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Abstract

We propose a scalable neural language model that
leverages the links between documents to learn the
deep context of documents. Our model, Deep Con-
text Vector, takes advantage of distributed represen-
tations to exploit the word order in document sen-
tences, as well as the semantic connections among
linked documents in a document network. We eval-
uate our model on large-scale data collections that
include Wikipedia pages, and scientific and legal
citations networks. We demonstrate its effective-
ness and efficiency on document classification and
link prediction tasks.

1 Introduction

Text mining applications use quantitative representations of
documents to analyze and compare them to one another. One
popular approach to text modeling represents each document
as a vector of its word frequencies. Due to its concep-
tual simplicity and computational efficiency, this approach is
used widely in information retrieval, text summarization, and
personalized recommendation. However, representing doc-
uments by their word frequencies has significant disadvan-
tages that limit the utility of this representation. The principal
of these is that word frequencies fail to capture word mean-
ing. Individual words may be highly ambiguous: the same
word can often mean different things, and different words
frequently have the same meaning. To address this chal-
lenge, modern text analysis methods take advantage of lan-
guage models (n-grams or topic modeling algorithms) which
include the context of words in document representations,
where a word’s context is provided by the neighboring words,
phrases in sentences and co-occurred words in same docu-
ments. Then they use quantitative methods to find statistical
dependencies among words across documents. The intuition
behind this approach is that surrounding words in a docu-
ment, though themselves ambiguous, collectively help to pin
down a given word’s meaning.

However, words often have a deeper context that extends
beyond nearby words, phrases, and sentences in the same
document to other relevant documents and concepts. For
example, the online encyclopedia Wikipedia is composed of
a network of Web pages describing interconnected concepts
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Mammal Wiki page “Cat”’
« ; The domestic cat!'l?] (Felis catus®! or Felis silvestris
. catus!) is a small, usually furry, domesticated, and
Felidae 3 Cat ' ' '
=~ carnivorous mammal. They are often called a housecat
e when kept as an indoor pet,®! or simply a cat when there is

no need to distinguish them from other felids and felines.
Cats are often valued by humans for companionship, and
their ability to hunt vermin and household pests.

Vermir:/

Wiki page “Dog” Wolf

The domestic dog (Canis lupus familiaris) is a usually

furry, carnivorous/@l3lIl4l member of the canidae family. Dog ;

Domestic dogs are commonly known as "man's best / Carnivora
friend". The dog was the first domesticated animal(5l(6] J,L‘ - 3 \
and has been widely kept as a working, hunting, and pet | % v’ i

companion. It is estimated there are between 700 million
and one billion domestic dogs, making them the most
abundant member of order Carnivora.[7J8

) \Pet
(

B

Figure 1: Wikipedia pages “cat” and “dog” with representative no-
tions they refer to.

and entities. Figure 1 illustrates a small portion of Wikipedia
related to the concept “cat”. The text of the page describing
“cat” references other pages describing concepts “felidae”,
“mammal” and “vermin”. Similarly, the Wikipedia page de-
scribing the concept “dog” links to related pages describing
“wolf”, “pet”, “carnivora”. In order to get a complete picture
of what “cat” and “dog” are, one has to read the descriptions
in the linked pages. Similarly, in order to understand a sci-
entific article, a reader must rely not only on the text of the
article, but also on the background knowledge and supporting
evidence that is described in other articles. Thus, the meaning
the reader perceives is not simply derived from the words and
sentences appearing in the article, but is the inferential result
of the connections the article makes to other articles and the
concepts expressed in them. These connections, and the text
used by them to express concepts and themes of the docu-
ments, provide a deeper context for understanding the current
document. Automatically learning these deep contexts from
data will help us create better models of text documents that
not only help to better solve existing tasks, such as finding
documents similar to the given document, but also address
novel text mining tasks that existing tools cannot solve.

