliers for
each kernel. In specific, we first perform kernel k-means
(KKM) on each base kernel Kp, which produces initial clus-
tering labels of samples. After that, we compute the distance
between each sample and its clustering center. For each cen-
ter, we collect a proportion of samples with top largest dis-
tances to it, and add their indices to Op. We term this propor-
tion as r. In our experiments, this r is set to be 0.05 or 0.1. In
addition, we also record the relatively stable samples as Sp.

3.2 MKC Algorithms with Enhanced Kernels
After obtaining the locations of outliers in each base kernel,
we design different alternative algorithms based on different
MKC algorithms to optimize the inappropriate values among
these base kernels, making them better serve for clustering.
Under our framework, we instantiate three classical MKC al-
gorithms, and design three efficient algorithms with proved
convergence to solve the resultant optimization problems, re-
spectively. Here we only introduce the implementation of
MKCF-IK on CRSC due to the space limitation.

3.3 An Instantiation: CRSC-IK
Let Sp(1 ≤ p ≤ m) denotes the sample indices for which
the p-th view is present and K

(cc)
p be used to indicate the

sub-kernel matrix computed with these samples. Then the
objective function of CRSC-IK can be written as Eq.(5).

max
Hp,H?,Kp

∑m

p=1

(
Tr(H>p KpHp) + λpTr(HpH

>
p H

?H?>)
)

s.t. H>p Hp = Ik, ∀1 ≤ p ≤ m,H?>H? = Ik

Kp(Sp,Sp) = K(cc)
p ,Kp � 0, ∀p,

(5)
As can be seen, the difference between the objective func-

tion of CRSC-IK and that of CRSC in Eq.(3) is the incor-
poration of optimizing {Kp}mp=1. Note that the constraint

Kp(Sp,Sp) = K
(cc)
p is imposed to ensure that the improved

Kp maintains the relatively stable kernel values during the
course.

CRSC-IK considers base kernels as the optimized target.
It aims to enhance the base kernels for clustering by treating
{Kp}mp=1 as extra variables into our algorithm. To solve the
problem described in Eq.(5), we design a three-step algorithm
in an alternative way, as shown in Algorithm 3.

1) Optimizing H? with {Hp}mp=1 and {Kp}mp=1 fixed.
Given Hp, the H? can be obtained by solving the following
objective function:

max
H?∈Rn×k

Tr
(
H?>

∑m

p=1

(
λpHpH

>
p

)
H?
)
,

s.t.H?>H? = Ik,

(6)

which is equivalent to solving the standard spectral clustering
objective for H? with a modified Laplacian

∑
p λpHpH

>
p ;

2) Alternatively optimize Hp for p = 1, 2, · · · ,m with
fixed H?, {Kp}mp=1 and {Hj}j 6=p. Given H? and all other
view-specific eigenvectors, Hp for view p can be solved by
Eq.(7).

max
Hp∈Rn×k

Tr(H>p KpHp) + λpTr(HpH
>
p H

?H?>)

s.t.H>p Hp = Ik

(7)

By using the properties of matrix traces, Eq.(7) can be written
as following:

max
Hp∈Rn×k

Tr
(
H>p

(
Kp + λpH

?H?>
)
Hp

)
s.t.H>p Hp = Ik.

(8)

which is equivalent to solving the standard spectral
clustering objective for Hp with a modified Laplacian(
Kp + λpH

?H?>
)

.
3) Optimizing {Kp}mp=1 with fixed {Hp}mp=1. Given

Hp, p ∈ {1, 2, · · · ,m}, the optimization problem in Kp can
be written as:

maxKp∈Rn×nTr(H>p KpHp),

s.t. Kp(Sp,Sp) = K(cc)
p ,Kp � 0, ∀p,

(9)

where the constraint Kp(Sp,Sp) = K
(cc)
p guarantees that the

improved Kp maintains the normal values during the opti-
mized process.
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Algorithm 3: Proposed CSRC-IK.

