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Abstract

Image set based classification (ISC) has attracted
lots of research interest in recent years. Several
ISC methods have been developed, and dictionary
learning technique based methods obtain state-of-
the-art performance. However, existing ISC meth-
ods usually transform the image sample of a set into
a vector for processing, which breaks the inherent
spatial structure of image sample and the set. In this
paper, we utilize tensor to model an image set with
two spatial modes and one set mode, which can ful-
ly explore the intrinsic structure of image set. We
propose a novel ISC approach, named discriminant
tensor dictionary learning with neighbor uncorre-
lation (DTDLNU), which jointly learns two spa-
tial dictionaries and one set dictionary. The spatial
and set dictionaries are composed by set-specific
sub-dictionaries corresponding to the class labels,
such that the reconstruction error is discriminative.
To obtain dictionaries with favorable discriminative
power, DTDLNU designs a neighbor-uncorrelated
discriminant tensor dictionary term, which mini-
mizes the within-class scatter of the training sets
in the projected tensor space and reduces dictionary
correlation among set-specific sub-dictionaries cor-
responding to neighbor sets from different classes.
Experiments on three challenging datasets demon-
strate the effectiveness of DTDLNU.

1 Introduction
In recent years, image set based classification (ISC) has at-
tracted lots of research interest in computer vision and pattern
classification communities [Zhang et al., 2016]. An image set
can convey rich within-class variations of an object, which is
helpful for classification. ISC is also a challenging task, and
how to effectively model a set and compute the similarity be-
tween two sets is a crucial research topic.

Over the past several years, we have witnessed a lot
of methods developed for ISC. The subspace-based and
manifold-based methods [Wang and Chen, 2009; Wang et al.,

∗Corresponding authors

2015] separately use subspace and manifold to model an im-
age set, and the performances of them may degrade when
the set has a small sample size but big data variations [Hu
et al., 2012]. In affine or convex hull based methods [Hu et
al., 2012; Cevikalp and Triggs, 2010], the between-set dis-
tance is defined as the distance between two closest points
of two sets. This kind of methods relies highly on the lo-
cation of each individual sample in the set, and the model
fitting can be heavily deteriorated by outliers [Wang et al.,
2012]. Covariance matrix based methods [Wang et al., 2012;
Lu et al., 2013] try to explore the second-order statistics of
image set and represent each set with its covariance matrix,
while they cannot explore intrinsic high-order structure of im-
age set. Deep learning based methods [Hayat et al., 2015;
2014; Shah et al., 2016] introduce an adaptive multi-layer
neural network structure and use it for learning class specific
models. However, these deep learning based methods require
a large amount of computation time.

Recently, a few sparse/collaborative representation and
dictionary learning based methods have been developed for
ISC and obtain state-of-the-art classification performance
[Zhu et al., 2014; Zheng et al., 2017; Chen et al., 2012].
This family of methods usually builds one dictionary for each
image set or class, and uses the dictionaries to measure the
similarity of image sets.

1.1 Motivation
Almost all the previous works transform the image sample in
the set into a vector for subsequent processing, as shown in
Fig. 1(a), which not only breaks the inherent spatial structure
of image samples but also breaks the structure of the image
set. In fact, an image is a data matrix with the size of dW×dH .
And an image set is a three-dimensional data array with the
size of dW×dH×dN , where dN denotes the number of images
in the set, as shown in Fig. 1(b). How to effectively model the
image set without breaking its inherent structure and provide
a corresponding similarity measure between sets is a crucial
research topic.

Tensor is effective to model an image or image ensembles,
and tensor-based learning methods can well retain the spa-
tial structures of image and image ensembles [Li and Schon-
feld, 2014]. On the other hand, existing dictionary learning
based ISC methods own interesting classification effects [Zhu
et al., 2014; Lu et al., 2014]. Inspired by these two aspect-
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Figure 1: Illustration of the general difference between our work and
existing ISC works. D

(W) and D
(H) are spatial dictionaries and D

(N)

denotes the set dictionary. X is the sparse representation coefficient
tensor. The constructed third-order tensor can be well represented
by linear combination of columns in D

(W), D(H) and D
(N).

s, we intend to employ the tensor dictionary learning (TDL)
technique for ISC.

