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Abstract
We propose the doubly sparsifying network (DSN),
by drawing inspirations from the double sparsity
model for dictionary learning. DSN emphasizes the
joint utilization of both the problem structure and
the parameter structure. It simultaneously sparsifies
the output features and the learned model param-
eters, under one unified framework. DSN enjoys
intuitive model interpretation, compact model size
and low complexity. We compare DSN against a
few carefully-designed baselines, and verify its con-
sistently superior performance in a wide range of
settings. Encouraged by its robustness to insufficient
training data, we explore the applicability of DSN
in brain signal processing that has been a challeng-
ing interdisciplinary area. DSN is evaluated for two
mainstream tasks: electroencephalographic (EEG)
signal classification and blood oxygenation level de-
pendent (BOLD) response prediction, and achieves
promising results in both cases.

1 Introduction
With the prevailing success of deep models, it has been gradu-
ally recognized to incorporate the problem structure into the
design of deep architectures. Such customized deep architec-
tures can benefit from their problem-specific regularizations,
and improve the performance as well as interpretability. In par-
ticular, there has been a blooming interest in bridging sparse
coding [Elad and Aharon, 2006] and deep models. [Gregor
and LeCun, 2010] first leveraged the idea to constructed feed-
forward networks as fast trainable regressors to approximate
the solutions of sparse coding models, which is followed by
many recent works, e.g., [Sprechmann et al., 2015], [Wang et
al., 2016a], [Wang et al., 2016b]. Lately, [Xin et al., 2016]
demonstrated theoretically that a deep network could recover
`0-based sparse representations under mild conditions.

The paper proceeds along this direction to embed sparsity
regularization into the target deep model, and simultaneously
exploits the structure of model parameters into the design
of the model architecture. Up to our best knowledge, it is the
first unified framework that jointly sparsifies both learned fea-
tures and model parameters. The resulting deep feed-forward
network, called doubly sparsifying network (DSN), enjoys

a compact structure, a clear interpretation, an efficient im-
plementation, and competitive performance, as verified by
various comparison experiments. Its promising performance
also manifests in the two novel application tasks of EEG signal
classification and BOLD response prediction.

2 Related Work
2.1 Network Implementation of Sparse Coding
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Figure 1: (a) The recursive system diagram for Eqn. (2); (b)
a 3-layer neural network, unfolded and truncated to k = 2
iterations from (a).

We start from the classic sparse coding model [Elad and
Aharon, 2006] (||D||2 = 1 by default hereinafter):

z = argminz
1
2 ||x−Dz||22 + λ||z||1. (1)

x ∈ Rn denotes the input data, z ∈ Rm is the sparse code
feature, D ∈ Rn×m is the dictionary, and λ is the sparsity
regularization coefficient. D is usually chosen to be overcom-
plete, i.e. m > n. Eqn. (1) can be solved by the iterative
shrinkage and thresholding algorithm (ISTA) [Blumensath and
Davies, 2008] (u is a vector and ui is its i-th element):

zk+1 = N (L1(x) + L2(z
k)), where :

L1(x) = DTx, L2(z
k) = (I−DTD)zk,

N (u)i = sign(ui)(|ui| − λ)+,
(2)

where zk ∈ Rm denotes the intermediate output of the k-th
iteration, k = 0, 1, · · · . L1 and L2 are linear operators that
both hinge on D, while N is the element-wise soft shrinkage.
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Figure 2: The proposed doubly sparsifying network, unfolded and truncated to k = 2 iterations. The parameters Wl (l = 1, 2, 3)
are subject to the constraints in Eqn. (6).

Eqn. (2) is equivalently expressed by the recursive system in
Figure 1 (a), whose fixed point is expected to be the solution of
(1). Moreover, Figure 1 (a) could be unfolded and truncated to
k iterations, to construct a (k+1)-layer feed-forward network
[Gregor and LeCun, 2010], as in Figure 1 (b). Without any fur-
ther tuning, the resulting learned ISTA (LISTA ) architecture
will output a k-iteration approximation of the exact solution a.
Figure 1 (b) could be further viewed as a trainable regressor
to fit the data, as a function of D. It could be jointly tuned with
a task-specific loss function Fθ(zk) (e.g., the softmax loss for
classification; θ denotes the parameters of the loss function),
as an end-to-end network [Wang et al., 2016d].