In this paper, we address the problem of learning the deep
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contexts of documents with neural language models [Bengio
et al., 2003]. We focus on leveraging information in docu-
ment text and the links that exist between documents in doc-
ument networks. We describe a model that captures the gen-
erative process of document creation in which language and
semantics are intricately linked across document networks.
Authors read existing documents to draw inspiration for the
vocabulary, grammar, and style and learn how to describe the
concepts and ideas in their own works. Language influences
propagate between documents through citations and cross-
references, providing a deeper context for understanding the
semantics of text. The question is how to capture the hier-
archy of contexts of a word in a sentence, including the sur-
rounding words, the sentence semantics, underlying theme of
the article and influence from cited articles. To this end, we
devise a new language model that accounts for these contexts
in text documents.

2 Related Work

We begin with a review of two lines of related work.

2.1 Neural Language Models

Neural language models are based on the idea of distributed
word representations [Bengio er al., 2003]. Instead of “one-
hot” representations for words in vocabulary, neural language
models use continuous variables to represent words in vector
space, in the hope of improving the generalization of classic
n-gram language models. This idea of distributed word rep-
resentations has been successfully applied to many tasks in
natural language processing and data mining, such as model-
ing unigram words and phrases [Mikolov et al., 2013], sen-
tences and documents [Le and Mikolov, 2014], relational
entities [Bordes et al., 2013; Socher et al., 2013], general
text-based attributes [Kiros et al., 2014], streaming docu-
ments [Djuric ef al., 2015] and semi-supervised learning of
text embedding [Tang er al., 2015a]. Representative applica-
tions of neural language models also include learning repre-
sentations of nodes in networks [Perozzi et al., 2014; Tang et
al., 2015b; Chang et al., 2015; Grover and Leskovec, 2016;
Wang et al., 2016].

2.2 Semantic and Link Analysis

Modeling underlying structure of text documents and learn-
ing semantic representations is critical to various applications
including information retrieval, text summarization and per-
sonalized recommendation. Approaches of learning latent se-
mantics (notably “topic modeling” methods) include proba-
bilistic Latent Semantic Analysis (PLSA [Hofmann, 1999])
and Latent Dirichlet Allocation (LDA [Blei er al., 2003])
are proposed. However, most of these models do not ac-
count for data with the link structure where text documents
lie on. Research work in link analysis [Hoff er al., 2002;
Kemp et al., 2004; Airoldi et al., 2009] attempt to model net-
work structure in latent space. However, these approaches
cannot be easily applied to node with text content. The
goal of our model is closest to recent work in joint content
and link analysis. Several models [Mccallum er al., 2005;
Dietz et al., 2007; Nallapati et al., 2008; Mei et al., 2008;
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Chang and Blei, 2009] have been proposed based on topic
modeling, and links between documents are explained by the
similarity of topic mixtures. However, our model goes be-
yond the bag-of-words representations where these models
bear in common, and exploit word order information in sen-
tences.

3 Deep Context Neural Language Model

In this section, we describe our model in detail. To begin
with, we review the log-bilinear language model [Mnih and
Hinton, 2007], which is the foundation of our model.

3.1 The Log-Bilinear Model

We represent each word w using an F'-dimensional real-
valued feature vector, v,, € R¥. The log-bilinear model
(LBL [Mnih and Hinton, 2007; Mnih and Kavukcuoglu,
2013]) specifies the bilinear energy function of a sequence of
context words (w1, - ,wp_1) and the predicted next word
Wy,

E(wlzn—l;wn) = _‘}van (1)

where V is the predicted representation of next word, defined
as

{7 - C; @ Vu)i (2)

where ® denotes element-wise multiplication, and c; is the
weight vector for the context word in position 7. For symme-
try, we use the same set of word representations for both the
words being predicted and the context words.

The resulting probabilistic distribution of next word is
given by a softmax function:

1
P(wn,|w1:n—1) = 79XP[—E(w1m—1;wn)] 3)

where 7, = ijn:l exp|—E(w1.,—1; wy,)] is the context de-
pendent normalization factor, and K is the vocabulary size.

