Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Improving Reinforcement Learning with Confidence-Based Demonstrations

Zhaodong Wang
School of EECS
Washington State University
zhaodong.wang @wsu.edu

Abstract

Reinforcement learning has had many successes,
but in practice it often requires significant amounts
of data to learn high-performing policies. One
common way to improve learning is to allow a
trained (source) agent to assist a new (target) agent.
The goals in this setting are to 1) improve the target
agent’s performance, relative to learning unaided,
and 2) allow the target agent to outperform the
source agent. Our approach leverages source agent
demonstrations, removing any requirements on the
source agent’s learning algorithm or representation.
The target agent then estimates the source agent’s
policy and improves upon it. The key contribution
of this work is to show that leveraging the target
agent’s uncertainty in the source agent’s policy can
significantly improve learning in two complex sim-
ulated domains, Keepaway and Mario.

1 Introduction

Reinforcement learning [Sutton and Barto, 1998] (RL) meth-
ods have been successfully applied to both virtual and phys-
ical robots. In some complex domains, the learning speed
may be too slow to be feasible. One common speed up
method is transfer learning [Taylor and Stone, 2009], where
one (source) agent is used to speed up learning in a second
(target) agent. Unfortunately, many transfer learning meth-
ods make assumptions about the source and/or target agent’s
internal representation, learning method, prior knowledge,
etc. Instead of requiring a particular type of knowledge to
be transferred, past work on the Human Agent Transfer [Tay-
lor et al., 2011] (HAT) algorithm allowed the source agent
to demonstrate its policy, the target agent to bootstrap based
on this policy, and then the target agent to improve its per-
formance over that of the source agent. So that there are no
restrictions on how the source agent learns, HAT records data
from the source agent as state-action pairs. In this work the
source agent could be either a human or a virtual agent, un-
derlying how different the source and target agents can be.!

'Because of the small number of sub-optmial demonstrations
from source agents, experience replay [Lin, 1992] would have lim-
ited use in complex tasks.

3027

Matthew E. Taylor
School of EECS
Washington State University
taylorm@eecs.wsu.edu

We also note that this approach is different from much of the
existing learning from demonstration [Argall et al., 2009] ap-
proaches, as the target agent can autonomously improve upon
(and outperform) the source agent’s policy via RL.

The HAT algorithm can be briefly summarized in three
steps. First, the source agent acts for a time in the task and the
target agent records a set of demonstrations. Second, a deci-
sion tree learning method (e.g., Quinlan’s J48 [1993]) sum-
marizes the demonstrated policy as a static mapping from
states to actions. Third, these rules are used by the target
agent as a bias in the early stages of its learning.

The key component of HAT is that it uses the learned clas-
sifier to bias its exploration. Initially, the target task agent
follows the classifier, attempting to mimic the source agent.
Over time, it integrates exploration and exploitation of its
learned knowledge with exploiting the classifier, effectively
improving its performance relative to the source agent.

Immediately after performing transfer, it is unlikely that
the target agent will be optimal due to multiple sources of er-
ror. First, the source agent may be suboptimal. Second, the
source agent (or source human) may be inconsistent, resulting
in an inability to correctly summarize the source agent’s pol-
icy. Third, the source data must be summarized, not memo-
rized — because the decision tree will not exhaustively mem-
orize all possible states. When it combines multiple (simi-
lar) states, some states may be classified incorrectly. Fourth,
the source agent typically cannot exhaustively demonstrate all
possible state action pairs — the learned decision tree must
generalize to unseen states, which may be incorrect. Differ-
ent types and qualities of demonstrations may be more or less
effective, depending on these four types of potential errors.

Error types two and three, and possibly error type four, may
be addressed by considering the uncertainty in the classifier.
Rather than blindly following a decision tree to select an ac-
tion in a given state, as is done by HAT, this paper shows the
benefits of leveraging the measured uncertainty in the trans-
ferred information.

