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Abstract

Multiple kernel clustering (MKC) algorithms have
been extensively studied and applied to various ap-
plications. Although they demonstrate great suc-
cess in both the theoretical aspects and application-
s, existing MKC algorithms cannot be applied to
large-scale clustering tasks due to: i) the heavy
computational cost to calculate the base kernels;
and ii) insufficient memory to load the kernel ma-
trices. In this paper, we propose an approximate
algorithm to overcome these issues, and to make it
be applicable to large-scale applications. Specifi-
cally, our algorithm trains a deep neural network
to regress the indicating matrix generated by MKC
algorithms on a small subset, and then obtains the
approximate indicating matrix of the whole data set
using the trained network, and finally performs the
k-means on the output of our network. By map-
ping features into indicating matrix directly, our al-
gorithm avoids computing the full kernel matrices,
which dramatically decreases the memory require-
ment. Extensive experiments show that our algo-
rithm consumes less time than most comparative-
ly similar algorithms, while it achieves comparable
performance with MKC algorithms.

1 Introduction

Multiple view clustering (MVC) algorithms have been exten-
sively studied recently because they can exploit the comple-
mentary information among multiple views of data in an un-
supervised way [Zhou and Burges, 2007; Weiran et al., 2015;
Jinglin et al., 2016; Cao et al., 2015; Zhang et al., 2015].
Most of these MVC algorithms adopt an underlying assump-
tion; that is, all data points are mapped into the Euclidean,
Hamming, or other simple geometric spaces, so they cannot
fully exploit the nonlinear similarities among data points. K-
ernel based algorithms overcome this limitation by mapping
samples into a reproducing kernel Hilbert space and defin-
ing the similarity using a nonlinear kernel function. This en-
ables kernel clustering to handle the linearly non-separable
problem in an input space that MVC algorithms suffer from.

*The corresponding author.
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Figure 1: Architecture of our algorithm. In our algorithm, we first
sample a subset from the large-scale dataset, and then use the classi-
cal multiple kernel k-means (MKKM) to obtain the indicating ma-
trix, and train the deep neural network to regress the indicating ma-
trix. Finally, we use the trained network to get the approximate in-
dicating matrix for the whole dataset.

Continuing in this direction, many multiple kernel clustering
(MKC) algorithms have been proposed [Zhao er al., 2009;
Huang et al, 2012; Lu et al., 2014; Xia et al, 2014;
Zhou et al., 2015; Kumar et al., 2011]. Although demon-
strating promising performance, these MKC algorithms can-
not be applied to large-scale applications due to the following
two issues. Firstly, all MKC algorithms need to calculate the
base kernels, and the computational complexity of this pro-
cess which equals O(m x d? x N?), is huge, where d, m,
and N represent the dimension, the number of kernels and
the number of samples, respectively. Secondly, the memo-
ry requirement of all MKC algorithms is large, which equals
O(m * N?). For example, when N = 100,000 and m = 3,
MKC algorithms need over 100GB of running memory. The
huge memory requirement cannot be satisfied even on a serv-
er. A direct remedy to address the memory issue is data block-
ing, which splits kernel matrices into several pieces and stores
them on the hard disk. In this way, the kernel matrices stored
in memory will be replaced frequently, which greatly increas-
es the timing overhead.

To address the time and memory issues, we revisit one clas-
sical representative of MKC algorithms, called the multiple
kernel k-means (MKKM), and propose an approximate algo-
rithm to avoid computing and loading kernel matrices. To
further illustrate how to reduce the running time and memo-
ry, we divide the MKKM into three stages: i) multiple kernel
generation; ii) an optimized process that updates the indicat-
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ing matrix H and coefficients v alternately; iii) k-means on
H, which is to obtain clustering labels. The first two stages
of MKKM will map the input features X into a kernel ma-
trix K, and then into the indicating matrix H. These two
stages consume too much memory and time. To reduce the
time and memory requirements of MKKM, we design a deep
neural network to approximate the first two stages in MKKM.
Specifically, we sample a subset from the whole dataset, and
then use MKKM to get the indicating matrix of the subset
H,,,. After that, we design a deep neural network to regress
the H,;. Next, we take the whole dataset as the input of the
trained network, and get the approximate indicating matrix
H of the large dataset using the trained network. Finally, we
perform k-means on H. Note that the full kernel matrices are
required in MKKM because the optimized process needs the
combined kernel matrix to obtain H. By mapping features
into H directly, we avoid computing the full kernel matrix.
Therefore, the computational and memory requirements of
our approach are only a small portion of the MKKM, which
further leads to a significant speedup of MKKM. By observ-
ing that the dimension of the features will influence the run-
ning time of k-means, we use principal component analysis
(PCA) to reduce the dimension of H. As a byproduct, the di-