3.2 Model Architecture

Our model assumes that the generation of the next word in
a word sequence depends not only on the preceding words,
but also on the global context of the document and the other
documents it references (and possibly the documents these
references cite, and so forth). Figure 2 illustrates a gen-
eral architecture, where we use the word sequence example
“dogs are our best - --” in the document related to the con-
cept “DOG”. The concepts “PET” and “CAT” are also used
to predict the next word “friends”, as they are neighbors of
“DOG” in the document network. More precisely, we firstly
consider there is global semantic context for word sequences
in each document d, which we also represent as a real-valued
feature vector, v4. This idea is same as in [Le and Mikolov,
2014]. We also consider the semantic influence from the
neighborhood of d in the document network (i.e., documents
that can be reached from d in a few hops), and jointly model
text in documents and their link structure. For simplicity,
we learn word and document representations in the same F'-
dimensional vector space, and consider v,, € R¥,v4 € RY.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Position Parameters

Vectors =--------- >

________________________ > dogs are our best !

Figure 2: The general model architecture of Deep Context Vectors.
We refer to it as DCV-vLBL.

Given a sequence of words (wy, -+ ,wy) in a document
d1, we define the energy function as:
o T
E(N$7 Win—15 wn) = -V Vu, (4)

where NV, 4, 18 the set of neighbors of d; that can be reached in
< m hops along the links in the document network. We take
v to be the predicted representation of the next word:

n—1 1 |N$
o (w)
vV = Z C’i @ Vwi + TArml

(i—l ) |Nd1

> el ov, | ©®)
p=1
where d,, € Nj’, and c,(gd) € RY is the context parameters
defining the weights of d,,. We may reuse cz()d) for any d,, that
can be reached in the same number of hops. The probabilistic

distribution of the next word is defined as
P(’LUn|’LU1;n_1,./\/:ZL)

:Zi exp[— BN, wim—1;wy)] ©
(&

By learning next word’s representation using features from
its global document vector and the linked documents, our
model captures the deep context for generating each word in
a document. In this sense, we call the vectors learned by our
model Deep Context Vectors (DCV). However, the model in
Eq. (6) is computationally expensive due to potentially expo-
nentially large number of documents within m hops, N/ 4, To
reduce computation, we introduce a practical algorithm that
draws node sequences to characterize the neighborhoods.

Randomized Document Sequence

Given a sequence of words (wi,--- ,w,) within a docu-
ment d;, we draw an associated sequence of documents
(di,--+ ,dmy1) from N7 by following the directed links
from document d;. The document sequence can be sam-
pled based on a probability distribution P(dy.,+1) =
H;":J;l P(dj|d1.j—1). For simplicity, we adopt first order ran-
dom walk scheme. In the first step, we start from the original
document d;. In each following step, we uniformly sample
d ;41 from the set of documents that the current document d;
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Figure 3: An alternative model architecture. We refer to it as DCV-
ivLBL as it performs inverse language modeling.

links to. Although higher order random walk is more power-
ful, we leave studying this direction as future work.
We hence redefine the energy function in Eq. (4) as:

o T
E(dlzm—i-h W1:n—15 wn) ==V Vyu, (7)
where V is the predicted representation of the next word, and
is learned from the feature vectors of preceding words as well
as associated documents:

n—1 m—+1
N Z (w)
vV = C,  OVy,

i=1

+ Y P ove | . ®
j=1

Here c;d) € R¥ is hop-dependent and specifying the weights

of the feature vector of j-th document in the document se-
quence.
The conditional word distribution is given by
P(wn|w1:n—17d1:m+1)
©))

1
=7 exp[—E(d1:m+1, Win—1;Wn)]

3.3 Learning with Negative Sampling

The word and document vectors are initialized with random
values and trained by minimizing the negative log-likelihood
of the data. The parameter updates are performed using
stochastic gradient descent, and can be derived from Eq. (9):

