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Abstract

We consider the problem of learning from demon-
stration, where extra side information about the
demonstration is encoded as a co-safe linear tem-
poral logic formula. We address two known lim-
itations of existing methods that do not account
for such side information. First, the policies that
result from existing methods, while matching the
expected features or likelihood of the demonstra-
tions, may still be in conflict with high-level ob-
jectives not explicit in the demonstration trajecto-
ries. Second, existing methods fail to provide a pri-
ori guarantees on the out-of-sample generalization
performance with respect to such high-level goals.
This lack of formal guarantees can prevent the ap-
plication of learning from demonstration to safety-
critical systems, especially when inference to state
space regions with poor demonstration coverage is
required. In this work, we show that side informa-
tion, when explicitly taken into account, indeed im-
proves the performance and safety of the learned
policy with respect to task implementation. More-
over, we describe an automated procedure to sys-
tematically generate the features that encode side
information expressed in temporal logic.

1 Introduction

Learning from demonstration [Argall et al., 2009], also re-
ferred to as imitation learning or apprenticeship learning
[Abbeel and Ng, 2004], aims at learning a policy to imple-
ment some task, using samples of an expert’s behaviors as
demonstrations. There is a wide range of applications of
learning from demonstration in robotics, such as navigation
and manipulation tasks.

One common approach to learning from demonstration
is inverse reinforcement learning (IRL) [Ng et al., 2000],
in which the agent relies on rewards to interpret the ex-
pert’s behaviors. The environment is modeled as a Markov
decision process (MDP) with known transition dynamics.

∗This work was supported in part by AFRL # FA8650-15-C-
2546, DARPA # W911NF-16-1-0001, ARO # W911NF-15-1-0592,
NSF # 1651089 and NSF # 1550212.

Given the environment MDP and expert’s demonstrations as
trajectories, IRL recovers a reward function and constructs
policies based on the estimated reward function. Formula-
tions of IRL in the literature differ primarily in their inter-
pretation of expert demonstrations, or the “similarity” be-
tween the expert’s policy and desired policies expressed in
terms of rewards. Some common assumptions are, for ex-
ample, that both the expert’s policy and all desired poli-
cies are optimal [Abbeel and Ng, 2004; Ratliff et al., 2006;
Ramachandran and Amir, 2007; Dvijotham and Todorov,
2010]; or the expected total rewards of output policies should
match the sample mean of total rewards of trajectories in
demonstrations [Ziebart et al., 2008; Boularias et al., 2011;
Bloem and Bambos, 2014].

Although human experts can directly provide low-level
demonstrations to implicitly specify the learning task, it is
usually beneficial to explicitly indicate high-level task re-
quirements, which we naturally rely on to assess the perfor-
mance of the learned policies. A high-level task can be “grasp
an object without touching anything else,” or “obey traffic
lights and road signs while driving from A to B,” which may
not be sufficient to encode all desired properties of an ideal
policy, but is crucial to the task performance. Existing IRL
methods do not infer underlying high-level tasks and thus the
agent’s behavior at newly visited states may not satisfy the
actual task requirements.

In this work, we join the strengths of high-level task re-
quirements and demonstrations and formalize the problem of
IRL with high-level side information. Given task specifica-
tion as a co-safe Linear Temporal Logic (LTL) formula, and
a collection of optimal expert demonstrations consistent with
the task specification, we describe a learning framework that
recovers both a reward function, as well as a deterministic
finite automaton (DFA), which together guarantee a quanti-
tative level of probability that the learned policy will satisfy
the task. Crucially, the addition of an LTL side specification
allows us to learn general policies that work even when the
expert examples are scarce.