Nowadays, some TDL methods have been addressed [Peng
et al., 2014; Zubair et al., 2014]. Compared with traditional
dictionary learning technique [Zhu et al., 2014], the TDL
technique can learn multiple dictionaries, with each cor-
responding to one mode of training tensors, which can ful-
ly exploit the information contained in training samples.
However, for existing TDL methods, there still exists much
room for improvement:

(1) Existing TDL methods mainly focus on the reconstruc-
tion accuracy, whereas enhancing the total discriminability of
tensor dictionaries has not been investigated comprehensively
and thoroughly.

(2) Information redundancy among image sets will lead to
redundancy in the learned dictionaries. How to effectively re-
duce the redundancy between tensor dictionaries correspond-
ing to different classes has not yet been well studied.

1.2 Contribution
(1) We introduce the idea of tensor to model image set, which
can preserve the structure of image set. And we propose a dis-
criminant tensor dictionary learning with neighbor uncorrela-
tion (DTDLNU) approach, which jointly learns two spatial
dictionaries and one set dictionary. These three dictionar-
ies jointly reflect the spatial structure of image sets. The
spatial dictionaries and the set dictionary are composed by
set-specific sub-dictionaries corresponding to the class labels,
such that the obtained reconstruction error is discriminative.
Fig. 1 illustrates the general difference between our work and
existing ISC works.

(2) We design a neighbor-uncorrelated discriminant ten-
sor dictionary term for TDL, which minimizes the within-
class scatter of the training sets in the projected tensor s-
pace and reduces tensor dictionary correlation among set-
specific sub-dictionaries corresponding to neighbor image
sets from different classes. This designed term can make the
learned dictionaries have favorable discriminative power and

low between-class correlation.

2 Brief Review of Related Work
2.1 Image Set based Classification (ISC) Methods
Current ISC methods can be generally categorized into five
kinds:

(1) Subspace and manifold based methods. Manifold dis-
criminant analysis (MDA) [Wang and Chen, 2009] aims to
learn an embedding space by maximizing manifold margin.
The discriminant analysis on Riemannian manifold of Gaus-
sian distributions (DARG) [Wang et al., 2015] method rep-
resents image set as Gaussian mixture model comprising a
number of Gaussian components and seeks to discriminate
Gaussian components from different classes.

(2) Affine/convex hull based methods. Cevikalp and Trig-
gs [2010] presented the affine hull based image set distance
(AHISD) and convex hull based image set distance (CHIS-
D) methods. Sparse approximated nearest points (SANP)
method [Hu et al., 2012] focuses on nearest points of two im-
age sets, which can be sparsely approximated by the samples
of its respective set.

(3) Covariance matrix based methods. Covariance discrim-
inative learning (CDL) [Wang et al., 2012] represents each
image set with its covariance matrix and models the ISC prob-
lem as classifying points on the Riemannian manifold. Local-
ized multi-kernel metric learning (LMKML) [Lu et al., 2013]
regards the out product between the covariance matrix and
mean of image set as the third-order statistics, and combines
the third-order statistics, second-order statistics (covariance
matrix) and first-order statistics (mean vector) information for
classification.

(4) Deep learning based methods. The deep reconstruc-
tion model with weighted voting (DRM-WV) [Hayat et al.,
2015] method designs a multi-layer neural network to learn
class-specific deep reconstruction models. With the learned
models, DRM-WV uses reconstruction error based weighted
voting strategy for classification.

(5) Sparse/collaborative representation and dictionary
learning based methods. The image set based collaborative
representation and classification (ISCRC) method [Zhu et al.,
2014] models the query set as a convex or regularized hul-
l, and represents the hull collaboratively over all the gallery
sets for classification. The dictionary-based face recognition
from video (DFRV) method [Chen et al., 2012] builds one
dictionary for each face image set and uses the learned dic-
tionaries to measure the similarity of face image sets. The
simultaneous feature and dictionary learning (SFDL) method
[Lu et al., 2014] jointly learns a feature projection matrix and
structured dictionary for image set based face recognition.

As analyzed in Introduction, there exist respective short-
comings in these five categories of methods.