This work takes a critical first step in this direction by in-
troducing CHAT (confidence-HAT), an enhancement to the
HAT algorithm leveraging confidence-based demonstration.
We evaluate CHAT using the domains of simulated robot
soccer and Mario, empirically showing it outperforms both
HAT and learning without transfer. We have three func-
tion approximators for CHAT: Gaussian process (GPHAT),

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

neural network (NNHAT) and decision tree (DTHAT), to
show that uncertainty measurement helps. Even when low
amounts of demonstration data are used, the initial perfor-
mance (jumpstart) and overall performance (total reward) are
significantly improved. By leveraging uncertainty in the es-
timate of the source agent’s policy, CHAT may be useful in
domains where initial performance is critical, but demonstra-
tions from a trained agent (or human) are available but non-
trivial to collect.

2 Background

This section will present some basic techniques discussed in
the paper: reinforcement learning, learning from demonstra-
tion, and the HAT algorithm.

2.1 Reinforcement Learning

Reinforcement learning is a process where an agent learns
through experience by exploring the environment. RL algo-
rithms typically leverage the Markov decision process (MDP)
formulation. In an MDP, A is a set of actions an agent can
take and S is a set of states. There are two (initially un-
known) functions within this process: a transition function
(T:8 x A~ S)and areward function (R : S x A — R).

Different RL algorithms have different ways of learning to
maximize the expected reward. In this paper, we use e-greedy
action selection with SARSA [Rummery and Niranjan, 1994;
Singh and Sutton, 1996]:

Q(s,a) + Q(s,a) + afr + 7Q(s',d') — Q(s,a)]
and Q-learning [Watkins and Dayan, 1992]:

Q(s,a) < Q(s,a) + afr + 'ymaqggQ(S” a) —Q(s,a)

In cases where the state is continuous or very large, @
can not be represented as a table. In such cases, some type
of function approximation is needed. In this paper we use
a CMAC tile coding function approximator [Albus, 1981],
where a state is represented by a vector of state variables.

2.2 Demonstration

Demonstrations are typically recorded as a vector of state-
action pairs as (Z, a), in which Z is the state vector (where
multiple state features are composed to describe a state s) and
a is the corresponding action. There are many ways of col-
lecting this data, from visual observation to directly recording
actions during teleoperation.

Learning from demonstration methods typically try to
mimic this collected data. HAT differs from much of the ex-
isting work [Argall er al., 2009] because its goal is to improve
upon the initial demonstration data. Most relevant to this
work is that of Chernova and Veloso [2009], which showed
that a nearest neighbor distance metric provides a measure-
ment of confidence in pure LfD, allowing the agent to know
when to use existing demonstrations and when to request ad-
ditional demonstrations from a human expert. This paper fo-
cuses on leveraging confidence measures to help RL agents
select actions to improve upon demonstrated data.

3028

2.3 Human Agent Transfer

HAT’s goal is to leverage data from a source agent or source
human, and then improve upon its performance with RL.
HAT leverages rule transfer [Taylor and Stone, 2007] and the
demonstrated knowledge is summarized via a decision tree.
The following steps summarize HAT:

1. Learn a policy from the source task: A source agent has
some policy (m : S +— A) in a task, and takes actions
following a policy. The state-action pairs are stored as
demonstration data.

2. Train a decision tree: A decision tree is trained to sum-
marize the state-action pairs. The decision tree is essen-
tially a static set of rules.

3. Bootstrap the target task with the decision tree: Instead
of randomly exploring, the agent will use the learned
rules to guide action selection. There are three ways
of using the decision tree to improve learning perfor-
mance but this paper focuses on probabilistic policy
reuse (PPR). In PPR, there is a parameter ® that deter-
mines whether the learning agent should follow the clas-
sifier: the RL agent will reuse the transferred rule policy
with a probability of ®, act randomly with a probability
of €, and exploit its Q-values with probability 1 — ® —e.
& typically starts near 1 and decays exponentially, forc-
ing the agent to initially follow the source policy and
leverage its learned Q-values over time.