Following the many applications of formal methods to
robotics and control [Fainekos et al., 2005; Kress-Gazit et al.,
2011; Wolff et al., 2012; Bobadilla et al., 2012], we encode
the task requirements in LTL [Pnueli, 1981], which is an ex-
pressive formal logic suitable for task requirements. These in-
clude reaching-a-goal, stability, obstacle avoidance, sequen-
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tially visiting regions of interest, and conditional reactive be-
haviors. Generally, LTL specifications can be evaluated on
trajectories with infinite length; but since expert demonstra-
tions are finite, we focus on a set of tasks to be implemented
in finite time, which can be specified by a subset of LTL called
co-safe LTL [Kupferman and Vardi, 2001].

We adopt the framework of maximum-likelihood inverse
reinforcement learning (MLIRL) [Babes et al., 2011] as a
baseline approach, and learn policies in both the original en-
vironment MDP and in the product space of the MDP and
the specification automaton. We further propose an algorithm
that evaluates the learned policy using the co-safe LTL for-
mula during learning. We report numerical results on a nav-
igation example, in which policies are learned with MLIRL,
MLIRL with a specification automaton, and with our own al-
gorithm. We show that the learned policy benefits from both
the construction of product automaton and the evaluation with
co-safe LTL formula, because it attains higher probabilities
of successfully implementing the task, and provides formal
guarantees on task completion even in regions of state space
not covered by the expert examples.

2 Notation and Preliminaries

For a finite set B and a nonnegative integer l ∈ N
+, define Bl

as the set of all sequences of length l composed by elements
in B. In addition, define B∗ (resp. Bω) as the set of all fi-
nite (infinite) sequences composed by elements of B. Finally,
define D(B) as the set of all probability distributions over B.

2.1 MDP and Policies

Let M = 〈S, SI , A, T,R, γ〉 be a Markov decision process
(MDP), where S is a finite set of states; SI ⊆ S is a set of
initial states; A is a finite set of actions; T : S×A×S → [0, 1]
is a transition function such that for each (s, a) ∈ S × A,
T (s, a, ·) ∈ D(S); R : S × A → R is a reward function, and
γ ∈ (0, 1) is a discounting factor.

A path or trajectory τ of M is an infinite alternating se-
quence of states and actions, τ = s0, a0, s1, a1, . . ., such
that s0 ∈ SI , and for all k ≥ 0, we have ak ∈ A and
T (sk, ak, sk+1) > 0. Given two states s, s′ ∈ S, we say
s′ is reachable from s, denoted by s  s′, if and only if there
exists a path τ = s0, a0, s1, a1, . . . with s = si and s′ = sj
for some integers 0 ≤ i ≤ j. For any set of states B ⊆ S,
define Reach(B) = {s′ ∈ S : ∃s ∈ B, s′  s} as the set of
states from which B is reachable.

A (memoryless) policy π for M is a mapping from states
to distributions over actions: π : S × A → [0, 1] such that
for any s ∈ S, π(s, ·) ∈ D(A). Given any policy π, we
can define a state value function Vπ : S → R such that for
each state s ∈ S, Vπ(s) = Eπ

[
∑∞

k=0 γ
kR(sk, ak) | s0 = s

]

is the expected future discounted reward that an agent can
get by applying policy π from state s. Correspondingly,
we can define an action value function Qπ : S × A →
R such that for any state-action pair (s, a) ∈ S × A,

Qπ(s, a) = Eπ

[
∑∞

k=0 γ
kR(sk, ak) | s0 = s, a0 = a

]

is the
expected discounted reward if the agent takes policy π after
taking action a from state s. The functions Vπ , Qπ, R, and π

satisfy the Bellman relations:

Vπ(s) =
∑

a

π(s, a)Qπ(s, a),

Qπ(s, a) = R(s, a) + γ
∑

s′

T (s, a, s′)Vπ(s
′).

These two equations can be combined into

Qπ(s, a) = R(s, a)

+ γ
∑

s′

T (s, a, s′)
∑

a′

π(s′, a′)Qπ(s
′, a′). (1)

2.2 LTL Specifications

In order to evaluate policies with LTL specifications, we at-
tach labels to states. The labels, consisting of atomic propo-
sitions, are boolean variables defined on S. Let AP be a set
of atomic propositions. The labeling function L : S → 2AP

maps each state s ∈ S to its labels L(s) ⊆ AP , which is
the set of atomic propositions that are true at state s. With
slight abuse of notation, we also use L(τ) to denote the
sequence of atomic propositions that hold at states in path
τ = s0, a0, s1, a1, · · · of M, i.e., L(τ) = L(s0),L(s1), · · · .