Input: K(cc)
p ,Sp, ∀p ∈ {1, · · · ,m} , and ε0

Output: H?,Kp, ∀p ∈ {1, · · · ,m}
1 For all p, initialize K

(0)
p and t = 1.

2 For all p, initialize H
(0)
p by solving Eq.(3) with given

K
(0)
p .

3 repeat
4 Update H?(t) by solving Eq.(6) with given H

(t−1)
p .

5 For all p, update H
(t)
p by solving Eq.(8) with fixed

K
(t−1)
p , and H?(t).

6 Update K
(t)
p by Eq.(13) with fixed H

(t)
p .

7 t = t + 1.
8 until (obj(t−1) − obj(t))/obj(t) ≤ ε0;

As is well known, Eq.(9) is equivalent to the Eq.(10) as
follows:

minKp∈Rn×nTr(Kp(I−HpH
>
p )),

s.t.Kp(Sp,Sp) = K(cc)
p ,Kp � 0, ∀p,

(10)

Note that Kp is positive semi-definite (PSD), so we can
decompose Kp as ApA

>
p . Then we write Ap = [A

(c)
p A

(m)
p ]

with A
(c)
p A

(c)
p

>
= K

(cc)
p , and assume that Qp = I−HpH

>
p ,

then rewrite Eq.(10) as:

min
A

(m)
p

Tr([A(c)
p A(m)

p ]

[
Q

(cc)
p Q

(cm)
p

Q
(cm)
p

>
Q

(mm)
p

]
[A(c)

p A(m)
p ]>)

s.t.Kp(Sp,Sp) = K(cc)
p ,Kp � 0, ∀p,

(11)
where Qp is replaced with its blocked form.

To optimize Eq.(11), we compute the derivative of it with
respect to A

(m)
p and let it equals to zero. Then we can obtain

an analytical solution to the optimal A(m)
p as:

A(m)
p =

(
Q(mm)
p

)−1
Q(cm)
p

>
A(c)
p (12)

Then the optimal Kp in Eq.(9) can be obtained as:

Kp =

[
K

(cc)
p −K

(cc)
p Q

(cm)
p Q

(mm)
p

−Q
(mm)
p Q

(cm)
p

>
K

(cc)
p Q

(mm)
p Q

(cm)
p

>
K

(cc)
p Q

(cm)
p Q

(mm)
p

]
(13)Note that, compared with CRSC-IK, the implementations

on MKKM and MKKM-MR optimize base kernels in a s-
lightly different way. They use Qp to replace (I − HH>)
other than (I−HpH

>
p ).

3.4 Discussion
In this section, we discuss why our framework would work.
By revisiting Eq.(13), we observe that the enhanced kernels
refine the inappropriate parts of each base kernel using fixed
K

(cc)
p and Q. In MKKM-IK, Q denotes (I−HH>), where H

is calculated by combined kernel K. Therefore, Q integrates
the clustering information from all base kernels to optimize
the p-th kernel. CRSC-IK does not use the global H to get

Table 1: Datasets used in our experiments.

Dataset #Samples #Kernels #Classes
bbcsport 737 2 5
YALE 165 5 15

proteinFold 694 12 27
Caltech102 1530 25 102
Flower17 1360 7 17

Digital 2000 3 10
CCV 6773 6 20

information from other kernels because only Hp is used to
optimize Kp. However, we observe that the optimized proce-
dure of Hp in CRSC-IK would introduce the H. This indi-
cates that the Hp already carries the global information from
H. As a result, CRSC-IK also exploits the information from
all base kernels to improve the quality of one base kernels. In
conclusion, our framework integrates the information from
all kernels to fill the inappropriate parts approximately.

4 Experimental Results
4.1 Datasets and Experimental Settings
To report the performance of our framework, we evaluate
three instances of our framework, like MKKM-IK, CRSC-
IK and MKKM-MR-IK, on seven datasets, as shown in Tabel
1. Furthermore, to test the performance of all algorithms with
respect to the number of classes, we generate ten datasets by
randomly selecting samples the first 10, 20, · · · , 100 classes
on Caltech102.