3 Confidence Measurement of HAT (CHAT)

In this section we introduce improved methods (CHAT) lever-
aging the confidence of demonstration based on three mod-
els: Gaussian process (GPHAT), neural network (NNHAT)
and decision tree (DTHAT). Once calculated, a learning agent
could use this confidence in multiple ways. When our agent
attempts to exploit source knowledge, it will execute the ac-
tion suggested by the provided demonstration if it’s confi-
dence is above some confidence threshold. Otherwise, it
will execute the “default” action (null action or random ex-
ploration). We build upon PPR, letting ® decay. To imple-
ment CHAT, we 1) record data from a source policy, 2) train
a confidence-aware classifier on this dataset, and 3) use Al-
gorithm 1 to learn the task.

Gaussian Process (GPHAT) A Gaussian model is typi-
cally defined as:

1
Plw;lr) = ——
(wilz) o

where w; is the predicted label, ¥; is the covariance matrix of
data of class 4, and p; is the mean of data of class i.

Considering Bayes’ decision rules, we have the prediction
by a classifier:

exp{—5 (e —)5 o —)

w; = argmax|ln P(w;|x) + In P(w;)]
= argmax[—g(z — ;)37 (z — i)

—3In27|%;| + In P(w;)]
= argmin[d(z, ;) + ;]

wi

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

where d(z, ;) = (v — p)TS; Y@ — p) and o =
In27|%;| — 21n P(w;).

This classifier is generated from Bayes decision rules and it
optimizes the boundary of the data with different labels. If we
directly use the above classifier, we can only receive a binary
decision. Instead, we define a confidence function with the
classification (for class label 7):

Ci(z) = exp{—d(z, p;) — a;} (1)

Notice that a typical GP maps from input space (data) to

output space (class), but this still just provides classification

result. Additionally, what we want is the confidence along

with the classification output, and thus we take advantage of

the original GP and then define the above confidence function
to calculate confidence.

Algorithm 1: GPHAT: Bootstrap target learning
Input: Confidence model G P, confidence threshold 7', PPR
initial probability ®¢, PPR decay ® p(= $¢)
1 &+
2 for each episode do

3 Initialize state s to start state
4 for each step of an episode do
5 a+ 0
6 if rand() < ® then
7 Use G P to compute C; as shown in (1) for each
action
8 if max C; > T then
9 ‘ a < corresponding a;
10 else
1 L a < default ag
12 else
13 if rand() < e then
14 | a ¢ random action
15 else
16 | @ < action that maximizes Q
17 Execute action a
18 Observe new state s” and reward r
19 Update Q (SARSA, Q-Learning, etc.)
20 P+ P xPp

Neural Network (NNHAT) We use a 2-hidden-layer neu-
ral network as our confidence model. To calculate the
uncertainty of demonstration, we apply softmax regres-
sion [Bishop, 2006, pp. 206-209] at output layer:

exp(6] -)
1 exp(6] -)
> eap(07 1)

C;(x) is then used as confidence.

Cile) =
exp(0] -)

Decision Tree (DTHAT) We use the accuracy of each leaf
node as an estimate of the confidence. Assuming the training
and test data have the same distributions, we use the heuristic
that the more data a node correctly classifies, the less uncer-
tainty we expect in the node’s decision. The percentage of
correctly classified data of each leaf node is used as the clas-
sification confidence.

3029

4 Experimental Setting

This section discusses the two experimental domains and our
methodology.

4.1 Mario

Mario is a benchmark domain [Karakovskiy and Togelius,
2012], based on Mario Brothers. In this simulation, Mario
(the learning agent) is trained to score as many points as
possible. The game state is represented in a 27-tuple vector
space, indicating the state and position information of Mario
and his enemies [Suay et al., 2016]. This vector space al-
lows for 3.65 x 10'° different states, indicating the complex-
ity of its learning problem. The action space for Mario is
generated from these three groups: {no direction, left, right},
{don’t jump/jump}, and {run/fire, don’t run/ fire}. By select-
ing one sub-action from each of the three groups simultane-
ously, Mario has a total of 12 (3 x 2 x 2) different actions.