2.2 Tensor Dictionary Learning (TDL) Methods
Based on the theory of tensor, nowadays, some TDL meth-
ods have been developed [Quan et al., 2015]. Considering
the nonlocal similarity over space and the global correlation
across spectrum, Peng et al. (2014) designed a decompos-
able nonlocal TDL method for multispectral image denois-
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ing. Roemer et al. [Roemer et al., 2014] presented tensor ex-
tensions of the popular MOD and K-SVD dictionary learning
algorithms and obtained the tensor-MOD and higher-order K-
SVD (K-HOSVD) algorithms. With the region covariance
descriptor, Zhang et al. [Zhang et al., 2013] introduced struc-
tural incoherence constraint between dictionary atoms from
different classes to promote discriminating information into
the dictionary.

As analyzed in Motivation, there exists much room for im-
provement in existing TDL methods. In addition, the TDL
technique has not been used to solve the ISC problem.

3 Definitions and Notations
Let A ∈ RI1×···×In×···×IN be a tensor of order N , whose
elements are denoted as ai1···in···iN , 1 ≤ in ≤ In. The
Frobenius norm of the tensor A is defined as ‖A‖F =(∑

i1,···,iN |ai1···iN |
2
) 1

2

.
Definition 1 (Tensor Matricization, Mode-n Product, and

Kronecker Product): The mode-n matricization of A is
A(n) ∈ RIn×(I1···In−1In+1···IN ). The mode-n product of A
by a matrix B ∈ RJn×In , denoted by A×nB, is also an N th-
order tensor C ∈ RI1×···×Jn×···×IN . The mode-n product
C = A×nB can also be calculated by C(n) = BA(n). For
C = A×1B1×2B2×3 · · · ×NBN , we can simplify the nota-
tion as C=A

∏N
k=1×kBk. The Kronecker product of matri-

ces A ∈ RI×J and B ∈ RL×M , denoted by A⊗B, is a matrix
of size (IL)×(JM). The detailed definitions can be found in
[Li and Schonfeld, 2014]

Definition 2 (Block-sparsity): The concept of block s-
parsity for tensor is presented in [Peng et al., 2014]. For
the tensor A, its block-sparsity with respect to N modes
is ‖A‖B = (r1, r2, · · ·, rN ) if and only if the smallest in-
dex subsets I1, I2, · · ·, IN satisfying ai1i2···iN = 0 for all
(i1, i2, · · ·, iN ) /∈ I1× I2×· · ·IN contain r1, r2, · · ·, rN el-
ements, respectively. Sub(A) ∈ Rr1×r2×···rN denotes the
intrinsic sub-tensor of A extracted from the entries of the N
dimensions of A specified by the index sets I1, I2, · · ·, IN ,
respectively.

4 The Model of DTDLNU
4.1 Neighbor-uncorrelated Discriminant Tensor

Dictionary Term
Let Y = {Yc} , c = 1, · · ·,C be the training set containing
image sets from C different classes and Yc =

{
Yl

c

}Lc

l=1
be

the collection of image sets of the cth class, where Lc is the
number of image sets in Yc. Each Yl

c contains a set of im-
ages with the size of dW × dH , where dW and dH separately
denote the spatial width and height of an image. The num-
ber of images in Yl

c is denoted by dN . Then, each Yl
c can be

expressed as a 3rd-order tensor Y l
c ∈ RdW×dH×dN with two

spatial modes and one set mode.
We aim to learn two structured spatial dictionaries

D(W)=
[
D

1(W)
1 ,· · ·,DL1(W)

1 ,· · ·,D1(W)
C ,· · ·,DLC(W)

C

]
∈RdW×mW and

D(H) =
[
D

1(H)
1 ,· · ·,DL1(H)

1 ,· · ·,D1(H)
C ,· · ·,DLC(H)

C

]
∈RdH×mH

and one structured set dictionary D(N) =[
D

1(N)
1 ,· · ·,DL1(N)

1 ,· · ·,D1(N)
C ,· · ·,DLC(N)

C

]
∈RdN×mN from the

total training set, where D
l(W)
c ∈ RdW×rl(W)

c (r
l(W)
c ≤ dW ),

D
l(H)
c ∈ RdH×rl(H)

c (r
l(H)
c ≤ dH) and D

l(N)
c ∈ RdN×rl(N)

c

(r
l(N)
c ≤ dN ) are set-specified sub-dictionaries associated

with the lth set of the cth class, and mW > dW , mH > dH
and mN > dN . Here, W , H and N separately represent
the width, height and set modes of Y l

c. r
l(W )
c , rl(H)

c and
r
l(N)
c denote the numbers of atoms in dictionaries D

l(W )
c ,

D
l(H)
c and D

l(N)
c , respectively. And mW =

C∑
c=1

Lc∑
l=1

r
l(W )
c ,

mH =
C∑
c=1

Lc∑
l=1

r
l(H)
c , and mN =

C∑
c=1

Lc∑
l=1

r
l(N)
c .