To evaluate the performance of our framework with incom-
plete base kernels, we randomly generate incomplete kernel-
s with different missing ratios. Note that the missing ratio
in our experiments means the percentage of samples with
missing views, other than the percentage of missing rows
(columns) in each kernel. Meanwhile, we randomly generate
the incomplete patterns for 30 times and report the statisti-
cal results. The aggregated ACC, NMI and purity are used to
evaluate the goodness of the algorithms in comparison. Fol-
lowing the literature [Cortes et al., 2012], all base kernels are
centered and scaled so that we have κp(xi,xi) = 1 for all i
and p.

4.2 Compared Algorithms
Our algorithms are compared with several recently proposed
counterparts, including

• Average MKKM (A-MKKM): All kernels are uni-
formly weighted to generate a new kernel, which is
taken as the input of kernel k-means.
• MKKM [Huang et al., 2012]: The algorithm alterna-

tively performs kernel k-means and updates the kernel
coefficients, as introduced in the related work.
• Localized MKKM (LMKKM) [Gönen and Margolin,

2014]: LMMKM improves MKKM by combining the
kernels in a localized way.
• Robust multi-view spectral clustering (RMSC) [Xia

et al., 2014]: RMSC constructs a transition probability
matrix from each single view, and uses them to recover
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Figure 2: Clustering accuracy, NMI and purity comparison with variation of number of classes on Caltech102. (left) ACC, (middle) NMI,
and (right) purity.
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Figure 3: Clustering performance with the variation of missing ratios on Flower17 and Caltech102 data sets.

a shared low-rank transition probability matrix for
clustering.

• Robust Multiple Kernel Clustering (RMKC) [Zhou
et al., 2015]: RMKC learns a robust yet low-rank kernel
for clustering by capturing the structure of noises in
multiple kernels.

• CRSC: [Kumar et al., 2011]: It provides a co-
regularization way to perform spectral clustering.

• MKKM-MR [Liu et al., 2016]: MKKM-MR reduces
the redundancy and enhances the diversity of base
kernels by introducing a matrix-induced regularization.

4.3 Experimental Results

The clustering performance of the above mentioned algo-
rithms on all datasets are reported in Table 2. As is shown

in Table 2, three instances of our framework achieve promis-
ing clustering performance.

Taking the result on bbcsport for example, the clustering
accuracy of MKKM, CRSC, and MKKM-MR are 67.91%,
80.51%, and 66.91%. In contrast, our improved algorithms,
MKKM-IK, CRSC-IK, and MKKM-MR-IK, achieve 88.6%,
91.73% and 74.82%, respectively. In order to demonstrate
performance more vividly, we use t-SNE [Laurens, 2013] to
visualize the indicating matrices H of bbcsport in Figure 4. It
can be observed that our algorithms would make five classes
much further and more discriminative than other MKC algo-
rithms.

We also investigate the clustering performance of each al-
gorithm with respect to the number of classes, as shown in
Figure 2. As observed, the curves of CRSC-IK and MKKM-
MR-IK are above that of CRSC and MKKM-MR when the
number of classes varies. Moreover, MKKM-MR-IK keep-
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Table 2: ACC, NMI and purity comparison of different clustering algorithms on all data sets.

datasets A-MKKM MKKM LMKKM RMSC RMKC CRSC MKKM-MR MKKM-IK CRSC-IK MKKM-MR-IK
ACC

bbcsport 66.91 67.28 66.91 86.03 66.91 80.51 66.91 88.60 91.73 74.82
YALE 60.00 57.58 58.18 63.03 61.21 56.36 64.85 61.21 57.45 64.85

proteinFold 32.85 25.22 24.06 36.17 33.72 35.30 39.63 26.51 36.76 40.06
Digital 89.00 47.00 48.50 90.60 89.05 81.25 90.15 59.41 86.14 90.90

Flower17 67.94 70.15 63.38 59.71 68.97 63.16 70.66 72.50 69.34 70.15
Caltech102 36.21 34.17 27.97 31.50 35.56 35.82 37.91 34.91 38.24 40.33