An LTL formula ϕ over AP is defined recursively by:

ϕ := true | p | ¬ϕ1 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1 Uϕ2,

where p ∈ AP , and ϕ1, ϕ2 are LTL formulas. The logical
and temporal operators above can be combined to define other
useful operators such as ∧, →, G and F . See [Pnueli, 1981]

for a detailed explanation of the semantics of LTL.
In general, an LTL formula ϕ is evaluated on (2AP )ω , i.e.,

infinite sequences of elements in 2AP . To better suit the need
to encode tasks that are implemented over finite horizons, we
focus on a subset of LTL formulas, namely co-safe LTL for-
mulas. These formulas are characterized by the key feature
that every (infinite) sequence that satisfies the formula has a
finite prefix [Kupferman and Vardi, 2001]. A wide range of
learning from demonstration tasks that can be encoded as co-
safe LTL formulas, for example: ϕ1 = (¬obstacle U goal) ∧
F goal means “reach the goal without running into obstacles,”
and ϕ2 = ((¬object2) U object1) ∧ ( F object1) ∧ ( F object2)
means “grab object 1 first and then grab object 2.”

Given a co-safe LTL formula ϕcs, we can construct a
(non-unique) deterministic finite automaton (DFA) Aϕcs

=
〈Q, qI , QF , 2

AP , δ〉 that accepts the finite prefixes all runs
that satisfy ϕcs, where Q is a finite set of states, qI ∈ Q is
the initial state, QF ⊆ Q is a set of accepting (final) states,
2AP is the alphabet, and δ : Q× 2AP → Q is a deterministic
transition function. All states in QF are absorbing states, i.e.,
for all L ∈ 2AP , q ∈ QF , δ(q, L) = q.

3 Maximum-Likelihood Inverse

Reinforcement Learning (MLIRL)

We adopt the framework of maximum-likelihood inverse re-
inforcement learning (MLIRL) [Babes et al., 2011] as the
baseline algorithm that does not use any high-level side in-
formation. In this section we introduce the key components
of MLIRL: policy structure, reward parameterization, and op-
timization objective.
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Softmax policy We restrict the policy search to the subclass
of policies for which the probability to take an action a at state
s is a softmax function of the action-value function. For any
function Q : S ×A → R, define the softmax policy as

πQ(s, a) :=
exp(Q(s, a))

∑

ã exp(Q(s, ã))
, ∀(s, a) ∈ S ×A. (2)

The softmax policy, as a special case of the Boltzmann ex-
ploration policy [John, 1994], has been used in several in-
stances of IRL [Neu and Szepesvári, 2007; Babes et al., 2011;
Macglashan and Littman, 2015]. It defines a valid distribution
πQ for all Q, i.e., πQ(s, a) ≥ 0 for all s ∈ S and a ∈ A, and
∑

a∈A πQ(s, a) = 1 for all s ∈ S. It is also smooth in the
components of Q, allowing easy computation of a policy gra-
dients. With the softmax policy, the agent prefers to select
actions with higher action-values, but still has the freedom to
explore suboptimal actions. Such freedom is particularly im-
portant in accommodating any inconsistency in the expert’s
demonstrations.

Reward parameterization The reward function R of M
is approximated by a linear combination of k pre-designed
features, with parameter θ ∈ R

k×1. We denote the feature

matrix as F = [f1, · · · fk] ∈ R
|S|·|A|×k with fi representing

the ith reward feature vector. For convenience, we denote
the row of F corresponding to the state-action pair (s, a) as
F (s, a) ∈ R

1×k. The overall reward matrix is R = Fθ for
some feature weight θ ∈ R

k. Substituting the softmax policy
and the reward matrix into (1) yields

Q(s, a) =F (s, a)θ+

γ
∑

s′

T (s, a, s′)
∑

a′

πQ(s
′, a′)Q(s′, a′). (3)

In the following, we treat θ as the free variable, and denote
the action value function Q and policy πQ satisfying (2) and
(3) as Qθ and πθ .