The quality of the learned dictionary influences the perfor-
mance of subsequent tensor sparse representation based clas-
sification. To make the learned dictionaries be discrimina-
tive for image sets in Y, we require that the within-class
scatter in the projected tensor space should be minimized.
The mode-i within-class scatter matrix in the partially pro-
jected tensor subspace (by all tensor modes except for i) can
be defined as:

S
(i)
w=

C∑
c=1

Lc∑
l=1

(Y l
c−Mc)

∏
j={W,H,N}

j 6=i

×jD(j)T


(i)

(Y l
c−Mc)

∏
j={W,H,N}

j 6=i

×jD(j)T


T

(i)

(1)
where i = {W,H,N}, (·)T denotes the transposition opera-
tion andMc = 1

Lc

∑Lc

l=1 Y l
c is the class mean tensor for class

c. Therefore, we should minimize the value of

f
(
D
(W),D

(H),D
(N)
)
=

∑
i={W,H,N}

tr
(
D

(i)T
S
(i)
w D

(i)
)

(2)

Due to the information redundancy between image sets,
there exists much redundancy in dictionary of each mode.
To reduce the redundancy and further enhance discriminabil-
ities for dictionaries, we require that the set-specific tensor
sub-dictionaries of different classes own low correlation. Re-
ducing the correlation between sub-dictionaries of different
classes can make that a set should be more likely to be repre-
sented by sub-dictionaries of its own class rather than those of
the other classes, and thus generally results in improved dis-
criminative power. In real-world ISC applications, the num-
ber of training image sets may be very large, and for the ob-
served image set, only a few sets with different class labels
are close to it. Focusing on these inseparable sets, we re-
quire that the set-specific sub-dictionaries corresponding
to the neighbor image sets that are from different classes
should own low tensor dictionary correlation. Thus, we
should minimize

u(D
(W),D

(H),D
(N))=

∑
i={W,H,N}

C∑
c=1

Lc∑
l=1

C∑
h=1
h6=c

Lh∑
q=1

βhq
cl

∥∥∥Dl(i)
c

T
D
q(i)
h

∥∥∥2
F

(3)

whereβhqcl =
{

1, if Yq
h is one of the k nearest neighbors of Y

l
c

0, otherwise
.
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By minimizing u(D(W),D(H),D(N)), we can reduce the local
between-class tensor dictionary correlation.

4.2 The Objective Function of DTDLNU
Considering the dictionary reconstruction error and the
neighbor-uncorrelated discriminant tensor dictionary term,
we formulate the objective function of DTDLNU as follows:〈

D
(W ),D

(H),D
(N),X l

c(c=1, · · ·, C; l=1, · · ·, Lc)
〉

= arg min
D(W),D(H),D(N),X l

c

C∑
c=1

Lc∑
l=1

∥∥∥Y l
c−X l

c×1D
(W)×2D

(H)×3D
(N)
∥∥∥2
F

+λ{
∑

i={W,H,N}
tr(D

(i)T
S
(i)
wD

(i))+
∑

i={W,H,N}

C∑
c=1

Lc∑
l=1

C∑
h=1
h6=c

Lh∑
q=1

βhqcl ‖D
l(i)
c

T
D
q(i)
h ‖

2
F}

s.t.
∥∥X l

c

∥∥
B
≺
(
r
l(W )
c , r

l(H)
c , r

l(N)
c

)
(4)

where X l
c ∈ RmW×mH×mN is the sparse coding coefficient ten-

sor of Y l
c over D(W ),D(H) and D(N), v1≺ v2 denotes that

each entry of v1 is no more than the corresponding entry
of v2. The block-sparsity of X l