Al = Gve log P(wn‘wlznfla dl:erl) (10)

where 8 = {v,,, vq, c(®), c(?} is the set of parameters to be
learned, and e is the learning rate. The computation of gradi-
ents obtained in Eq. (10) involves the normalization term and
is expensive since the complexity is proportional to the vo-
cabulary size K. In this paper, we use a scalable optimization
algorithm without calculation of the gradients of normaliza-
tion, that is negative sampling [Mikolov er al., 2013]. Neg-
ative sampling trains a logistic regression to distinguish be-
tween data samples of w,, from “noise”. In our model, the
objective is to maximize
k
log o (Vv vy, )+ Z Euw,; ~ Pn(w) [logo(—V Tvy,)] (11)
i=1
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where o(x) is the sigmoid function. P, (w) is the global un-
igram distribution of the training data acting as the noise dis-
tribution where we draw k negative samples.

3.4 Improving with Alternative Architectures

We explore different model architectures, in the hope of im-
proving the performance with ensemble of feature vectors
learned with them separately. We present an alternative ar-
chitecture which uses similar scheme of Skip-gram [Mikolov
et al., 2013]. Figure 3 shows the architecture, which utilizes
the current word to predict its word context (including pre-
ceding and following words), along with a weighted vector
learned from the document sequence and also used to predict
the word context. As it performs inverse language modeling,
we refer to it as DCV-ivLBL and it’s a counterpart of inverse
vector LBL [Mnih and Kavukcuoglu, 2013]. The objective
is to maximize the log-likelihood for a given word sequence

(wtfba Wyt 7wt+b)

Z log P(we4i|we)+ Z

—b<i<b,i#0 —b<i<b,i#0

log P(wyildi:m+1)

(12)
where b is the context size of words. The current word w; and
d1.m+1 are used separately to predict the context words. The
probability distributions is formulated as

1
P(wypi|wy) = e exp[Vuw, T(Ci © Va,,,)]  (13)

P(wt+i|d1:m+1)

m—+1
1 d w (14)
:ﬁexp ( E : Cg’ : ®VdJ)T(cz(' ) © th+i>
c j=1

where Z% and Z¢ are the normalization term.

4 Experiment

In this section, we present evaluation results of our model.
We begin with a description of our data sets.

4.1 Data Description

We select data sets from different domains including
Wikipedia pages, scientific papers and legal opinions:

e Wikipedia: A dump of Wikipedia pages' in October
2015 is used in our experiments. Wikipedia data pro-
vides rich text with interlinked knowledge concepts. The
document network is dense, with around 40 out-links per
document on average.

e DBLP: We download the DBLP data set [Tang er al.,
200812, which contains a collection of papers with titles
and citation links. This represents a type of documents
with extremely short text, with only about 9 words per
document.

'nttp://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages—-articles.xml.bz?2

nttp://arnetminer.org/lab-datasets/
citation/DBLP_citation_2014_May.zip
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Table 1: Statistics of data sets.

Dataset Wikipedia DBLP Legal
# docs 4,256,787 2,244,021 2,485,004
## links 166,212,300 4,354,534 4,682,528
## links/doc 39.5 1.9 1.8
# words 3,750,870,725 | 20,741,535 | 6,391,118,754
# words/doc 881.1 9.2 2,571.8
vocab size 3,888,263 248,377 2,593,557

e Legal: We collect a large digitized record of federal
court opinions from the CourtListener® project in our
study. The text in each case of legal opinion is mainly
about the discourse of a legal case. The citation net-
work is sparse and the lengths of documents are much
larger than that of Wikipedia and DBLP, with more than
2 thousand words on average.

The statistics of the three datasets are shown in Table 1.