Expert demonstrations The demonstrations consist of a
set D = {τ1, · · · τm} of m finite prefixes of trajectories in
M. For each l ∈ {1, · · ·m}, τl = sl,0, al,0, · · · sl,tl , al,tl
is the lth demonstration trajectory, which is an ordered se-
quence of tl + 1 state-action pairs. We refer to such demon-
strated trajectories as expert trajectories.

Maximum-likelihood objective The goal is to find θ and
an induced policy πθ that maximize the likelihood of observ-
ing the expert demonstrations. An equivalent optimization
objective is to minimize the negative log-likelihood

Jmle(θ | M, D) := −

m
∑

l=1

tl
∑

t=1

log πθ(sl,t, al,t)

=−

m
∑

l=1

tl
∑

t=1

(

Qθ(sl,t, al,t)− log
(

∑

ã

exp(Qθ(sl,t, ã))
)

)

,

(4)
with equality constraints given by Eq. (2) and (3). The objec-
tive function is smooth and convex in θ, but regularization on

θ may be needed to avoid separation problems, and to get a
finite solution [Albert and Anderson, 1984].

4 MLIRL with High-Level Side Information

Assume that in addition to the standard inputs to MLIRL
problems, i.e., a reward-free MDP M, expert demonstrations
D, and feature matrix F , we also know some high-level task
requirements encoded as a co-safe LTL formula ϕcs. This
side information is utilized in two steps: we first extend the
original MDP M into a product automaton incorporating the
task structure, and then augment the optimization objective
by explicitly evaluating the policy.

4.1 Extending the State Space

An implicit assumption in all MDP-based IRL methods is that
the expert’s policy is memoryless, i.e., the distribution of the
next action is decided by the current state and independent
on trajectory history. The assumption breaks if the task has
some hierarchical structure and can be easily decomposed
into several sub-tasks, which is a common case in practice.
Side information as high-level task requirements can be used
to generate memory states automatically, which enables us to
construct a product automaton Mϕcs

with the original envi-
ronment M and a DFA Aϕcs

. Then we learn a memoryless
policy over the extended state space of Mϕcs

.

Given Aϕcs
and M, define the product automaton Mϕcs

=
〈S̄, S̄I , S̄F , A, T̄ , γ〉, where S̄ = S×Q is a finite state space;
S̄I = SI × qI is the set of initial states; S̄F = S × QF is
the set of final states; T̄ : S̄ × A × S̄ → [0, 1] is a tran-
sition function such that for any (s, q), (s′, q′) ∈ S̄, a ∈ A,
T̄ ((s, q), a, (s′, q′)) = T (s, a, s′) if δ(q,L(s′)) = q′ and 0
otherwise. Policies in Mϕcs

can be defined analogously to
those in M. Similar to the evaluation of Aϕcs

, a finite path

τM = (s0, q0), a0, (s1, q1), a1 · · · (sl, ql), al ∈ (S̄×A)l+1 of
Mϕcs

satisfies ϕcs if and only if (sl, ql) ∈ S̄F , or equivalently
ql ∈ QF .