c guarantees that X l
c is on-

ly associated with r
l(W )
c , r

l(H)
c , r

l(N)
c atoms of dictionaries

D(W ),D(H),D(N), respectively. λ is a balance factor.
Due to the redundancy setting of spatial and set dictionar-

ies, we can assume that each training image set Y l
c is only re-

lated to the sub-dictionaries: D
l(W )
c , D

l(H)
c and D

l(N)
c , which

is similar to the idea in [Peng et al., 2014]. Then, we can get∥∥∥Y l
c−X l

c×1D
(W )×2D

(H)×3D
(N)
∥∥∥2
F

=
∥∥∥Y l

c−Sub
(
X l

c

)
×1D

l(W )
c ×2D

l(H)
c ×3D

l(N)
c

∥∥∥2
F

(5)

where Sub(X l
c) ∈ Rrl(W )

c ×rl(H)
c ×rl(N)

c is the intrinsic sub-
tensor of X l

c .
When updating the variables corresponding to the lth im-

age set from the cth class, the variables corresponding to oth-
er image sets are supposed to be fixed. To update X l

c , D
l(W )
c ,

D
l(H)
c and D

l(N)
c , (4) can be reduced to:〈

Glc,D
l(W )
c ,D

l(H)
c ,D

l(N)
c

〉
= arg min

Glc,D
l(W)
c ,D

l(H)
c ,D

l(N)
c

∥∥∥Y l
c−Glc×1D

l(W)
c ×2D

l(H)
c ×3D

l(N)
c

∥∥∥2
F

+λ{
∑

i={W,H,N}
tr(D

l(i)T
S
(i)
wD

l(i))+
∑

i={W,H,N}

C∑
h=1
h6=c

Lh∑
q=1

βhq
cl ‖D

l(i)
c

T
D
q(i)
h ‖

2
F}

(6)
where Glc = Sub(X l

c) ∈ Rrl(W )
c ×rl(H)

c ×rl(N)
c is the represen-

tation coefficient tensor of Y l
c over D

l(W )
c ,D

l(H)
c , and D

l(N)
c .

5 Optimization of DTDLNU
There is no theoretical guarantee that the objective function
(6) is jointly convex to (Glc,D

l(W )
c ,D

l(H)
c ,D

l(N)
c ); however, it

is convex with respect to each of Glc,D
l(W )
c ,D

l(H)
c , and D

l(N)
c

when the others are fixed. We develop an iterative algorithm
to optimize the variables alternatively.

When updating Glc, D
l(i)
c (i =W,H,N) is supposed to be

fixed. Then, (6) is reduced to〈
Glc
〉
=argmin

Glc

∥∥∥Y l
c−Glc×1Dl(W )

c ×2D
l(H)
c ×3D

l(N)
c

∥∥∥2
F

(7)

Algorithm 1 Optimization process of DTDLNU

1. Initialize D
(W ), D(H) and D

(N). Initialize all the atoms of
D

(i) (i =W,H,N) as random vectors, and orthonormalize each
column of dictionaries.
2. Update Glc and D

l(i)
c (i =W,H,N).

(1) Fix D
l(i)
c (i =W,H,N), and calculate the coefficient tensor Glc

with (9).
(2) Fix Glc and D

l(j)
c (j 6= i), and update D

l(i)
c by solving (11). Or-

thonormalize each atom of D
l(i)
c .

3. Output.
Return to step 2 until the values of (4) in adjacent iterations are close
enough. Output D(W ), D(H) and D

(N).

According to [Lathauwer et al., 2000], the solution can be
obtained by solving a classical linear least-squares problem:

Glc×1D
l(W )
c ×2D

l(H)
c ×3D

l(N)
c = Y l

c (8)

To avoid Glc being overdetermined, we orthonormalize each
column of D

l(i)
c (i =W,H,N). Then we can get

Glc = Y l
c×1D

l(W )
c

T
×2D

l(H)
c

T
×3D

l(N)
c

T
(9)

When updating D
l(i)
c , Glc and D

l(j)
c (j 6= i) are fixed. To

calculate D
l(i)
c , we can solve the following problem:〈

D
l(i)
c

〉
=arg min

D
l(i)
c

∥∥∥Y l
c(i)−D

l(i)
c Glc(i)p

(
D

l(i)
c

)∥∥∥2
F

+λ

tr(Dl(i)
c

T
S
(i)
w D

l(i)
c )+

C∑
h=1
h6=c

Lh∑
q=1

βhq
cl

∥∥∥Dl(i)
c

T
D
q(i)
h

∥∥∥2
F

 (10)

where Y l
c(i) and Glc(i) are separately the mode-i unfolded

forms of Y l
c and Glc , and

p
(
D

l(i)
c

)
=


(
D

l(N)
c ⊗D

l(H)
c

)T
if i =W(

D
l(N)
c ⊗D

l(W )
c

)T
if i = H(

D
l(H)
c ⊗D

l(W )
c

)T
if i = N

.