4.2 Methods for Comparison

We compare our model with the following baselines and
the state-of-art approaches for learning document represen-
tations:

e BOW. We use bag-of-words representations as baseline,
which is simply the frequency of unigrams in a docu-
ment. We report performance on TFIDF weighted BoW.

o LDA [Blei et al., 2003; Hoffman et al., 2010]: Latent
Dirichlet Allocation is used to learn document-specific
topic distributions. By comparing our models with LDA,
we may understand how important it is to modeling
word order and the context of linked documents.

e Skip-gram [Mikolov et al., 2013]: We learn word vec-
tors using Skip-gram model. Each document is repre-
sented by averaging vectors of all words in it.

e PV [Le and Mikolov, 2014]: Paragraph Vector (PV)
learns distributed representations for variable length
pieces of text, such as sentences, paragraph and docu-
ments. By comparing our model with PV, we may see
how informative the links are.

e DeepWalk [Perozzi et al., 2014]: DeepWalk is used for
learning distributed representations of nodes in a net-
work. In order to understand how informative the word
content are, we consider the word-word co-occurrence
network Gz, and word-document network GG,,4. In ad-
dition, we also use document-document network G 44 to
understand the effects of links.

e LINE [Tang et al., 2015b]: LINE models first-order
and second-order proximity between nodes. LINE is
optimized with edge-sampling and trained on word-
word network G.,,,, word-document network GG,,q and
document-document network G 4.

We perform experiments on a single machine with 64 CPU
cores at 2.3 GHz, and 256G memory. Asynchronous stochas-
tic gradient descent algorithm is used with 40 threads to op-
timize our models. Models are trained for 20 epochs on each
dataset.

*https://www.courtlistener.com/
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4.3 Document Classification

In this experiment, we perform document classification and
evaluate how discriminative the learned feature vectors are.

Experiment Setup

For each dataset, all text, links of all documents or the com-
bination (listed in Table 1) are used for learning document
representations in unsupervised manner. For evaluation, we
sample a subset of documents with balanced category distri-
bution for each dataset. (1) For Wikipedia dataset, we ran-
domly select 10,000 samples from each category among the
seven diverse ones “Arts”, “History”, “Human”, “Mathemat-
ics”, “Nature”, “Technology”, and “Sports”; (2) For DBLP
papers, we select five research fields including “Artificial
Intelligent”, “Computer Graphics”, “Computer Networks”,
“High Performance Computing”, “Theory” as class labels.
For each field, we randomly sample 10,000 papers; (3) In
legal opinions, legal code are cited to support the judgement
of a case. Each statute has a standard format, with title, code
and section/subsection numbers. We use the statute title cited
most by each case as its category label. We choose the eight
most cited statute titles, namely “Title 8: Aliens and Nation-
ality”, “Title 11: Bankruptcy 7, “Title 15: Commerce and
Trade”, “Title 18: Crimes and Criminal Procedure”, “Title
21: Food and Drugs”, “Title 28: Judiciary and Judicial Pro-
cedure”, “Title 29: Labor” and “Title 42: The Public Health
and Welfare”. We randomly select 10,000 samples for each
statue title.

The dimensionality of word and document vectors are fixed
as 400 for all learning models. The number of negative sam-
pling is fixed as 5 for Skip-gram, PV, LINE and DCV. We
set the word context window size n = 5 in DCV-vLBL and
b = 5 in DCV-ivLBL. The context window of document se-
quence m is fixed as 1 by which we only consider the imme-
diate neighbors that the current document links to. Increas-
ing m, DCV may yield performance gain, but with higher
cost of computation. To construct word-word network G,
we consider co-occurrences of words with context window
size 5. We also test model performance using concatenation
of document vectors trained using PV-DBOW and PV-DM,
as well as DCV-vLBL and DCV-ivLBL. For LINE, we use
concatenation of the vectors trained on first and second-order
proximity [Tang et al., 2015b].