2.2 Double Sparsity Model for Dictionary
Learning

A crucial consideration in employing the sparse coding model
(1) is the choice of the dictionary D. It has been observed
that for structured signals (e.g., image, speech), the learned
dictionary is also highly structured, with noticeably regular
patterns. This gives rise to the hypothesis that the dictionary
atoms themselves may have underlying sparse structures over
a more fundamental dictionary. [Rubinstein et al., 2010] pro-
posed a double sparsity model, suggesting that each dictionary
atom has a sparse representation over some pre-specified base
dictionary D0, expressed as:

D = D0S, ||S(:, i)||0 ≤ s, ∀i, (3)

where S is the sparse atom representation matrix, which has
no more than s nonzero elements per column (s � n,m).
We also assume D0 ∈ Rn×n and S ∈ Rn×m. Note that
in [Rubinstein et al., 2010], D0 is chosen as Rn×m, and
S ∈ Rm×m. We make slightly different choices to ensure that
D0 is unitary, the reason of which will be seen next. The base
dictionary D0 spans the signal space, and is generally chosen
to have an efficient implementation. The new parametric
structure of D leads to an adaptive and efficient dictionary
representation. Advantages of the double sparsity model (3)
also include compact representation, stability under noise and
reduced overfitting, among others.

3 Doubly Sparsifying Network
3.1 The Proposed Model
Given D0 and S, we substitute (3) into (2) to obtain:

L1(x) = STDT
0 x, L2(z

k) = (I− STDT
0 D0S)z

k, (4)

with the iterative formula of zk and the form of N remaining
the same. Compared to (2), S now becomes the trainable
parameter in place of D .

To simplify (4), we first eliminate DT
0 D0 from L2(z

k).
Given the training data XΣ ∈ Rn×t = {xi}, i = 1, 2, ..., t,
and assuming XΣ to have zero mean, we choose D0 as the
(full) eigenvector matrix of XΣX

T
Σ (i.e., the covariance matrix

of XΣ). The obtained D0 constitutes an orthonormal basis for
Rn. Further, DT

0 x performs the PCA projection of x, denoted
as: xPCA = DT

0 x. The formula (4) is reduced to:
L1(x) = W1xPCA, L2(z

k) = (I−W3W2)z
k, where

W1 = ST ,W2 = S,W3 = ST .
(5)

We introduce three new variables in (5): W1 ∈ Rm×n,
W2 ∈ Rn×m, and W3 ∈ Rm×n. Both W1 and W3 have
no more than s nonzero elements per row, while W2 has no
more than s nonzero elements per column. Figure 2 depicts
the resulting doubly sparsifying network (DSN), unfolded and
truncated from (5) (up to k = 2). We purposely model W2 and
W3 as two separate layers (with no nonlinearity in between),
so that we could specify the proper row- or column-wise spar-
sity constraint on each. That is similar to constructing one
linear layer, which is required to have a special sparse matrix
factorization (SMF) form [Neyshabur and Panigrahy, 2013].

Furthermore, under the loss function Fθ, W1, W2 and
W3 can again be learned via end-to-end learning, instead of
being constructed from any pre-computed S1. In this way,
the DSN network is solved over DT

0 XΣ by back-prorogation,
where Wl (l = 1, 2, 3) are treated as fully-connected layers.
Different from [Wang et al., 2016b], we find it helpful to untie
W2 and W3 throughout iterations, in order for larger learning
capacity. During training, we also relax the formulation (5),
by decoupling Wl (l = 1, 2, 3) with each other, e.g., it is no
longer required that W1 = W3, or WT

2 = W3. For simplicity,
we use the same s for all Wls.

3.2 The Projected Gradient Descent Algorithm
Let G denote the nonlinear mapping from the data to the last
hidden feature before the loss, the optimization problem of
training DSN could be written as below:

min{W1,W2,W3,θ} Fθ(G(XΣ|W1,W2,W3)),
s.t.||W1(i, :)||0 ≤ s, ||W2(:, j)||0 ≤ s,
||W3(k, :)||0 ≤ s, ∀i, j, k.