mensionality reduction may also be appropriate when the H
is noisy. In this way, the output of our algorithm is of better
quality and lower dimension, and is more suitable for cluster-
ing.

We end up this section by summarizing the main contribu-
tions of this work as follows:

i) We propose a deep neural network to approximate the
MKKM. It can avoid computing kernels and completing sin-
gular value decomposition (SVD) in MKKM by mapping the
features into the indicating matrix directly, which reduces the
memory and time requirements.

ii) The experimental results show that our approach and
MKKM give results of comparable accuracy on several smal-
1 datasets, which means our approximate approach is effec-
tive. On some large-scale datasets, the memory requirement
of MKKM is too large to satisfy, while our approach also
works well and achieves promising performance.

2 Related Work

We first review the related work on MKC, and then give a
brief introduction to large-scale clustering algorithms.

2.1 Multiple Kernel Clustering (MKC) Algorithms

Much effort have been devoted to improving MKC from all
kinds of aspects. Existing MKC algorithms can roughly be
grouped into two categories.

The first category optimizes a group of kernel coefficients,
and uses the combined kernel for clustering [Yu et al., 2012;
Cortes et al., 2012; Gonen and Margolin, 2014; Du et al.,
2015; Lu et al., 2014; Liu et al., 2016]. In [Yu et al., 2012],
the authors propose an MKKM algorithm that externs ker-
nel k-means from a single kernel to multiple kernels. The
work in [Gonen and Margolin, 2014] offers a similar algo-
rithm with the difference being that the kernels are combined
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in a localized way to better capture their individual charac-
teristics. In [Lu et al., 2014], kernel alignment maximiza-
tion is employed to jointly perform the k-means clustering
and MKL. The algorithm described in [Cortes et al., 2012],
called co-regularized spectral clustering (CRSC), provides a
co-regularization method to perform spectral clustering. In-
stead of explicitly optimizing the combined kernel, it learns
the indicating matrix H directly. To reduce the redundan-
cy and enforce the diversity of the selected kernels, MKKM
clustering with matrix-induced regularization (MKKM-MR)
is proposed [Liu et al., 2016]. MKKM-MR uses a regulariza-
tion term that is able to characterize the correlation of each
pair of kernels.

The second category learns a consensus matrix via low-
rank optimization [Xia et al., 2014; Zhou et al., 2015,
Kumar et al., 2011]. In [Xia er al., 2014], they firstly con-
struct a transition probability matrix from each single view,
and use these matrices to recover a shared low-rank transition
probability matrix as an input to the standard Markov chain
method for clustering. Another work [Zhou et al., 2015]
presents to capturing the structures of noises in each kernel,
and integrating them into a robust and consensus framework
to learn a low-rank matrix. In [Kumar et al., 2011], the clus-
tering is learned in one view and is then used to label data in
other views to modify a similarity matrix.

Although these algorithms achieve promising perfor-
mance, they cannot be applied to large-scale datasets due to
i)the heavy computational cost to calculate the kernels; and ii)
insufficient memory to store the kernel matrices and optimize
the combined kernel.

2.2 Large-scale Clustering Algorithms

To efficiently cluster large-scale datasets, a number of al-
gorithms have been developed. Some methods aim to im-
prove the scalability of clustering algorithms [Cai et al., 2013;
Chen and Cai, 2011; Zhang and Lu, 2016; Wang et al.,
2016]. In [Cai et al., 2013], they put forward a new, ro-
bust, large-scale multi-view clustering method to integrate
heterogeneous representations of large-scale data. The work
in [Wang et al., 2016] proposes three new nonnegative matrix
factorization (NMF) and nonnegative matrix tri-factorization
(NMTF) models, which are robust to outliers. To avoid the
presence of noise in the large-scale data, a large-scale sparse
clustering (LSSC) algorithm is detailed in [Zhang and Lu,
2016].