4.2 Keepaway Simulation

Keepaway is a simulated robot soccer game. We use version
9.4.5 of the Robocup Soccer Server [Noda et al., 1998], and
version 0.9 of the Keepaway player framework [Stone ef al.,
2006]. There are 3 keepers and 2 takers, playing within a
bounded square. Keepers learn to keep control of the ball
while takers follow hard-coded rules to chase after the ball.
An episode of the simulated game starts with an initial state
and ends with an interception by the takers or the ball going
out of bounds.

The game is mapped into a discrete time sequence to make
it possible to control every player. We use a continuous 13-
tuple vector to represent the states (e.g., position information
like distances and angles). Once a keeper gets the ball, it must
make a decision among three actions: Hold: hold the ball,
Passy: pass the ball to the closer teammate, or Passs: pass
the ball to the further teammate. The two keepers without the
ball follow a fixed policy to try to get open for a pass. The
reward is +1 per time step for every keeper.

4.3 Methodology

Demonstrations (state-action trajectories) are collected from
a human participant via a visualizer or directly from an agent.

We first evaluate CHAT with 3 confidence models in
Mario. For GPHAT, we train one-vs.-all Gaussian classifiers
for each action. For NNHAT, we build a 2-hidden-layer net-
work (50 nodes of each hidden layer).

For DTHAT, we train J48 tree with the default parameters
of Weka 3.6. Second, we also evaluate GPHAT in Keepaway.
We train Gaussian classifiers only on actions Pass; and Passs,
as action Hold is executed roughly 70% of the time, mak-
ing the data unbalanced. Notice that the Gaussian classifiers
for Pass, and Pass, are one-vs.-all since it is a multiclass
problem. Similarly, two one-vs.-all decision trees are trained
exclusively for Pass, and Passs.

To achieve better classification accuracy, we will first use
clustering to help determine the number of Gaussian clas-
sifiers in GPHAT (which can be greater than or equal to
the number of actions). We cluster these data using the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1800

1600

1400

1200

1000

800

Score

600

4 Q-learning with GPHAT
T R = Q-learning with NNHAT
= = = = Q-learning with DTHAT
ok rremes Q-learning with HAT
Q-learning Baseline

-200 I L I I L I L I L
0 0.5 1 15 2 25 3 35 4 45 5

Training episodes x10¢

Figure 1: This figure compares the learning curves of Confidence-
HAT with HAT and RL without any bootstrapping in Mario.

Expectation-Maximization (EM) algorithm [Celeux and Gov-
aert, 19921, with default parameter settings in Weka 3.6 [Wit-
ten and Frank, 2005], into N groups and then train N Gaus-
sian classifiers for this class. We determine [N by comparing
the average performance of the first few episodes. By having
several smaller data clusters, the precision of the classifier can
be increased. We only use clustering for the Gaussian model.

We use SARSA in Keepaway and Q-learning in Mario to
be consistent with previous work. SARSA uses: a = 0.05,
e = 0.1, and v = 1. Q-learning uses: « ﬁ,
e = 0.1, and v = 0.9. Notice that these parameters are
consistent with previous research in these domains. The pa-
rameter ¢ determines when the agent listens to prior knowl-
edge. ® is multiplied by a decay factor, ®p, on every time
step. Among {0.9,0.99,0.999,0.9999}, preliminary experi-
ments found ®p = 0.999 to be the best for Keepaway and
®p = 0.9999 to be the best for Mario (explored further in
Section 5.2).

We evaluate learning performance in terms of jumpstart
and total reward. Jumpstart is the average initial perfor-
mance before learning. A higher jumpstart indicates that prior
knowledge is more useful. The overall performance is mea-
sured by the area under a learning curve.