(6)

1Another parameter to be learned jointly is the threshold λ in N .
It is handled identically as in [Wang et al., 2016c].
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Apart from the constraints, the objective in (6) is usually mini-
mized by the (stochastic) gradient descent (SGD) algorithm:

Wl = Wl − γ ∂F
∂Wl

, l = 1, 2, 3, (7)

where γ is the learning rate. With the constraints in (6) specify-
ing the feasible sets, we naturally obtain the Projected Gradient
Descent (PGD) algorithm:

Wl = Pl(Wl − γ ∂F
∂Wl

), l = 1, 2, 3. (8)

where Pl is the projection onto the feasible set for Wl [Blu-
mensath and Davies, 2008]. When l = 1, 3, Pl keeps the s
largest-magnitude elements in each row of Wl, and zeros out
others. For l = 2, Pl is the same hard thresholding operator,
but on a column-wise basis.

SGD is guaranteed to converge to a stationary point, under
a few stricter assumptions than the ones satisfied here [Bottou,
2010]. Since both the objective and feasible sets of (6) are
non-convex, there is no convergence guarantee for PGD in (8).
However, many literatures, such as [Blumensath and Davies,
2008], have demonstrated that solving such problems with
PGD is well executed in practice. The stochastic implementa-
tion of PGD is also straightforward.

3.3 Complexity Analysis
Model parameter complexity
For k-iteration DSN, each Wl (l= 1, 2, 3) is a sparse matrix
of sm nonzero elements. The total amount of parameters
in DSN is (2k + 1)sm. In contrast, the LISTA network in
Figure 1 (b) takes mn + km2 parameters, assuming its L2

parameters not tied across iterations as well. Since s� m,n,
the parameter ratio turns out to be (2k+1)sm

mn+km2 = (2k+1)s
n+km →

2s
m � 1, as k → ∞. DSN can thus be stored and loaded
much more compactly, due to the sparse structure of Wls.
More importantly, DSN can ensure the sufficient capacity
and flexibility of learning by using large m, meanwhile
regularizing the learning process by choosing small s.

Inference time complexity
The efficient multiplication of a sparse matrix with sm
nonzero elements, and an arbitrary input vector, takes sm
time. Given a k-iteration DSN, the inference time complex-
ity of one sample ∈ Rn is O((2k + 1)sm). In comparison,
LISTA has a time complexity ofO(mn+ km2). Again, when
k →∞, (2k+1)sm

mn+km2 → 2s
m � 1.

Remark on the number of layers
When (5) is unfolded and truncated to k iterations, the ob-
tained DSN has 1 W1 layer, kW2 layers, and kW3 layers.
However, since W2 and W3 are always linearly concatenated
within each iteration, with no nonlinearity in between, we
can also consider W3W2 ∈ Rm×m as one layer, whose two
factors are individually regularized. Hence, we treat a DSN
unfolded to k iterations as a (k+1)-layer network, which also
follows the LISTA convention [Gregor and LeCun, 2010].

3.4 Relationship to Existing Works
Many regularization techniques have been proposed to reduce
overfitting in deep learning, such as dropout [Krizhevsky et

al., 2012], that set a randomly selected subset of activations to
zero within each hidden layer. [Wan et al., 2013] introduced
dropconnect for regularizing fully-connected layers, which
instead sets a randomly selected subset of weights to zero dur-
ing training. In comparison, DSN reveals an adaptive regime
for dropconnect, where the selection of “dropped” weights is
decided not randomly, but by data-driven hard thresholding.
Besides, both dropout and dropconnect are only applied to
training, and are unable to reduce the actual model size. DSN
could also be viewed to have a weight decay penalty, which is
enforced by hard `0 constraints.