Any finite (resp. infinite) trajectory in M can be uniquely
mapped to a trajectory of equal length in the product au-
tomaton Mϕcs

. We define an operator h(· | M,Aϕcs
) :

(S × A)∗ → (S̄ × A)∗ to translate finite trajectories in M
into the corresponding trajectories in the product automaton
Mϕcs

. The operator h enables us to interpret the demonstra-
tions D in Mϕcs

. For any τl ∈ D, define

h(τl | M,Aϕcs
) = s̄l,0, al,0, s̄l,1, al,1, · · · , s̄l,tl , al,tl

such that s̄l,0 := (sl,0, qI) and for j = 1, · · · , tl, s̄l,j :=
(sl,j , δ(ql,j−1,L(sl,j))). Any trajectory in Mϕcs

can be
uniquely projected to a trajectory in M, simply by dropping
the second component of each state in S̄. In the following,
we assume that the learning procedure occurs in the prod-
uct automaton in order to take advantage of the side infor-
mation. For simplicity we use h(D | M,Aϕcs

) := {h(τl |
M,Aϕcs

) : τl ∈ D} to represent the set of projected trajec-
tories of D in Mϕcs

.

The construction of Aϕcs
and Mϕcs

is internal to the learn-
ing algorithm and may not be accessible by the expert. Corre-
spondingly the agent has no access to the expert policy. The
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only shared inputs between the agent and expert are the high-
level task specification ϕcs, the environment dynamics M,
and the set D of demonstrated trajectories in M. Any equiv-
alent DFA for ϕcs works in principle, except with varying
computation time due to possibly different sizes of Mϕcs

.

4.2 Augmenting Objective with Side Information

In order to guarantee the performance of the learned policy,
we explicitly compute the probability of satisfying ϕcs from
all valid initial states. This is done by computing a function
ȳ(· | π̄) : S̄ → [0, 1] such that ȳ(s̄ | π̄) is the probability
of satisfying ϕcs by taking policy π̄ from initial state s̄. By a
result in model checking [Baier et al., 2008],

ȳ(s̄ | π̄) =

=















1, if s̄ ∈ S̄F ,

0, if s̄ 6∈ Reach(S̄F ),
∑

a∈A

π̄(s̄, a)
∑

s̄′∈S̄

T (s̄, a, s̄′)ȳ(s̄′ | π̄), otherwise.

(5)

There is a unique ȳ(· | π̄) for any given π̄; it can be ob-
tained either by linear programming, or by computing the
least fixed point of the operator

Γπ̄(ȳ)(s̄)

=















1, if s̄ ∈ S̄F ,

0, if s̄ 6∈ Reach(S̄F ),
∑

a∈A

π̄(s̄, a)
∑

s̄′∈S̄

T (s̄, a, s̄′)ȳ(s̄′ | π̄), otherwise.

Assume ȳ(0)(s) = 0 for all s̄ ∈ S̄\S̄F and ȳ(0)(s) = 1 for

all s ∈ S̄F , and ȳ(k) is updated as ȳ(k+1) = Γπ̄(ȳ
(k)) for all

k ∈ N, then it can be shown that limk→+∞ ȳ(k) exists and
is the unique solution to (5) [Baier et al., 2008]. Note that
since πθ(s̄, a) > 0 for all θ and (s̄, a) such that there exists
s̄′ ∈ S̄ with T̄ (s̄, a, s̄′) > 0 by definition of softmax policy,
Reach(S̄F ) is independent on θ.

We can augment the MLIRL objective (4) by adding a non-

decreasing differentiable function g : R|S̄| → 1 of ȳ(· | πθ)
to explicitly consider the performance of πθ with respect to
the task specification. The new objective is to minimize

J side(θ | Mϕcs
, h(D|M,Aϕcs

))

=Jmle(θ | Mϕcs
, h(D|M,Aϕcs

))− µ · g(ȳ),
(6)

where µ > 0 is a trade-off parameter adjusting the weight be-
tween the objective and the task performance objective. The
optimization is subject to constraints (2), (3) and (5).

We solve the optimization problem by gradient descent, in
which the key is to compute the derivative of Qθ, πθ and ȳ
with respect to θ. For any matrix B, we denote its compo-
nent at row i and column j as B(i, j). If we assume that πθ

does not change much in the neighborhood of θ, we can es-

timate ∂Qθ

∂θ
while considering πθ as constant. Then for any

i = 1, · · · k and (s̄, a) ∈ S̄ ×A,

∂Qθ(s̄, a)

∂θi

=Fi(s̄, a) + γ
∑

s̄′∈S̄

∑

a′∈A

T (s̄, a, s̄′)πθ(s̄
′, a′)

∂Qθ(s̄
′, a′)

∂θi
.