5 Mario Results

In this section, we show our results of learning performance
by leveraging confidence in Mario domain. We also discuss
and evaluate techniques that help improve CHAT. Simulation
results are all averaged over 10 trials.

5.1 CHAT Outperforms HAT

In Mario, we collect demonstration data of 20 episodes
(roughly 15 minutes) from a human player with an average
score of 1876 points. For the benchmark of CHAT in Mario
domain, we compare our algorithm with HAT and learning
without any prior. Figure 1 shows the learning curves —
CHAT can successfully outperform HAT and RL with no
prior. In particular, the jumpstart of GPHAT, relative to HAT,

3030

1800

1600+ . . ‘f“\%
- S
i : M‘“im“&i(A\ ‘%‘” ’
§ %o RS U

1400 B R ey A
RS : ﬁ»‘mf
o
[/ ;“‘9
-

L
g
1200 - %

p F
K b
10004 & :
J
]
;

8001

;
s
?
800 +{
h
:

Score

4000 3
4
- Confidence neural network
20075 -6+ Validation without Prior
L ---8--- Validation with Prior
Lol +--- Q-learning Baseline
~20
0 05 1 15 2 2.5 3 35 4 45 5

Training episodes < 10*
Figure 2: This figure compares validation with or without prior
knowledge using confidence neural network.

12001~
1100
1000
900
800

700

Score Points

600

500 < - - /| = Reuse Probability : 0.9999
. Reuse Probability : 0.9997

- Reuse Probability : 0.9995
. Reuse Probability : 0.9993
Reuse Probability : 0.9991

1 I I I T T T T |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Training Time (episodes)

Figure 3: Different ¢ = ®p settings with a Gaussian

400+

300

was statistically significant (p < 107* via t-tests). Here
GPHAT uses four (on average) clusters for each action, PPR
Py = &p = 0.9999, and a confidence threshold of 0.8. Note
that the learned performance is less than the average demon-
strator for the training times considered due to the domain
complexity. We next evaluate the two other confidence mod-
els (see Figure 1). The confidence threshold of neural net-
work is 0.6 while that of the decision tree is 0.85. We again
see improvement relative to HAT.

To highlight the contribution of confidence demonstration,
we perform an additional validation to see how performance
changes if the agent selects actions based only on its learned
experience rather than prior knowledge during learning pro-
cess (“without Prior” in Figure 2). This is averaged over
1000 episodes with and without prior knowledge every 5000
episodes. In Figure 2, the difference shows performance im-
proves significantly when leveraging confidence measures.

5.2 Tuning CHAT’s Reuse Probability

Taking Gaussian model (GPHAT) as an example, it uses prior
knowledge with a decaying probability as mentioned before.
In order to see the effect of this parameter, comparison results

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2000 100.00%
1800 90.00%
/

1600 80.00%

1400 / 70.00%

1200 60.00%

1000 50.00%
800 40.00%
600 30.00%
400 20.00%
200 I 10.00%

0 l - — 0.00%
0 0.4 0.7 0.8 0.85 0.9 0.95

Confidence Threshold

M Actions by GPHAT ——Rate of Consistency

Figure 4: This figure shows behavior transfer consistency in differ-
ent confidence intervals.

are plotted in Figure 3. A lower reuse factor (e.g., 0.9991)
would lead to a decrease in performance shortly after the start,
while a higher factor (e.g., 0.9999) would not. Notice that this
does not indicate that the reuse probability should be as close
to 1 as possible — once the reuse probability becomes too
high, exploration will be decreased to the point that is difficult
for the agent to learn to outperform the source demonstration.

5.3 Tuning CHAT’s Confidence Threshold

In Mario, the Gaussian’s confidence threshold 1" is 0.8, de-
termined through initial parameter tuning. We now discuss
how policy consistency interacts with this parameter, where
the behaviors of two agents are defined as “consistent” when
they select the same action for the same state.