A recent work [Jin et al., 2016] also imposed explicit layer-
wise cardinality constraints to the network parameters during
training. However, DSN more clearly interprets the motivation
to sparsify parameters, by referring to the inherent sparse struc-
ture of dictionary resulting from the structured signal space.
Moreover, [Jin et al., 2016] focused more on the general train-
ing strategy, while DSN combines pursuing sparse features
with pruning model parameters. It is thus potentially more
favored by many discriminative feature learning tasks where
feature sparsity is explicitly desirable [Coates and Ng, 2011].

4 Simulation and Analysis
4.1 Implementation
The proposed DSN is implemented with the CUDA ConvNet
package [Krizhevsky et al., 2012]. We use a constant learning
rate of 0.01, with the momentum parameter fixed at 0.9, and a
batch size of 128. Neither dropout nor dropconnect is applied
unless specified otherwise. We manually decrease the learning
rate when the validation error of the network stops decreasing.

As suggested by (5), we first subtract the mean and conduct
PCA over the training data XΣ. We adopt the multi-step
update strategy in [Jin et al., 2016], namely, updating Wl

by SGD without the cardinality constraints for several (15 by
default) iterations, before the projection Pl (l = 1, 2, 3). It
both accelerates training by reducing the time of performing
hard thresholding, and forces DSN to learn more informative
parameters to make pruning more reliable.

While many neural networks are trained well with ran-
dom initializations, it has been discovered that poor initializa-
tions can still hamper the effectiveness of first-order methods
[Sutskever et al., 2013]. On the other hand, It is much easier
to initialize DSN in the right regime. We first initialize S
by setting s randomly selected elements to be one for each
column, and zero elsewhere: that ensures a random starting
point within the feasible space, as specified by the constraints.
Based on the correspondence relationships in (5), Wls (l=
1, 2, 3) are all trivially initialized from S. That helps DSN
achieve a more steadily decreasing curve of training errors.

4.2 Comparison
In the simulation experiments, we use the first 60, 000 samples
of the MNIST dataset for training and the last 10,000 for
testing. Each MNIST sample is a 28×28 gray-scale image, i.e.,
n = 784. Common data augmentations (noice, blur, rotation,
and scaling) are applied. In addition to a k-iteration DSN, we
design five baselines for comparison:
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• Baseline I: (k+1)-layer fully-connected network, whose
first layer ∈ Rm×n and remaining k layers ∈ Rm×m.
• Baseline II: Baseline I regularized by dropout, with a

ratio of 0.5 for each layer [Krizhevsky et al., 2012].
• Baseline III: Baseline I regularized by dropconnect, with

a ratio of 0.5 (as in [Wan et al., 2013]) for each layer.
• Baseline IV: a LISTA network, unfolded and truncated to
k iterations from (1). We also apply dropout to regularize
its fully-connected layers.
• Baseline V: a network inspired by [Jin et al., 2016], by

removing all “shortcuts” in DSN.
All comparison methods are ensured to have the identical layer
dimensions. They are jointly tuned with the softmax loss for
the classification task. The default configuration parameters
are s = 1

4n, m = 1, 024, t = 60, 000, and k = 2. We further vary
each of the four parameters, while keeping others unchanged,
in our controlled experiments below.

Figure 3: The error rate (%) comparison between baselines
and DSN on MNIST, with the sparsity ratio s/n varied.

Sparsity level s
Figure 3 varies the sparsity ratio s/n from 0.1 to 0.6, and plots
the corresponding error rates for all methods. Baselines I - IV
are not parameterized by s and thus not affected. Comparing
Baselines II and III with Baseline I certifies that applying (even
random) regularizations avoids overfitting and improves gener-
alization. Baseline V and DSN both benefit further from their
more sophisticated regularization on the parameters. DSN
outperforms Baseline V with noticeable margins at all s/n
ratios, and reaches the best overall performance at s/n = 0.25.

As displayed in Figure 3, the performance of Baseline V
and DSN will both be degraded with either too small or too
large s/n ratios. Whereas increasing s/n may loose the regu-
larization effect, a small s/n also implies over-regularization,
limiting the representation power of free parameters. In the
random dropout/dropconnect cases, the popular practice is to
choose s/n around 0.5. [Jin et al., 2016] also observed the
best s/n to be between 0.4 and 0.5. DSN seems to admit a
lower “optimal” s/n (around 0.25). It implies that DSN could
attain more competitive performance with fewer parameters
(i.e., lower s/n), by “smartly” selecting non-zero elements in
a data-driven way.