Other algorithms have been proposed to reduce the high
computational cost of clustering [Gong et al., 2015; Li et al.,
2015; Zhang and Lu, 2016; Shen et al., 2017]. In [Gong et
al., 2015], a fast binary k-means algorithm is presented that
works directly on the similarity-preserving hashes of images
and clusters them into binary centers. The work [Li ef al.,
2015] offers a large-scale multiple view spectral clustering
approach based on a bipartite graph. Compressed k-means
(CKM) is suggested in [Shen et al., 2017] which significantly
reduces the memory and time requirements by mapping data
points as binary codes, so it is well suited to fast clustering.

Most existing large-scale clustering methods can only
achieve mediocre performance because i) they always adopt
approximate ways to speedup the clustering process; and ii)
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they do not use kernel functions to map data points into re-
produced kernel Hilbert spaces, so they cannot fully exploit
the non-linear similarity among data points, which limits the
clustering performance. In our work, we propose a novel ap-
proach to approximate MKKM, which achieves the compara-
ble performance to MKKM, while it consumes less time and
memory than most contrasted algorithms.

3 Approximate Large-scale Multiple Kernel
k-means Using Deep Neural Network

3.1 Notations and Background

In this part, we introduce some of the notations used in
our paper. Let {x;}? ; C X be a collection of n sam-
ples, and ¢(-) x € X +— H be a feature map-
ping which maps x onto a reproducing kernel Hilbert s-
pace H. In the multiple kernel setting, each sample has
multiple feature representations via a group of feature map-
pings {¢,(+)} ;1. Specifically, each sample is represented as

¢7(X) = hl¢1 (X)Tv 72¢2(X)T7 T a'Ym(bm(X)T}T’ where
~ = [y1,72, -+ ,7m] ' denotes the coefficients of each base
kernel. Correspondingly, the kernel function over the above
mapping function can be written as:

:(Z)'y(Xz Z’Ypﬁp XZ»XJ (1)

Given the combined kernel matrix K,,, the optimized prob-
lem for MKKM can be written as,
. T
i (K (L, — HHT)) o
st HH=1I,,v'1,, =1,v > 0,
where H is the indicating matrix of all data. The problem
described in Eq.(2) can be solved by alternatively updating
H and ~.

The memory requirement of MKKM is at least O (m* N?),
and the computational complexity of it equals O(N?3) due to
the SVD. These two issues limit the MKKM to being applied
to large-scale tasks.

Ky (X5 %) (/57 X;)

3.2 Approximate Large-scale Multiple Kernel
k-means Using Deep Neural Network

In our paper, we use a deep neural network to approxi-
mate MKKM, which can achieve comparable performance to
MKKM. Our network includes one 1D convolutional layer,
one max pooling layer, and four fully connected layers. After
the pooling layer, we concatenate the multiple features and
send the combined feature into the fully connected layer. By
combining multiple views of data, our network can achieve
better performance.

In our implementation, we fix the network structure except
for the output layer. The dimension of our output layer is de-
cided by the number of classes. For example, the handwritten
digital dataset has 10 classes, so the dimension of our output
layer equals 10.

There are two stages in our approximate algorithm. In the
first stage, we sample data from the whole dataset and ob-
tain multiple views of the data. To facilitate effective fea-
ture learning, all views are normalized into the same unit
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Figure 2: The network structure used in our work. It includes one
convolutional layer, one pooling layer, and four fully connected lay-
ers.
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box. Then, multiple kernels of the subset are generated and
MKKM is performed on these kernels to obtain the Hg,p,
which is the target of our network. After that, we train a deep
neural network to regress Hy,, as shown in Figure 2. The
corresponding loss function of our network can be written as
follows:

Ju(9) = || fo(X) — Haw|I* + 16]| 7, 3)

Where 6 is the parameters of our network and
fo(X) is the output of our network, which equal-
S gn(- g2(W3 (1t(W{ * X + by)) + ba)---). g,
W, and b; denote the activating function, weight matrix
and bias vector of the [-th layer, respectively. To regress
H,,», we use stochastic gradient descent (SGD) method to
minimize the loss function. The training stage is shown in
Algorithm 1.