(7)
∂πθ(s̄, a)

∂θi
= πθ(s̄, a)

(∂Qθ(s̄, a)

∂θi
−
∑

ã

πθ(s̄, ã)
∂Qθ(s̄, ã)

∂θi

)

.

(8)

∂

∂θi
ȳ(s̄) =

∑

a∈A

πθ(s̄, a)
∑

s̄′∈S̄

T (s̄, a, s̄′)

(

∂ȳ(s̄′)

∂θi
+

(∂Qθ(s̄, a)

∂θi
−
∑

ã

∂Qθ(s̄, ã)

∂θi

)

ȳ(s̄′)

)

,

∂

∂θi
ȳ(s̄) =0, if s̄ ∈ S̄F

⋃

(S̄\Reach(S̄F )).

(9)

The derivatives of Qθ, πθ and ȳ with respect to θ are unique
solutions of (7)–(9), given πθ and ȳ. The uniqueness of

the solution ∂Qθ

∂θi
in (7) holds for any stationary (i.e., time-

invariant) policy πθ given that F is bounded [Bertsekas et al.,
1995], which trivially holds as F is fixed. The uniqueness of

the solution ∂ȳ
∂θi

in (9) holds for any stationary policy πθ , ȳ

and ∂Qθ

∂θ
, which can be proved by contradiction: assume that

there exist two different functions y1, y2 : S̄ → R that are
both solutions to (9). Then for any s̄ ∈ S̄, y1(s̄) − y2(s̄) =
∑

a∈A πθ(s̄, a)
∑

s̄′∈S̄ T (s̄, a, s̄′)
(

y1(s̄
′)− y2(s̄

′)
)

. As (5) is

known to have a unique solution, y1(s̄)−y2(s̄) has to be zero
for all s̄ ∈ S̄, which leads to a contradiction to the assump-

tion. Therefore (9) has a unique solution ∂ȳ
∂θi

.

5 Examples

We illustrate our approach on a path planning task in a 10-by-
10 grid world map, as shown in Figure 1. Each cell represents
a state in M, from which the agent has 4 available actions:
up, down, left, and right. States are labeled by their colors: r
(red), w (white), y (yellow) and b (blue). The two green states
are labeled as g1 (green1) and g2 (green2). The yellow state
is an absorbing state, i.e., it has no outgoing transitions.

The specification task is to visit both green cells (interme-
diate goals) in any order, and end at the yellow cell (final

Figure 1: Grid world example and demonstration trajectories.
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q0start qf

q1

q2

q3 qt

g1

g2

w

y ∨ r

g1 ∨ w g2

y ∨ r

y ∨ r

g1

g2 ∨ w

w ∨ g1 ∨ g2

r y

y ∨ w ∨ r

∨g1 ∨ g2

y ∨ w ∨ r

∨g1 ∨ g2

Figure 2: An equivalent DFA for ϕcs.

goal), while avoiding red cells (obstacles). These require-
ments are encoded as the co-safe LTL formulaϕcs = ϕinit →
(ϕsafe ∧ ϕgoal), where

ϕinit = ¬r ∧ ¬y (Initial state),

ϕsafe = ¬r U y (Obstacle avoidance),

ϕgoal =
(

(¬y) U ( F g1 ∧ F g2)
)

∧ ( F y) (Goal reaching).

An equivalent DFA is shown in Figure 2. Each state in the
DFA corresponds to some task status (see Table 2), and each
transition represents some progress toward task completion.
These transitions can be automatically encoded into features
to facilitate learning. In fact, three features were constructed
this way (see f2, f3, f4 in Table 1). The other two features
come from transitions observed in demonstrations (f1), and a
penalty for each transition (f5). Note that the final state has
no outgoing transitions, and outgoing loops have zero reward.