First, we let a trained agent play Mario using its fixed pol-
icy (following its fixed Q-values) to generate 20 demonstra-
tion episodes. Second, we train GPHAT (with the same set-
tings as above) on that demonstration. Third, we compare
the actions suggested by the GPHAT classifier with actual ac-
tions made by the fixed-policy agent to see how often they
are the same. Figure 4 shows how the GPHAT act with dif-
ferent confidence thresholds. For each confidence threshold,
we show the number of actions made by GPHAT and the rate
of consistency with respect to the fixed-policy agent. When
the confidence threshold is too low, actions made by GPHAT
are less likely to be the same as the source task agent’s ac-
tions. When the confidence threshold is too high, the actions
are now consistent, but very few actions will be selected.

6 Keepaway Results

This section evaluates our methods in a continuous domain,
showing the benefits of our methods and investigating differ-
ent types of demonstrations. Simulation results are all aver-
aged over 10 trials.

6.1 Improvement Over Baselines

To make comparisons between different human demonstra-
tions, we consider four different demonstrations (each with
20 episodes), their source and performance (the average
episode duration and standard deviation), as summarized in

3031

Table 1: This table summarizes the Keepaway demonstration
datasets.

H Demonstration Source Average Duration H
Simple-Response Human 10.5s £ 3.5s
Complex-Strategy Human 10.1s £ 3.8s

Novice Human 7.45s £ 2.2s
Learned-Policy Learned Agent 10.1s

Table 1. The human player demonstrate three qualitatively
different policies:

1. Simple-Response: The player holds the ball until the
takers are very close to the keeper with the ball. The
player only passes the ball when necessary.

2. Complex-Strategy: The player is more flexible and ac-
tive in this setting. The player tries to pass the ball more
often, requiring the keepers to move more. However, the
player also tries to act inconsistently when possible, so
that the player would not always take the same action as
long as those actions are also rational.

3. Novice: Consider an even worse case where we have
Novice demonstration, which is only slightly better than
a random policy, where many sub-optimal actions are
demonstrated.

We show learning curves using the first two demonstra-
tions in Figure 5. Calculated total rewards are in Table 3.
Notice that HAT with double DTs works better than that with
single DT. We therefore focus on comparing GPHAT with
double-DT HAT in the remainder of this section. As ex-
pected, both sets of demonstrations allow HAT and GPHAT
to outperform learning without any prior and GPHAT im-
proves more than HAT. However, there is a significant dif-
ference in the two datasets. The Complex-Strategy data is
harder to train classifiers on. This is supported by Table 2:
the J48 pruned tree needed to be deeper but still had lower
accuracy, indicating that the Complex-Strategy demonstra-
tion needs a decision tree with more complexity relative to
the Simple-Response demonstration. Besides, we compare
the robustness of GPHAT and HAT on “Novice” demonstra-
tion in Figure 5 and Table 2. GPHAT still improves learning
performance upon such worse data because it can put less
weight on actions that have lower confidence (i.e., instances
when the classifier is less certain in the source agent’s policy).

These results allow us to conclude that 1) CHAT can out-
perform RL agent with no bias and HAT agent for a variety
of demonstration data qualities and 2) CHAT agents able to
successfully outperform demonstrated policies.

6.2 Ensembles of Confidence Thresholds

Rather than tuning CHAT’s confidence threshold, we also
consider ensemble methods [Dietterich, 2000] made of learn-
ers with different ®(’s. The ensemble uses majority voting,
weighted by the confidence threshold of each prediction.
Voting weights used in this paper are confidence threshold
of each classifier. If we considered a confidence threshold

20ur code and demonstration datasets are available at the first
author’s website: irll.eecs.wsu.edu/lab-members/zhaodong-wang/.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Table 2: This table shows comparisons among different methods. For double DTs, depth and accuracy are averaged over the two trees. For
Gaussian processes, the confidence threshold is 0.9.