CCV 24.11 21.18 20.27 17.38 24.63 30.77 27.77 22.18 31.68 27.48
NMI

bbcsport 55.82 55.02 55.54 75.09 55.29 63.41 55.82 70.6 78.71 60.99
YALE 62.85 58.35 58.92 63.98 62.85 57.25 64.73 59.67 57.38 64.31

proteinFold 43.52 37.65 36.21 46.39 42.86 43.40 47.34 36.05 45.73 46.37
Digital 81.18 48.16 50.06 82.21 81.15 76.09 83.81 49.95 78.14 84.83

Flower17 65.30 67.65 62.22 59.45 65.34 62.84 66.60 68.75 65.54 66.17
Caltech102 60.60 59.54 55.17 58.40 59.02 60.04 61.85 59.12 61.37 62.88

CCV 20.30 17.37 16.05 15.34 21.02 23.31 22.17 17.91 25.34 22.05
Purity

bbcsport 54.99 77.76 54.84 73.89 77.94 80.51 77.76 88.6 91.73 81.43
YALE 60.61 58.18 58.18 64.24 61.21 57.58 64.31 61.21 58.06 64.85

proteinFold 41.07 31.99 33.14 43.37 40.92 41.50 45.39 33.29 42.71 45.68
Digital 89.00 49.70 51.10 90.60 89.05 81.25 90.15 59.41 86.14 90.90

Flower17 67.94 70.81 64.34 61.03 68.97 65.22 70.66 72.50 69.56 70.15
Caltech102 38.04 36.60 29.41 33.66 37.12 37.84 39.74 36.86 40.33 42.22

CCV 20.17 25.74 15.92 15.27 29.26 31.98 21.94 26.38 33.65 29.77
LMKKM RMSC RMKC

MKKM MKKM-MR CRSC

MKKM-IK MKKM-MR-IK CRSC-IK

Figure 4: The effect of our framework on the clustering accuracy.
The figure shows t-SNE visualization of the indicating matrices H
using different algorithms on bbcsport.

s on the top of all sub-figures when the number of classes
varies, indicating the best performance.

Figure 3 presents the clustering performance comparison
of the above algorithms with absent kernels on Flower17 and
Caltech102. It can be observed that: i) MKKM-IK, CRSC-
IK and MKKM-MR-IK demonstrate the overall best perfor-
mance in all the sub-figures; ii) the variation of MKKM-IK,
CRSC-IK and MKKM-MR-IK with respect to the missing ra-
tio is relatively smaller when compared with other algorithm-
s, demonstrating its stability in the case of intensive absence.

Convergence. Two examples of the evolution of the ob-
jective value of MKKM-IK on Digital and YALE are demon-
strated in Figure 5. As we can see, the objective value of
MKKM-IK does monotonically decrease at each iteration.

From the above experiments, we conclude that the pro-
posed framework: i) improves the performance of base MKC
algorithms when the base kernels are complete; ii) achieves
better clustering performance than other MKC algorithms; i-
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Figure 5: The objective value of our algorithms at each iteration.
(left) Digital and (right) YALE

ii) can better recover the incomplete base kernels by taking
account the goal of clustering. In short, our framework well
bridges the gap between kernel adaption and clustering pro-
cedure for the first time in the literature and is readily extend-
able, bringing forth significant improvements on clustering
performance.

5 Conclusion
In this paper, we propose a novel framework to adaptively im-
prove the quality of base kernels. Our framework enhances
the negotiation between the base kernels and the clustering
performance, leading to the improvement on clustering per-
formance. Under our framework, we instantiate three MKC
algorithms based on MKKM, MKKM-MR, and CRSC. After
that, we design three alternative algorithms to solve the resul-
tant optimization problems. To the best of our knowledge, our
framework fills the gap between kernel adaption and cluster-
ing procedure for the first time in the literature. Extensive ex-
perimental research has been conducted on synthetic dataset,
MKC benchmarks and some computer vision datasets. As
shown, our algorithms consistently and significantly improve
the performance of the base MKC algorithms, indicating the
effectiveness of the proposed framework.
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