Figure 4: The error rate (%) comparison between baselines
and DSN on MNIST, with the feature dimension m varied.

Feature dimension m
In (1), the choice of m corresponds to the dimensionality of
the learned sparse code feature, and turns into the hidden layer
dimensions of DSN, etc. As illustrated in Figure 4, we start
from m = 800, and raise it up to 2, 000. Not surprisingly, the
performance of Baseline I is degraded with m growing larger,
due to obviously overfitting. All other methods, regularized
in various ways, all seem to benefit from larger m values.
Among them, DSN consistently outperforms others, with a
0.2% error rate margin over Baseline IV (the second best). It
proves effective to handle highly over-complete and redundant
basis, and hence to learn more sparse hidden features.

Figure 5: The error rate (%) comparison between baselines
and DSN on MNIST, with ts/t varied.

Training sample size t(ts)
DSN seeks a trade-off between “data-driven” and “model-
based” methods. By confining the degrees of freedom of
parameters and permitting only certain sparse combinations
over a pre-specified base dictionary, the parameter structure
model (3) enables us to reduce, in some cases significantly, the
amount of training data required to reliably approximate and
recover the underlying nonlinear mapping of the deep model.

We empirically verify our conjecture, by the following com-
parison experiment. A small subset of size ts is drawn from
XΣ (the MNIST dataset with t = 60, 000 samples), where
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each class is sampled proportionally. We range the ratio ts/t
from 0.1 to 1. Figure 5 shows that DSN leads to dramatically
more robust learning and generalization, under insufficient
training data. Even when ts/t is as low as 0.05, DSN only
bears a slight performance loss of 2.46%, while Baselines IV
and V are degraded for more than 6% and 4%, respectively. It
is also noteworthy that, to achieve the same performance level
of DSN at ts/t = 0.05, Baselines IV and V requires approx-
imately ts/t = 0.4, Baselines II and III take ts/t = 0.5, and
Baseline I even needs ts/t ≥ 0.8. Those observations strongly
support our hypothesis, that DSN greatly alleviates the need
for large training data, by exploiting the prior knowledge of pa-
rameter structure. In addition, we note that Baseline V slightly
outperforms Baseline IV in Figure 5. Recall that similarly to
DSN, the regularization on the Baseline V parameters is also
enforced by the data-driven adaptive sparsity. Under small
training data, it is shown more effective than the “random
sparsity” induced by dropout.

Figure 6: The error rate (%) comparison between baselines
and DSN on MNIST, with k varied.

Number of layers k + 1
The last thing that we investigate is how well DSN and other
methods can scale to deeper cases. We grow k from 1 to 6,
resulting in 2 to 7-layer networks2. The comparison in Figure
6 evidently demonstrates the superiority of DSN at all k values.
Besides, it is also interesting to see from Figure 6, that Baseline
IV obtains a significant performance advantage over Baseline
V as k grows. It is opposite to the observation in Figure 5. On
one hand, it might be attributed to the utility of “shortcuts”, as
analyzed in [He et al., 2016]. On the other hand, we believe
that the incorporation of the original problem structure (1)
also places deep models in good conditions: increasing k
is resemblant to running (2) up to more iterations, and thus
solving (1) more precisely.

Remarks
We conclude from the above experiments, that both the prob-
lem structure (“sparsifying features”) and the parameter struc-
ture (“sparsifying parameters’) have contributed to the superior
performance of DSN.

2We apply layer-wise pre-training [Erhan et al., 2010] to Baseline
I when k > 2, to ensure that it converges properly.

By the comparison to Baselines II and III, the sophisticated
regularization of DSN is found to be more powerful than ran-
dom ones such as dropout/dropconnect. Compared to Baseline
IV, DSN further utilizes the double sparsity structure of the
dictionary (3) as a priori, which accounts for its improved
performance in all aspects. In the meanwhile, exploiting the
structure of the original problem (1), that encourages sparse
and more discriminative features, also helps DSN outperform
Baseline V consistently.