Demonstration HAT (single DT) HAT (double DTs) GPHAT
Jumpstart [Depth | Accuracy | Jumpstart | Depth [Accuracy | Jumpstart [Clusters [Accuracy
Simple-Response +2.23 4 87.52% +2.53 4 90.61% +3.42 2 83.21%
Complex-Strategy +1.76 7 67.21% +2.26 6 84.36% +3.37 3 80.16%
Novice +1.13 5 86.24% +1.44 5 92.86% +3.49 2 84.37%
Learned-Policy +3.18 4 88.67% +3.26 4 91.22% +4.55 2 86.12%

Episode Duration (seconds)

== GPHAT (Simple-Response Demonstration)
= = = GPHAT (Complex-Strategy Demonstration)

U """ GPHAT (Novice Demonstration)
‘‘‘‘‘‘‘‘ — HAT (Simple-Response Demonstration)
6 I = = = HAT (Complex-Strategy Demonstration)

'''' HAT (Novice Demonstration)
------- No Prior Learning Baseline
T I -

5 | | | | T T 7
0 0.5 1 1.5 2 25 3 35 4 45 5

Training Time (simulated hours)

Figure 5: This figure compares the learning curves of GPHAT with
HAT and RL without any bootstrapping in Keepaway.

Table 3: Total rewards of different methods in Keepaway

Total Reward [Total Reward
Method (5 hours) (20 hours)
GPHAT (Simple-Response) 76.9 290.4
GPHAT (Complex-Strategy) 75.1 283.6
HAT (Simple-Response) 72.8 270.3
HAT (Complex-Strategy) 62.7 251.6
No-Prior 472 219.8

of 0.7, classifiers in GPHAT with confidence higher than 0.7
vote for the final action selection, but with a scaled weight
(multiplied by its threshold, 0.7 in this case). An intuitive
way of understanding is that we would like those predictions
with lower confidence to be considered in the final action se-
lection, but with less significance. By doing this at different
confidence thresholds, we select the final action with highest
votes. Figure 6 shows the result of an ensemble of 5 confi-
dence thresholds (from 0.5 to 0.9). GPHAT with an ensem-
ble can outperform the best single confidence threshold (0.9),
from the previous section, at the expense of additional com-
putation (linear in the number of ensemble members).

7 Conclusion and Future Work

This paper has introduced and evaluated CHAT, showing suc-
cessful transfer from a human to an RL in two complex do-
mains. CHAT outperformed both an existing method and the
original demonstrations. Such improvements are most impor-
tant when learning is slow or initial performance is critical.

3032

I
°
c
]
o
o
L2
c
2
I
=
a
o
°
o
2
& o
8,
—— Ensemble of threshold 0.5 0.6 0.7 0.8 0.9
7k = = =GP threshold = 0.9
"""" No prior
6) L L L 1 1 L L L I
0 2 4 6 8 10 12 14 16 18 20

Training Time (simulated hours)
Figure 6: This figure shows the performance improvement using an
ensemble of different confidence thresholds.

Results have shown that by applying different confidence
models we get different learning performance and this could
depend on the type/amount of human demonstrated data. In
our domain, CHAT with Gaussian model could converge
to the best performance, even when there is little demon-
strated data. Additional results investigated how parameters
in CHAT affect performance.

Having shown the potential of CHAT, future work will
consider a number of extensions. First, we will investigate
whether the confidence factor could be used to target where
additional human demonstrations are needed. Second, we
will use CHAT to learn from multiple agents — we expect
that the confidence of a classifier and the demonstrated en-
semble method will both be useful when the target agent is
deciding which source agent to follow. Third, we have also
shown how, in the Keepaway domain, the actions executed
are unbalanced and have unequal importance. To make trans-
fer more efficient, the demonstration data could be modified
to focus on the most important data, eliminating redundant
data. Fourth, we will investigate adaptive methods that could
take advantage of judging the significance of demonstration
data, further improving learning performance.