The solution of (10) can be easily derived by:

D
l(i)
c

(
Glc(i)p

(
D

l(i)
c

))(
Glc(i)p

(
D

l(i)
c

))T
+λ

S
(i)
w +

C∑
h=1
h6=c

Lh∑
q=1

βhq
cl D

q(i)
h D

q(i)
h

T

D
l(i)
c

= Y l
c(i)

(
Glc(i)p

(
D

l(i)
c

))T
(11)

(11) is a standard Sylvester equation, which can be effectively
solved using existing tools [Bartels and Stewart, 1972]. Al-
gorithm 1 describes the optimization of DTDLNU. The op-
timization is an example of generalized block coordinate de-
scent algorithm where its convergence has been theoretically
analyzed for multiconvex optimization [Xu and Yin, 2013].

6 The Classification Scheme of DTDLNU
When

{
D(W ),D(H),D(N)

}
is available, a test image set can

be classified via coding it over these dictionaries. For the
given test image set Ztest, we can organize it as a 3rd-order
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tensor Ztest ∈ RdW×dH×dN . The sparse coding coefficient
tensor Q can be obtained by solving:

min
∥∥Ztest −Q×1D

(W )×2D
(H)×3D

(N)
∥∥2
F

s.t. ‖Q‖0 ≤ S0
(12)

where S0 refers to the total sparsity (i.e. the number of non-
zeros) of Q. Q can be achieved with the Tensor-OMP algo-
rithm [Caiafa and Cichocki, 2012]. The reconstruction error
associated with the cth (c = 1, · · ·, C) class is computed by:

ec=min
l

∥∥∥Ztest−Ql
c×1D

l(W )
c ×2D

l(H)
c ×3D

l(N)
c

∥∥∥2
F

(13)

where Ql
c is the coding coefficient tensor corresponding to

the lth set of the cth class. The classification can be done
by assigning the test image set to the class with the smallest
reconstruction error.

7 Experiments
7.1 Compared Methods
In experiments, we compare DTDLNU with five categories
of state-of-the-art related methods including:
(1) Subspace and manifold based methods: MDA [Wang and
Chen, 2009] and DARG [Wang et al., 2015];
(2) Affine/convex hull based methods: AHISD [Cevikalp
and Triggs, 2010], CHISD [Cevikalp and Triggs, 2010] and
SANP [Hu et al., 2012];
(3) Covariance matrix based methods: CDL [Wang et al.,
2012] and LMKML [Lu et al., 2013];
(4) Deep learning method: DRM-WV [Hayat et al., 2015];
(5) Dictionary learning based methods: ISCRC [Zhu et al.,
2014], DFRV [Chen et al., 2012] and SFDL [Lu et al., 2014].

7.2 Datasets
In experiments, we use three challenging and large dataset-
s, i.e., YouTube Celebrities (YTC) [Kim et al., 2008], COX
[Huang et al., 2015], and YouTube Faces (YTF) [Wolf et al.,
2011]. YTC contains 1,910 video sequences of 47 celebrities
from YouTube. COX is a dataset involving 1,000 different
subjects, each of which has 3 videos captured by differen-
t camcorders. YTF contains 3,425 videos of 1,596 subjects
downloaded from YouTube. And there are large variations in
pose, illumination, expression, and resolution in these videos.

We employ the Viola-Jones face detector [Viola and Jones,
2004] to detect the faces in each frame and resize the detected
faces to gray-scale images of 30×30 for YTC, 32×40 for COX,
and 30×30 for YTF. Histogram equalization is implemented
to reduce the illumination variations.