Results of Document Classification

We train one-vs-rest logistic regression on the resulting vec-
tor representations of documents.Table 2 shows the average
Micro-F1 and Macro-F1 scores. The results are average over
5-fold cross-validation on the sampled data. The baseline
BOW works well on all datasets, but with features in dimen-
sionality of millions. Learning models with 400 dimensional
vectors reduce the document feature space by at least 99.8%
for any dataset. Our DCV consistently performs better than
PV, LINE, DeepWalk and LDA. The performance gain of
DCYV is significant on DBLP where the documents (paper ti-
tles) are extremely short. The performance of PV degrades
in modeling short text as the vectors learned will overfit the
few words in each document. However, DCV does not suf-
fer from this problem as the links provide discriminative in-
formation for learning better document representations. On

©
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Figure 4: Performance w.r.t # of vector dimensions

Legal dataset, it’s worth noticing that most of documents in
Legal dataset are long documents with thousands of words.
DCV is not easily tuned in this case, but still perform well.
In most cases, models that use text features only can achieve
good performance. The link information can slightly help
document classification, but models using link information
solely cannot perform well. We also present the running time
to train vectors for each methods on Legal dataset. As we can
see, DCV can efficiently train vectors on 2M documents with
6.3B words and 4M links in about 10 to 26 hours, which is
quite scalable.

Dimension of Vectors

We vary the dimensionality of vectors in DCV, and report the
classification performance on Wikipedia and Legal datasets in
Figure 4. With larger dimensionality of vectors, the vectors
are trained at a higher computational cost. We can see the
performance of DCV increases when dimensions of vectors
increase to 200 or 400, which is suitable for both datasets.
However, when dimensions increase to 800, the performance
gain is marginal.

4.4 Link Prediction

In this experiment, we investigate how much information the
learned vectors can provide for predicting unseen links be-
tween documents.

Experiment Setup

For Wikipedia and DBLP datasets, we hold out all out-links
of the test data as described in the task of document classifica-
tion (Section 4.3) for evaluation. For Legal dataset, we hold
out all out-links of legal opinions of 62,018 supreme court
decisions, each has about 4 links on average. For each test
document, we rank other documents by Cosine similarity in
vector space, instead of predict whether it will or not link to
any other documents. In this experiment, we fix the number
of hops m as 2 in sampling document sequence.

Results of Link Prediction

Table 3 shows the results averaged over all test documents.
We use Precision at the cut-off 10 (P@10) and Mean Average
Precision (MAP) for evaluation. As we can see, DCV con-
sistently performs better than other methods, and the perfor-
mance gain is significant on Wikipedia dataset which has rel-
atively denser document-document network. DCV also per-
forms well on DBLP dataset. This demonstrates the capacity
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Table 2: Performance of document classification (%).