Acknowledgements

We thank Tim Brys for sharing code for Mario. This
research has taken place in part at the Intelligent Robot
Learning (IRL) Lab, which is supported in part by NASA
NNX16CDO7C, NSF IIS-1149917, NSF IIS-1643614, and
USDA 2014-67021-22174.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Albus, 1981] JS Albus. Brains, behavior. & Robotics. Pe-
terboro, NH: Byte Books, 1981.

[Argall et al., 2009] Brenna D Argall, Sonia Chernova,
Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous
systems, 57(5):469-483, 2009.

[Bishop, 2006] Christopher M Bishop. Pattern recognition.
Machine Learning, 128:1-58, 2006.

[Celeux and Govaert, 1992] Gilles Celeux and Gérard Gov-
aert. A classification em algorithm for clustering and two
stochastic versions. Computational statistics & Data anal-
ysis, 14(3):315-332, 1992.

[Chernova and Veloso, 2009] Sonia Chernova and Manuela
Veloso. Interactive policy learning through confidence-
based autonomy. Journal of Artificial Intelligence Re-
search, 34(1):1, 2009.

[Dietterich, 2000] Thomas G Dietterich. Ensemble methods
in machine learning. In International workshop on multi-
ple classifier systems, pages 1-15. Springer, 2000.

[Karakovskiy and Togelius, 2012] Sergey Karakovskiy and
Julian Togelius. The mario ai benchmark and competi-
tions. IEEE Transactions on Computational Intelligence
and Al in Games, 4(1):55-67, 2012.

[Lin, 1992] Long-Ji Lin. Self-improving reactive agents
based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293-321, 1992.

[Noda et al., 1998] Itsuki Noda, Hitoshi Matsubara, Kazuo
Hiraki, and Ian Frank. Soccer server: A tool for research

on multiagent systems. Applied Artificial Intelligence,
12(2-3):233-250, 1998.

[Quinlan, 1993] Ross Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, San Mateo, CA,
1993.

[Rummery and Niranjan, 1994] Gavin A Rummery and Ma-
hesan Niranjan. On-line g-learning using connectionist
systems. 1994.

[Singh and Sutton, 1996] Satinder P Singh and Richard S
Sutton. Reinforcement learning with replacing eligibility
traces. Machine learning, 22(1-3):123—-158, 1996.

[Stone et al., 2006] Peter Stone, Gregory Kuhlmann,
Matthew E Taylor, and Yaxin Liu. Keepaway soc-
cer: From machine learning testbed to benchmark. In
RoboCup 2005: Robot Soccer World Cup IX, pages
93-105. Springer, 2006.

[Suay et al., 2016] Halit Bener Suay, Tim Brys, Matthew E
Taylor, and Sonia Chernova. Learning from demonstra-
tion for shaping through inverse reinforcement learning.
In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pages 429—
437. International Foundation for Autonomous Agents and
Multiagent Systems, 2016.

3033

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, vol-
ume 1. MIT press Cambridge, 1998.

[Taylor and Stone, 2007] Matthew E Taylor and Peter Stone.
Cross-domain transfer for reinforcement learning. In Pro-

ceedings of the 24th international conference on Machine
learning, pages 879-886. ACM, 2007.

[Taylor and Stone, 2009] Matthew E. Taylor and Peter
Stone. Transfer Learning for Reinforcement Learning Do-

mains: A Survey. Journal of Machine Learning Research,
10(1):1633-1685, 20009.

[Taylor et al., 2011] Matthew E. Taylor, Halit Bener Suay,
and Sonia Chernova. Integrating reinforcement learning
with human demonstrations of varying ability. In Pro-
ceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), May 2011.

[Watkins and Dayan, 1992] Christopher JCH Watkins and
Peter Dayan. Q-learning. Machine learning, 8(3-4):279—
292, 1992.

[Witten and Frank, 2005] Tan H. Witten and Eibe Frank.
Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, San Francisco, 2nd edi-
tion, 2005.