7.3 Experimental Settings
To make a fair comparison with related ISC methods, we
follow the protocol used in [Wang et al., 2015; Hayat et
al., 2015; Zhu et al., 2014; Lu et al., 2014]. On YTC,
ten random selections for training and testing videos are
conducted for reporting average experimental results. The
whole dataset is equally divided into ten folds with each
containing 9 videos per subject. In each fold, 3 videos
per subject are randomly selected for training, and the re-
maining 6 are selected for testing. For COX, we follow

the same protocol as the prior work [Huang et al., 2015;
Wang et al., 2015], which conducted ten-fold cross valida-
tion, i.e., 10 randomly selected gallery/probe combinations.
Since there are 3 independent testing sets of videos in COX,
each person has one video as the gallery and the remaining
two videos for two different probes, thus in total 6 groups
of testings need to be conducted. For YTF, we follow the s-
tandard evaluation protocol [Wolf et al., 2011]. 5,000 video
pairs are collected randomly and half of them are from the
same subject, half from different subjects. These pairs are
then divided into 10 splits and each split contains 250 intra-
personal pairs and 250 inter-personal pairs. The evaluation
protocol of YTF was originally developed for face verifica-
tion. For verification, we compute the class label for each
video in the given video pair with our classification scheme,
and then make a decision whether the video pair is an intra-
personal pair or not. We perform 10-fold cross validation.
For these datasets, one video is regarded as an image set.

In experiments, the tuning parameters (the balance factor
λ and the neighboring set number k ) of DTDLNU are set by
using 5-fold cross validation with training data. Concretely,
they are set as λ = 1.5 and k = 50 on YTC; λ = 0.8 and
k=90 on COX; and λ=1.5 and k=220 on YTF. The default
dictionary atoms number for each set in DTDLNU, which is
associated with rl(W )

c , rl(H)
c and rl(N)

c , is set as rl(W )
c =dW ,

r
l(H)
c =dH and rl(N)

c =dN . S0 can be automatically selected.

7.4 Results and Analysis
Comparison with the State-of-the-Arts: Table 1 shows
average recognition/verification results of compared meth-
ods on three datasets. From Table 1, DTDLNU performs
better than eleven compared ISC methods on the YTC and
YTF datasets. On COX, DTDLNU also outperforms the
recently presented ISC methods, like [Wang et al., 2015;
Hayat et al., 2015; Lu et al., 2014], in all testing cases. To
observe the effect of using tensor for image set modeling in-
tuitively, we also compare DTDLNU with the method that
organizes image samples as vectors and learns ordinary dic-
tionary (rather than tensor dictionary) by using the vector
version of our objective function. We call this method as
DTDLNUvec. It can be seen that DTDLNU significantly out-
performs DTDLNUvec on all datasets. All these results indi-
cate the effectiveness of modeling image set with tensor and
learning uncorrelated discriminant tensor dictionaries.

Evaluation of the Neighbor-uncorrelated Discriminan-
t Tensor Dictionary (NDTD) Term: Fig. 2 shows tensor

Figure 2: Between-class set-specific sub-dictionary correlation of
ISCRC, DFRV, DTDLNUnoNDTD and DTDLNU.
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Table 1: Average recognition/verification rates (%) of all compared methods on three datasets. “COXij” represents the experiment using the
ith set of image sets as gallery and the jth set of image sets as probe.

Datasets MDA DARG AHISD CHISD SANP CDL LMKML DRM-WV ISCRC DFRV SFDL DTDLNUvec DTDLNU
YTC 68.12 78.16 66.58 67.20 68.39 69.97 78.35 76.21 73.88 74.53 76.91 78.41 80.16
YTF 66.28 79.03 63.43 65.69 76.69 72.15 77.80 84.71 77.92 78.65 80.21 82.66 85.16
COX12 65.83 83.71 53.03 56.90 58.76 78.43 56.14 75.33 69.74 58.57 76.42 80.45 84.26
COX13 62.96 90.13 36.13 30.13 38.07 85.31 44.26 87.83 60.71 77.14 89.29 89.31 90.55
COX23 36.20 85.08 17.50 15.03 31.49 79.71 33.14 78.75 37.66 80.05 81.44 82.75 85.12
COX21 55.53 81.96 43.51 44.36 45.22 75.56 55.37 80.96 61.09 40.02 78.65 79.16 83.10
COX31 43.24 89.99 34.99 26.40 48.10 85.84 39.83 84.15 64.96 51.43 86.72 88.23 90.57
COX32 29.94 88.35 18.80 13.69 28.43 81.87 29.54 81.07 37.71 51.45 81.37 84.25 89.49