Algorithm 1: Training stage

Input: X,

Qutput: 0

Generate multiple kernels {K; } 7, with X,p;

Compute indicating matrix H,,;, using MKKM;

Initialize @ randomly;

repeat
Complete forward pass to get the output fo(Xsup);
Perform backward pass to compute 9.Jy1/00;
Update 6;

until Convergence;

R I AAUN AW =

After the training stage, our approach is performed on the
whole datasets, as shown in Algorithm 2. In this stage, we
fix the deep neural network, and send all data points into it to
obtain the approximate indicating matrix H,. To further de-
crease the dimension of the indicating matrix, we adopt PCA,
and get H. Finally, we perform k-means on H to obtain the
clustering results Y.
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Algorithm 2: Testing stage
Input: X, 6
Output: H,Y
1 Compute H, = fp(X);
2 Perform PCA on H, and obtain H;
3 Perform k-means on H to obtain labels Y.

3.3 Discussion

Although it includes a training stage and testing stage, our
algorithm is an unsupervised algorithm. In fact, the “label”
used in our training stage is obtained in an unsupervised way.
By using the indicating matrix H,,;, of the subset, the perfor-
mance of our algorithm is nearly identical to that of MKKM.
Moreover, when performed on large-scale datasets, our algo-
rithm does not need to compute kernels and perform SVD,
which indicates the time and memory requirements are only
a small portion of MKKM, so our algorithm is more suitable
for large-scale datasets than MKKM. It is well understood
that the sampling strategy is crucial to the performance of the
proposed algorithm. In fact, sampling strategy is an impor-
tant area of machine learning research. In our paper, we do
not consider the influence of other strategies, and only adopt
the random uniform sampling without replacement.

4 Experimental Results

4.1 Datasets and Experimental Settings

We evaluate our algorithm on eight datasets detailed in Ta-
ble 1. To compare the performance of our algorithm with
MKKM, we use four small-scale datasets, such as mnist-
10k, cifar100-10k, Oxford 102 Category Flowers (102flow-
ers), and birds200, for which the numbers of samples are
fewer than 15,000. To display the performance of our al-
gorithm on large-scale datasets, we use four datasets, such
as Caltech256, cifar100, mnist, and ImageNet, for which the
numbers of samples are greater than 30000. It is worth men-
tioning that ImageNet has more than 1.2 million samples. For
all datasets, we use two 4096-dimensional features extracted
using the Alexnet model [Krizhevsky et al., 2012] and Visual
Geometry Group-19 (VGG19) model [Simonyan and Zisser-
man, 2014] to represent the images. We also generate six
kernels, including two linear kernels and four Gaussian ker-
nels for several small datasets, such as 102flowers, mnist-10k,
cifar100-10k and birds200. Furthermore, to test the perfor-
mance of all algorithms with respect to the number of sam-
ples, we generate ten subsets by randomly selecting 1,000,
2,000, - - -, and 10,000 samples on Caltech256, cifar100 and
birds200. The widely used clustering accuracy (ACC), nor-
malized mutual information (NMI) and purity are applied in
our paper to evaluate the clustering performance. For all al-
gorithms, we repeat each experiment 20 times with random
initialization to reduce the effect of randomness caused by
k-means, and report the mean result.

Figure 3 shows some samples for 102flowers, ImageNet,
and birds200. All the algorithms reported this paper are per-
formed on a workstation with a 32-core Intel E5-2650 2.00
GHz processor and 256 GB memory.
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Table 1: Datasets used in our experiments.

Datasets #Samples #Classes #Views #Kernels
102flowers 8196 102 2 6
mnist-10k 10000 10 2 6

cifar100-10k 10000 100 2 6

birds200 11788 200 2 6
Caltech256 30607 257 2 -

cifar100 50000 100 2 -

mnist 60000 10 2 -
ImageNet 1281167 1000 2 -

Figure 3: Samples from 102flowers, ImageNet and birds200.