The agent is given a set of demonstrated trajectories that
successfully implemented the task, as shown in Figure 1. In
this example all demonstrated trajectories start from the blue
cell, pass both green cells (in arbitrary order), avoid all red
cells, and eventually end at the yellow cell. States in the upper
right corner are never observed in demonstration.

We now discuss the learned policy in three different cases,
where the agent is provided with a different amount of side in-
formation, and the policies are learned with or without high-
level task information.

Case 1 (MLIRL in M) The agent only knows about the
MDP M, the labeling function L, and the demonstrations D,
and learns a policy with MLIRL, i.e., by minimizing Jmle(θ |
M, D) in Eq. (4) while satisfying the constraints (2) and (3).

Table 1: Design of features in Case 2 and 3.

Feature Explanation

f1
f1(s, a) = 1 if (s, a) appeared in demonstra-
tion; otherwise f1(s, a) = 0.

f2
f2(s, a) is the probability to reach qt for the
first time by taking a at state s.

f3
f3(s, a) is the probability to reach q2, q3 for
the first time by taking a at state s.

f4
f4(s, a) is the negative probability to reach
red states.

f5 f5(s, a) = −1 if s 6∈ S̄F .

Table 2: Interpretation of DFA states.

DFA State Interpretation

q0 None of g1, g2, y or r visited.

q1 Visited g1, never visited g2, y, r.
q2 Visited g2, never visited g1, y, r.

q3 Visited g1 and g2, never visited y, r.

qt Visited g1, g2, y without visiting r
(success).

qf Visited r, or visited y before visiting
both g1 and g2 (failure).

Since the agent does not know ϕcs or the DFA, we cannot
use all features from Table 1. Instead, we replace f2(s̄, a) and
f3(s̄, a) by the probability of reaching the yellow state or a
green state from s̄ by taking a. All other features have the
same interpretation as in Table 1. The learned feature weight
vector is

θ̂(1) = [8.5176, 4.2678,−0.0442,−0.8208, 3.7336]⊺.

The sign of the learned weights is instructive: they define
a policy that seeks to follow demonstrations (f1) and tries
to reach the yellow state (f2) in a timely manner (f5). As
the weights of f3 and f4 are negative, the agent fails to re-
alize the importance of visiting green states and avoiding
red states. There are at least two reasons for such behav-
ior. First, as there is a feature (f1) marking the state-action
pairs observed in demonstrations, the agent may simply try
to follow the demonstrations whenever possible to minimize
Jmle(θ | M, D), without further reasoning about the demon-
strations, which results in overfitting. Second, there is no side
information for the agent to evaluate its policy or identify im-
portant features. As shown in Figure 3a, the agent behaves
best in the lower right region, where it can follow some expert
expert demonstration easily; it behaves the worst in the upper
middle region, where the expert demonstrations are lacking.

Case 2 (MLIRL in Mϕcs
) The agent has all inputs in Case

1 and the DFA, and learns a policy with MLIRL within the
product automaton. Compared with Case 1, the agent can
now construct a product automaton. With the extended state
space, the agent may behave differently based on the current
status with respect to intermediate goals and potentially learn
the importance of avoiding red cells. A simple check of the
structure of the product automaton reveals that any visit to a
red cell will lead to a transition to qf in the DFA, which makes

it impossible to reach S̄F later. Therefore in order to reach a
final state, it is necessary to add some penalty on visiting red
states. The learned feature weight vector is

θ̂(2) = [9.6090, 2.3128, 2.7393,−0.0121, 2.3221]⊺.

As shown in Figure 3b, the probability of satisfying ϕcs has
been greatly improved. The weight for f3 is away from zero
as expected, but the weight for f4 is still small, which suggests
that the agent still has not learned to always avoid red cells.
As a result, the probability of task success is the lowest in the
upper right region, which is not covered by demonstrations.
The two sources of problems explained in Case 1 still exist
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(a) MLIRL policy in M
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(b) MLIRL policy in Mϕcs

(Case 2). Min prob: 0.430;
average prob: 0.954.
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(c) Policy with augmented
objective (Case 3). Min prob:
0.962; average prob: 0.999.