Table 3: Computation time (seconds) of all compared methods on YTC for training and testing (classification of one image set).
Methods MDA DARG AHISD CHISD SANP CDL LMKML DRM-WV ISCRC DFRV SFDL DTDLNU
Training 183.9 359.2 N/A N/A N/A 68.3 4225.9 3873.4 N/A 8637.1 7518.2 3605.9
Testing 3.3 8.7 8.4 6.8 47.2 12.4 204.2 4.8 42.5 5.4 6.5 157.1

Table 2: Classification accuracies (%) of the versions of DTDLNU
without the NDTD term, only with part 1, only with part 2, or with
the term.

Datasets Without the term With part 1 With part 2 With the term
YTC 76.38 78.47 78.26 80.16
COX 78.94 84.06 82.63 87.18
YTF 79.10 82.59 81.18 85.16

dictionary correlation1 of set-specific sub-dictionaries cor-
responding to different classes learned by DTDLNU and
DTDLNUnoNDTD (the version of DTDLNU that does not in-
clude the NDTD term). In Fig. 2, we also report the inter-
class set-specific dictionary correlation corresponding to IS-
CRC and DFRV. Table 2 reports the classification results of
DTDLNU and DTDLNUnoNDTD. In the table, we also report
the results of DTDLNU only with part 1 or part 2 of the ter-
m. Here, part 1 means minimizing the within-class scatter in
projected tensor space; and part 2 means minimizing correla-
tion of sub-dictionaries corresponding to neighbor sets from
different classes. It is noted that for COX, we report the aver-
age results across 6 groups of testings.

According to Fig. 2, with the designed term, DTDLNU
owns lower between-class dictionary correlation. From Table
2, we can see that the designed term can improve the classi-
fication results, which demonstrates the effectiveness of the
term. In addition, the part 1 plays a relatively more important
role than the part 2 in the term.

Parameter Analysis: To evaluate the influences of the bal-
ance factor λ and the neighboring set number k, we separate-
ly conduct experiments by changing the values of λ from 0
to 1.5 with step length 0.05, and of k from 5 to 60 with step
length 5 on YTC (when k > 60, the performance is stable,
and when λ > 1.5, the performance will experience a slight
decrease). Fig. 3 shows the classification accuracy of our
approach versus different values of λ or k. We can see that
its performances are stable with respect to λ in the range of
[1.1,1.5], and with respect to k in the range of [50,60]. For
simplicity, we set λ as 1.5 and k as 50 on YTC. A similar
phenomenon also exists on the other two datasets.

Computational Time: Lastly, we report the computation-

1Here, the between-class set-specific sub-dictionary correlation

is calculated by corr= 1
Ns

∑
i={W,H,N}

C∑
c=1

Lc∑
l=1

C∑
h=1
h6=c

Lh∑
q=1

∥∥∥Dl(i)
c

T
D
q(i)
h

∥∥∥2
F

.

Here, Ns denotes the number of accumulating calculations.

Figure 3: Classification accuracies versus λ and k on YTC.

al time of compared methods. Our hardware configuration
comprises a 2.8-GHz CPU and a 24GB RAM. Table 3 tab-
ulates the computational time of different methods on YTC.
The reported testing time refers to the time of classifying one
image set. We can see that our approach requires less training
time than that of LMKML, DRM-WV, DFRV and SFDL. In
addition, the testing time of DTDLNU is comparable to that
of other methods.

8 Conclusion
In this paper, by modeling an image set as a third-order ten-
sor, we can well preserve the inherent spatial structure of the
set. We for the first time introduce TDL into ISC for learn-
ing two spatial dictionaries and one set dictionary. We thus
propose a novel ISC approach DTDLNU. It can make the ob-
tained dictionaries have favorable discriminability and reduce
the between-class tensor dictionary correlation. We apply
DTDLNU for ISC tasks on three challenging datasets. Ex-
perimental results demonstrate that DTDLNU achieves better
classification results than several state-of-the-art methods.
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