4.2 Compared Algorithms

e k-means. This is the conventional k-means method
based on Euclidean distance. It is the baseline method
in our work.

e PCA+k-means. We perform a PCA over the samples
and use the coefficient matrix as new features. We
choose the first p principal components whose cumula-
tive percent is greater than 0.99.

o LSC-k [Chen and Cai, 2011]. The landmark-based
large scale spectral clustering method using k-means
for landmark selection.

e Robust multi-view k-means clustering (RMKM-
C [Cai et al., 2013]. RMKMC can be easily parallelized
and performed on multi-core processors for big data
clustering. Moreover, it is robust to data outliers.

e Auto-weighted multiple graph learning (AMGL) [Nie
et al., 2016]. AMGL learns a set of weights automati-
cally for all views and does not need any parameters.

e Multi-view learning with adaptive neighbors (M-
LAN) [Nie et al, 2017]. It performs multi-view
clustering and local manifold structure learning simul-
taneously. Similar to AMGL, it has no explicit weight
parameters.

e CKM [Shen er al., 2017]. CKM aims to jointly learn
binary codes and clusters. The advantages of CKM over
conventional clustering methods is the low computa-
tional cost and storage.

e MKKM [Huang er al., 2012]: The algorithm alterna-
tively performs kernel k-means and updates the kernel
coefficients, as introduced in the related work. It can
be seen as the baseline of our algorithm. Note that this
algorithm can only be performed on small datasets due
to its heavy memory requirement.
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Figure 4: Clustering and timing performance with different sample sizes on birds200, Caltech256 and cifar100.

4.3 Experimental Results

Performance on small datasets. Compared with alternative
clustering algorithms, our algorithm consumes 1.26s, 14.3s,
0.76s, and 0.49s for clustering, and reports 35.2%, 31.34%,
55.99%, and 70.78% clustering accuracy on cifar100-10k,
birds200, 102flowers and mnist-10k, respectively. By con-
trast, MKKM takes 24.2s, 61.3s, 16s, and 10.1s, and achieves
comparative clustering accuracy. We also contrast our algo-
rithm with six other algorithms: k-means, PCA+k-means,
LSC-k, RMKMC, AMGL and MLAN. Figure 5 displays the
performance on small datasets of all algorithms. Although
AMGL and MLAN achieve the best accuracy on mnist-10k
(91.99% and 88.12%, respectively), they consume too much
time, which means they should not be applied to large-scale
datasets. Furthermore, they only show the best performance
on this dataset; however, on other three datasets, our two al-
gorithms show better performance while costing less time.
Performance on large datasets. Table 2 reports the clus-

tering performance and timing performance of all the afore-
mentioned algorithms. It can be observed that our algorithms

achieve the best performance on all data sets, while need-
ing relatively less running time. On large-scale dataset, such
as ImageNet, our algorithms achieve an accuracy of 38.84%
and 38.92%, and the speed up compared to k-means are 3.3
and 11.05, which means our algorithms are more suitable for
large-scale datasets. This indicates that our approximate algo-
rithms can be applied to estimate the performance of MKKM
on large-scale datasets. In addition, our algorithms would not
lose too much performance after reducing the dimension; for
example, by using PCA, the performance of our algorithm
decreases by an average of less than 1%. These observation-
s show that the proposed clustering algorithms are effective
and efficient.

Performance with different numbers of training sam-
ples. As mentioned before, our algorithm has a training stage
and testing stage. In the training stage, we sample a sub-
set from the whole data set. In this section, we report on the
clustering performance using different sizes of training set. In
order to verify the effect of the size of the training set on the
final clustering performance, we change the size of the train-
ing set and train different networks, then test these networks

3010
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Table 2: ACC, NMI, purity, and time comparison of different clus-
tering algorithms on all datasets.