Figure 3: Probability of satisfying ϕcs when following the corresponding policy from each initial
state.
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Figure 4: Probability of satis-
fying ϕcs for policies learned
without the obstacle avoid-
ance requirement.

here, which calls for the augmentation of objective function
using LTL side information.

Case 3 (Policy with augmented objective) The agent has
the same input as in Case 2, but now the policy is learned
with the augmented objective function J side in (6), where we
set g(ȳ) =

∑

s̄∈S̄ ȳ(s̄ | πθ), i.e., the sum of probabilities
of satisfying ϕcs from all initial states. With µ = 0.01, the
learned feature weight vector is

θ̂(3) = [10.2010, 1.8908, 3.9550, 8.1854, 1.8855]⊺.

Compared with θ̂(2), the most significant change in θ̂(3) is that
the weight on f4 is almost as large as f1, and much larger than
the weights on other features. The agent now learns the im-
portance of avoiding red states, and the performance with re-
spect to task implementation has been significantly improved,
especially from states that demonstrations fail to cover, as
shown in Figure 3c. It shows that, by evaluating policies with
side informationϕcs, the agent manages to get rid of the over-
fitting problem and the induced policy can now be generalized
well into regions not previously seen in demonstrations.

To check the effect of the weight µ, we solved Case 3 with
a series of µ and plotted the corresponding minimum and av-
erage probabilities of satisfying specification from all possi-
ble initial states, and corresponding negative log-likelihood
of demonstrated trajectories (see Figure 5). Each experiment
is repeated three times. Note that the value of the original
objective Jmle(θ | Mϕcs

, D) is only slightly affected by µ,
while the average probability of satisfying ϕcs is very sensi-
tive to µ. This confirms that the augmentation of the objective
function with LTL side information is necessary.

0.1   0.01  0.001 0.0001 1e-05 1e-06 
µ
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min prob
average prob
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Figure 5: Probability of satisfying ϕcs (left) and negative log-
likelihood of the state-action pairs in demonstration (right), as func-
tion of µ.

If the given high-level task description is incomplete or in-
accurate, as is often the case in practice, demonstrations can
compensate for an imperfect specification as long as the fea-
tures are expressive enough, and no extra memory is needed
to implement the missing part of the task.

To illustrate this point, we learned a policy where the side
requirement to avoid red cells ϕsafe is missing, and evaluated
it with respect to the true task encoded by ϕcs. The result
is shown in Figure 4. We observe the overall performance
is only slightly worse than the case with accurate high-level
task information, which suggests that the agent manages to
learn from expert demonstration to avoid visiting red states
at most initial states. Still, performance can be significantly
worse at states that are close to obstacles, such as the cell in
row 7, column 5. This example illustrates the agent’s ability
to learn actions preferences from demonstrations. However if
the inaccurate high-level task information leads to insufficient
memory states, the performance of the learned policies can be
poor, as it is impossible to recover enough missing memory
states from demonstration purely by learning the rewards.

6 Conclusions and Future Work

We formulated the problem of IRL with high-level side infor-
mation on task requirements encoded as co-safe LTL formu-
las. We proposed two steps to improve the performance of the
learned policy with respect to the probability of successfully
implementing the task: the first is to construct a product au-
tomaton with the original MDP and an equivalent DFA of the
co-safe LTL formula, and the second is to augment the ob-
jective function by evaluating the probability of satisfying the
task requirements. We showed with a path planning example
that the induced policy benefits from high-level side informa-
tion with significantly better performance with respect to the
task, especially in regions with few demonstrations.

This work can be extended in several directions. First, al-
gorithms that can account for large state spaces are of inter-
est. Another extension is to consider cases where high-level
task requirements are imperfect, for example, if part of the
requirements is missing in the high-level specification.
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