Besides, although the simulations are only intended for
proof-of-concepts, the result of default-configured DSN has
already had comparable results to the 6-layer neural network in
[Ciresan et al., 2010], and the committee of 25 neural networks
trained with elastic distortions in [Meier et al., 2011].

5 Applications in Brain Signal Processing
DSN shows superior performance in simulations. In particular,
the experiments on varying t(ts) identified a sharp perfor-
mance margin for DSN over the others. It thus implies the
possibility for DSN to handle smaller data. In this paper, we
explore the applicability of DSN in brain signal processing, a
challenging interdisciplinary area that calls for computational
innovations. EEG signal classification and BOLD response
prediction have been two of its mainstream tasks that particu-
larly fit the concept of DSN.

We are motivated to apply DSN for brain signal process-
ing, primarily because the sample sizes are very limited in
most existing brain signal datasets, with only tens of partic-
ipants. Unlike common computer vision tasks [Krizhevsky
et al., 2012], it is usually infeasible to perform artificial data
augmentation or generate “synthetic” data here. Therefore,
models that are economic in free parameters are advantageous.
The sparsely-structured parameters of DSN show promise in
saving parameters and avoiding overfitting, without hamper-
ing model effectiveness. Moreover, brain signals are known
to be highly structured. The sensory processing in the brain
suggests a sparse coding strategy over an over-complete basis
[Olshausen and Field, 1997]. Such a neuroscience ground
encourages us to sparsify the features in the brain encoding
models. As the ultimate goal to study brain signal processing
is to understand how brain works, it is interesting to verify the
underlying low-dimensional structure of brain signals from a
learning perspective too.

5.1 EEG Signal Classification
Brain-computer interfaces (BCI) enable the control of the ex-
ternal environment through direct measures of brain signals
[Wolpaw et al., 2000]. Its applications can be found in a broad
range of fields such as rehabilitation engineering, military, and
entertainment. Electroencephalographic (EEG) signal classifi-
cation belongs to the core tasks of BCI. Previous literatures
explored band power [Brodu et al., 2011], multivariate adap-
tive autoregressive (MVAAR) [Anderson et al., 1998], and
independent component analysis (ICA) [Hung et al., 2005],
among many others. Recent works [Ren and Wu, 2014;
Tabar and Halici, 2016] showed that that deep networks yield
superior results on this task.

We follow [Tabar and Halici, 2016] to adopt the benchmark
dataset 2b from BCI Competition IV (training set) [Schlögl,
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Table 1: The accuracy (%) comparison on BCI Competition
IV dataset 2b among SVM, CNN, CNN-SAE and DSN.

Subject SVM CNN CNN-SAE DSN
1 71.8 74.5 76.0 74.8
2 64.5 64.3 65.8 69.6
3 69.3 71.8 75.3 74.3
4 93.0 94.5 95.3 97.5
5 77.5 79.5 83.0 87.5
6 72.5 75.0 79.5 82.0
7 68.0 70.5 74.5 77.0
8 69.8 71.8 75.3 77.3
9 65.0 71.0 75.3 67.6

Average 72.4 74.8 77.6 78.7

2003]. The dataset includes three sessions of motor imagery
task experiments, with two classes of motions: right and left
hand movements. The EEG signal classifier thus solves a
binary classification problem: to distinguish EEG signals asso-
ciated with right hand movements from those associated with
left hand movements. We train and test models separately for
each of nine subjects. In each session, we randomly select 90%
of 400 trials for training and the remaining 10% for testing,
and report the mean accuracy of 10 runs.