ACC (%)
mnist  cifarl00  102flowers birds200 caltech256 ImageNet
k-means 64.48 31.32 50.71 29.54 48.63 36.28
PCA+k-means  54.38 28.82 48.61 25.15 44.52 34.80
LSC-k 78.69 30.54 49.13 24.52 41.28 30.37
RMKMC - - 36.05 20.80 41.50 -
AMGL - - 53.65 22.32 41.76 -
MLAN - - 52.50 30.81 36.98 -
CKM 60.57 30.14 49.28 27.56 48.02 33.21
MKKM - - 51.72 29.37 - -
Ours 70.22 3737 55.79 31.34 54.30 38.84
Ours+PCA 70.18 37.15 55.99 31.33 54.45 38.92
NMI (%)
mnist  cifarl00 102flowers birds200 caltech256 ImageNet
k-means 62.68 44.86 67.38 57.07 70.18 67.93
PCA+k-means  49.64 43.62 66.14 53.70 66.81 65.92
LSC-k 79.80 44.84 68.14 53.05 63.54 58.41
RMKMC - - 57.33 50.10 62.12 -
AMGL - - 65.65 42.18 63.10 -
MLAN - - 62.15 56.82 61.73 -
CKM 61.43 44.14 66.73 55.24 69.83 64.15
MKKM - - 65.34 55.50 - -
Ours 66.61 48.09 69.34 5743 72.09 68.20
Ours+PCA 66.49 47.99 68.18 57.44 72.14 67.71
Purity (%)
mnist  cifarl00 102flowers birds200 caltech256 ImageNet
k-means 69.92 32.72 56.94 30.81 57.95 36.68
PCA+k-means ~ 55.41 30.37 55.72 27.04 53.80 36.49
LSC-k 83.83 32.97 58.32 26.15 49.08 29.03
RMKMC - - 43.01 21.98 48.96 -
AMGL - - 59.83 25.14 47.35 -
MLAN - - 58.22 31.01 47.09 -
CKM 67.85 30.18 54.91 28.89 56.87 33.83
MKKM - - 56.99 30.85 - -
Ours 75.64 38.64 62.44 33.16 61.26 39.44
Ours+PCA 75.58 38.37 60.85 32.72 61.31 40.40
Time (s)

mnist  cifarl00 102flowers birds200 caltech256 ImageNet

k-means 22922 281.55 52.30 211.31 332.74 9762.00
PCA+k-means  1575.01  552.30 257.86 394.13 427.43 14459.00
LSC-k 5309.12  3684.37 345.08 497.01 1670.74 32321.80
RMKMC - - 2694.88 9242.36 37359 -
AMGL - - 1377.23 5734.74 ~2 days -
MLAN - - 1312.25 2727.96 77897 -
CKM 13.25 15.36 4.96 18.05 95.7 508
MKKM - - 160.66 613.12 - -
Ours 4191 4743 7.64 143.84 696 2957.90
Ours+PCA 17.70 28.63 6.74 32.69 620.9 883.81

Table 3: ACC, NMI, purity, and time comparison of different clus-
tering algorithms on all datasets.

mnist cifarl00  102flowers birds200 Caltech256 ILSVRC2012
k-means 47.60  20.78 4424 19.38 33.83 22.98
LSC-k 7216 2449 47.27 19.30 32.87 16.47
PCA+k-means | 48.63  22.86 45.16 19.99 37.56 2532
CKM 50.12 20.87 44.11 19.29 32.96 23.58
Ours 68.05  27.92 54.46 20.17 41.00 28.90
Ours+PCA 67.57  26.74 49.70 19.55 41.45 29.06

on three datasets. Figure 6 presents the results. From this fig-
ure, we can see that the accuracy, NMI, and purity have no
significant changes when the size of the training set changes,
which indicates that our algorithm is stable.

Performance with different sizes of datasets. Figure 4
displays the performance of our algorithm on subsets with
different number of samples. It is observed that i) the run-
ning time of the compared algorithms dramatically increases
when the numbers of samples is varied, while ours increase
slightly; ii) there are no fixed rules between clustering perfor-
mance and the number of samples; and iii)) MKKM and our
algorithm always achieve the best performance with different
numbers of samples.

Performance of single-view data. To display the ad-
vantage of multi-view, we report the clustering accuracy of
single-view on all datasets in Table 3.

From Table 3, we can conclude that i) our algorithms
achieve better performance on single view datasets; and i-
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i) the performance of multi-view data is higher than that of
single-view.

5 Conclusion

In this paper, we propose a novel algorithm to overcome tim-
ing and memory issues. It achieves comparative performance
with MKC algorithms. In particular, our algorithm trains a
deep neural network to regress the indicating matrix gener-
ated by MKC algorithms on a small subset, then obtains the
approximate indicating matrix of the whole dataset using the
trained network, and performs the k-means on the output of
our network. To further reduce the execution time of our al-
gorithm, we add the PCA to our network to descend the di-
mension of output. Extensive experiments show that our al-
gorithm is effective and efficient.
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