Wikipedia DBLP Legal
Modal Method Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Time
BOW 81.54 81.56 7225 7224 86.12 86.13 -
LDA [Blei et al., 2003] 7271 72.70 57.98 58.20 78.32 78.56 40h
Skip-gram [Mikolov et al., 2013] 77.20 77.25 67.34 67.39 80.13 80.28 8.5h
PV-DM [Le and Mikolov, 2014] 79.48 79.52 64.30 64.27 82.23 82.44 9.8h
text PV-DBOW [Le and Mikolov, 2014] 80.31 80.26 68.73 68.75 81.32 81.43 21.5h
PV-(DM+DBOW) [Le and Mikolov, 2014] 81.10 81.08 68.91 68.92 82.78 82.85 -
DeepWalk(Glywy + Gapa) [Perozzi et al., 2014] 76.42 76.42 66.42 66.45 80.78 80.83 10.6h
LINE(Gww + Guwa) [Tang er al., 2015b] 81.20 81.20 66.10 66.15 81.64 81.78 20.3h
ks DeepWalk(G 4q) [Perozzi et al., 20141 70.33 70.39 56.17 54.84 56.87 5552 0.8h
LINE(G 44) [Tang ez al., 2015b] 73.92 73.90 55.43 54.27 56.93 55.56 1.2h
DeepWalk(G yw + Gwa + Gaa) [Perozzi et al., 2014] 77.32 77.27 72.48 72.62 82.63 82.72 11.3h
LINE(Gww + Guwd + Gaa) [Tang et al., 2015b] 81.74 81.73 72.55 72.60 82.54 82.59 20.5h
text + links DCV-VLBL 81.05 81.05 7216 7213 8420 84722 10.2h
DCV-ivLBL 83.10 83.11 72.87 72.95 85.63 85.67 26.3h
DCV-(vLBL + ivLBL) 84.27 84.29 73.45 73.40 86.47 86.56 -
Table 3: Performance of link prediction (%).
Wikipedia DBLP Legal
Modal Method P@I0 | MAP | P@I0 | MAP | P@I10 | MAP
BOW 1423 | 2752 | 384 | 563 | 1043 | 22.38
LDA [Blei et al., 2003] 715 | 1357 | 127 | 231 | 603 | 1413
Skip-gram [Mikolov ef al., 2013] 13.12 | 2523 | 354 | 549 | 1056 | 23.10
text PV-(DM+DBOW) [Le and Mikolov, 2014] 1521 | 2815 | 358 | 521 | 1154 | 2457
DeepWalk(Glywy + Gapa) [Perozzi et al., 2014] 1374 | 2613 | 335 | 509 | 934 | 1926
LINE(Gww + Guwa) [Tang er al., 2015b] 1402 | 2748 | 332 | 507 | 1056 | 21.78
ks DeepWalk(G44) [Perozzi ef al., 2014] 1034 | 2050 | 392 | 601 | 1254 | 23.56
LINE(G 44) [Tang et al., 2015b] 1021 | 2128 | 387 | 594 | 13.68 | 24.57
DeepWalk(G yw + Gwa + Gaa) [Perozzi et al., 2014] 16.58 31.42 5.13 6.42 15.23 25.43
LINE(Gww + Guwa + Gaa) [Tang et al., 2015b] 1678 | 3195 | 507 | 635 | 1623 | 26.19
text + links DCV-VLBL 1832 | 3268 | 672 | 823 | 1789 | 2850
DCV-ivLBL 1920 | 3414 | 7.0 | 850 | 18.05 | 28.23
DCV-(vLBL + ivLBL) 19.63 | 3561 | 712 | 859 | 1854 | 2877
of DCV in modeling short text with link information. Ex- 8.6 29
ploiting both text and link information, DeepWalk, LINE and = A — e
. . X84 /N &2 A e
DCV generally perform better than using text or link solely. < S/ \ <o A s
LDA performs worst in this task. This indicates the topic dis- Sgold A g g BN
. . . %] N\t~ [%7) \
tributions learned from bag-of-words features do not provide a - e N
much information for link prediction. s 8 s T
DCV-ivLBL
Number of Hops 85 2 3 4 5 2 3 4 5
We explore the effects of the number of hops, m. Figure 5 #hops #hops
shows the link prediction results using DCV with different (a) DBLP (b) Legal

number of hops used. We observe for DBLP dataset, the per-
formance of DCV does not change much with hops in the
range of 1~ 3. Hence small number of hops are preferable
due to its low computational cost. DCV performs better with
the number of hops is set as 2 than other values for DBLP and
Legal datasets. Sampling long document sequence has high
computational cost and is not effective in real applications.

5 Conclusion and Future Work

In this paper, we proposed a neural language model called
Deep Context Vectors (DCV) for linked documents in doc-
ument networks. We described two model architectures and
showed how to simultaneously learn word and document vec-
tors in our framework. By modeling the deep contexts of
words in linked documents, our model can learn better docu-
ment representations in a low-dimensional vector space. Ex-
perimental results showed that our model outperforms other
neural language models, such as Paragraph Vector [Le and
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Figure 5: Performance w.r.t. number of hops

Mikolov, 2014], that do not take into account the links be-
tween documents. Interestingly, the vectors learned by DCV,
which have on the order of few hundreds of features, can per-
form better or comparably to the bag-of-words model, which
uses millions of features.

In future work, we would like to use side information such
as the relative location of each word and the hyperlinks or ci-
tation in the paragraph, to determine which linked documents
should be modeled for each word.
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