We transform the extracted signal to construct the input us-
ing the same protocol as [Tabar and Halici, 2016]. Specifically,
they introduced to pre-process the input, by pre-training a 1-D
convolutional neural network (CNN) with one convolutional
layer and one max-pooling layer. It was shown to preserve
the input spatial pattern better than the straightforward option
of vectorization and PCA. The pre-processed output was then
classified by a 7-layer stacked auto-encoder (SAE). Besides
the proposed CNN-SAE method, the authors also reported two
baselines: applying only the CNN part for classification, and
directly classifying the input by SVM. We follow their CNN
pre-processing strategy, and use a 1-layer CNN with 10 chan-
nels of 1-D convolutional filter of size 20. The input n is thus
200. Other configuration hyperparameters are chosen as k = 3,
m = 256, and s = 64. Note that DSN costs fewer parameters
than the CNN-SAE architecture used in [Tabar and Halici,
2016]. Table 1 clearly shows the performance advantage of
DSN over the competitive CNN-SAE method: DSN outper-
forms in six out of nine subjects, and maintains a 1% margin
in terms of the average accuracy.

5.2 BOLD Response Prediction
Brain encoding has been held as a crucial technical step to
advance many areas such as brain-computer interaction, reha-
bilitation, and situational awareness enhancement for military
applications. It essentially concerns the prediction of brain
activity, e.g, the blood oxygenation level dependent (BOLD)
response, with a given stimuli. For example, with a grayscale
image as the stimuli, [Kay et al., 2013] developed a two-stage
cascaded second-order contrast (SOC) model to predict the
BOLD responses in early visual cortex. The SOC model
has only eight controlling parameters: it heavily relies on
specific nonlinear computations, that are summarized from
neuroscience expertise. While many existing models such as
[Kay et al., 2013] used highly domain-knowledge driven mod-

els, we propose to study DSN as a more parameterized and
flexible option, that could lead to the data-driven discovery of
unknown structures embedded in the brain signals.

We refer to Kendrick Kay et.al.’s publicly available datasets
of BOLD responses in visual cortex3, measured by functional
magnetic resonance imaging (fMRI) in human subjects. We
use their stimulus set 2, stimulus set 3, (response) dataset 4,
and (response) dataset 5. All stimuli are band-pass filtered
grayscale synthetic images. Following [Kay et al., 2013],
we resize all the stimuli to 150 × 150 pixels. Stimulus sets
2 and 3 consist of 156 and 35 distinct stimuli, respectively.
The responses at a total of 200 voxels are recorded. On each
voxel, a scalar fMRI measurement was measured given each
input stimuli. Note that each voxel needs to train a separate
brain encoding model. Dataset 4 consists of one person’s
responses to stimulus set 2, while dataset 5 has the same
person’s responses to stimulus set 3. Details about the datasets
could be found at [Kay et al., 2013].

Our goal is to train a regression-type model using stimulus
set 2 and dataset 4 (as the training set). The model is used
to generate predictions and be evaluated on stimulus set 3
and dataset 5 (as the testing set). Obviously, it is a highly
ill-conditioned “small data” problem. To adapt DSN for the
regression task, we replace the softmax function, with a max
pooling operator: Rm → R, followed by a mean square error
(MSE) loss. Due to the very simple nature of the used visual
stimuli, we vectorize and project each image into a 128-d
vector for input, and choose k = 2, m = 256, and s = 64. A
3-layer fully-connected (FC) network is also constructed for
comparison, with three hidden layers of 256-dimension, and
regularized by dropout with a ratio of 0.5.

Our experiment has found encouraging results. The model
accuracy is quantified as the percentage of variance explained
(R2) in the measured response amplitudes by the cross-
validated predictions of the response amplitudes. Following
[Kay et al., 2013], R2 is defined to range between [0, 100]:
the higher R2 is, the more accurate the model is. In terms of
averaged R2 performance across 200 voxels, the SOC base-
line obtains 87.7028, and the averaged R2 for FC is as poor
as 69.5077. DSN leads to the best averaged R2 of 88.4026.
In future, it is natural to extend (1) and (3) to the convolu-
tional counterparts, and to apply them to the BOLD response
prediction of visual stimuli.

6 Summary
The study of DSN showcases how jointly exploiting the prob-
lem structure and the parameter structure improves the deep
modeling. Both simulations and the two brain signal pro-
cessing applications have verified its consistently superior
performance, as well as robustness to highly limited training
data. In our future work, a wide variety of parameter structures
will be exploited for different models as a priori.
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