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Abstract
Many previous graph-based methods perform di-
mensionality reduction on a pre-defined graph.
However, due to the noise and redundant informa-
tion in the original data, the pre-defined graph has
no clear structure and may not be appropriate for
the subsequent task. To overcome the drawbacks,
in this paper, we propose a novel approach called
linear manifold regularization with adaptive graph
(LMRAG) for semi-supervised dimensionality re-
duction. LMRAG directly incorporates the graph
construction into the objective function, thus the
projection matrix and the adaptive graph can be
simultaneously optimized. Due to the structure con-
straint, the learned graph is sparse and has clear
structure. Extensive experiments on several bench-
mark datasets demonstrate the effectiveness of the
proposed method.

1 Introduction
Dimensionality reduction is a significant topic in machine
learning and other related fields. It is reasonable to presume
that the naturally generated high dimensional data have a much
more compact description, i.e., the high dimensional data prob-
ably lie on or close to a smooth low dimensional manifold
[Roweis and Saul, 2000]. The goal of dimensionality reduc-
tion is to remove the noise and redundant information, and at
the same time to preserve the desired intrinsic information of
the input data. Collecting the labeled data is usually costly,
while the unlabeled data are abundant and can be easily ob-
tained. Therefore, semi-supervised dimensionality reduction
has attracted great interest in recent years.

If we do not have more information than similarities be-
tween data points, a nice way to represent the data is in
the form of a graph [Zhang et al., 2014; Liu et al., 2010],
which aims to capture the intrinsic geometric structure of
data manifold. There have been many graph-based meth-
ods for dimensionality reduction. To provide a unified per-
spective of various algorithms, [Yan et al., 2007] proposed
a general framework known as graph embedding, in which
the algorithms such as LLE [Roweis and Saul, 2000], LE
[Belkin and Niyogi, 2001] and LPP [He et al., 2005] share
the common formulation with different graph design. To

better cope with the data sampled from nonlinear manifold,
[Nie et al., 2010] proposed the flexible manifold embed-
ding (FME) framework for semi-supervised and unsuper-
vised dimensionality reduction. There are many other semi-
supervised graph-based methods that were developed with
different prior assumptions [He et al., 2008; Gao et al., 2015;
Chatpatanasiri and Kijsirikul, 2010] or by label propagation
[Nie et al., 2009]. By adding a graph regularization term,
some supervised dimensionality reduction methods can also
be extended to the semi-supervised case [Cai et al., 2007;
Song et al., 2008; Huang et al., 2012].

All the graph-based methods mentioned above need to con-
struct a graph beforehand. Therefore, graph construction is a
crucial step for these methods, since their performance highly
relies on how well the graph models the intrinsic structure
of data manifold. In general, one can construct an adjacency
graph by k-nearest neighbor or ε-ball neighborhood criteria.
The edge weights are then assigned by Gaussian kernel or local
linear reconstruction. However, due to the noise and redundant
information, such a pre-defined graph has no clear structure
and may not be appropriate for the subsequent dimensionality
reduction task.

To overcome the drawbacks, it is natural for us to consider
how to learn an adaptive graph which is the optimal one for
dimensionality reduction. The adaptive graph should better be
sparse and have clear structure that the number of connected
components in the graph is exactly the number of data cluster-
s/classes. Such a structured graph would be benifical to many
tasks since it contains more accurate information of the data.
Motivated by these ideas, we propose a novel approach called
linear manifold regularization with adaptive graph (LMRAG)
for semi-supervised dimensionality reduction. It is worthwhile
to highlight the main contributions of the paper as follows:

1. LMRAG performs dimensionality reduction and graph
construction simultaneously, by incorporating the adap-
tive neighbor learning into the objective function of linear
Laplacian regularized least squares (LapRLS/L). Both
the optimal graph and the projection matrix can then be
obtained.

2. To learn an adaptive graph that has clear structure, a
structure constraint is imposed to the graph Laplacian. To
the best of our knowledge, it is the first time to introduce
an adaptive and structured graph for semi-supervised
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dimensionality reduction.
3. A simple yet effective algorithm is developed for our new

model. Extensive experiments on several widely used
datasets demonstrate the effectiveness of the proposed
method.

2 Background
We first introduce some notations used throughout the paper.
For a matrix W ∈ Rm×n, the (i, j)-th entry and the i-th
column are denoted by wij and wi, respectively. The trace
and Frobunius norm of W are denoted by Tr(W ) and ‖W‖F ,
respectively. The p-norm of vector v is denoted by ‖v‖p, and
Ik ∈ Rk×k is an identity matrix. 1 ∈ Rn×1 is a vector with
all entries being 1.

The data matrix is denoted byX ∈ Rd×n (n = l+u), where
the first l samples {xi}li=1 are labeled and the last u samples
{xi}ni=l+1 are unlabeled. c is the number of data classes. The
label matrix Y ∈ Rc×n is defined as yji = 1 if xi has label
j ∈ {1, 2, . . . , c} and yji = 0, otherwise. Let G = {X,S} be
an undirected and weighted graph, in whichX is viewed as the
vertex set and S ∈ Rn×n is the similarity matrix. The entry
sij measures the similarity between xi and xj . The graph
Laplacian is then defined as L = D − S, where the diagonal
matrix D has entry dii =

∑n
j=1 sij (i = 1, . . . , n).

2.1 Linear Manifold Regularization
Manifold regularization [Belkin et al., 2006; Sindhwani et
al., 2005a; 2005b] is a widely used geometric framework
that brings together three distinct concepts from the theory of
regularization in reproducing kernel Hilbert spaces (RKHS),
manifold learning and spectral methods. It has successfully
extended linear regression and support vector machine (SVM),
respectively, to the semi-supervised learning methods Lapla-
cian regularized least squares (LapRLS) and Laplacian SVM.
We take LapRLS/L as an example to briefly introduce the
linear manifold regularization. The formulation of LapRLS/L
is as follows:

min
W,b

γA‖W‖2F + γITr(W
TXLXTW )

+
1

l

l∑
i=1

‖WTxi + b− yi‖2, (1)

where W ∈ Rd×c is the projection matrix and b ∈ Rc×1 is
the bias term. The third term is the label fitness term. γA, γI
are two regularization parameters that control the RKHS norm
and the intrinsic norm, respectively.

2.2 Adaptive Neighbor Learning
We consider the probabilistic neighbors to learn the similarity
matrix. The probability of two data points to be neighbor
can be regarded as their similarity [Nie et al., 2014]. It is
natural to presume that a smaller distance should be assigned a
larger probability, and vice versa. For simplicity, we adopt the
Euclidean distance. Therefore, we can adaptively determine
the probabilities by solving the following problem:

min
sTi 1=1,0≤sij≤1

n∑
i,j=1

(‖xi − xj‖22sij + γs2ij), (2)

where γ > 0 is the regularization parameter, and si ∈ Rn×1 is
a vector with the j-th entry as sij . The regularization term s2ij
is used to avoid the trivial solution that the nearest neighbor
has the probability of 1 while the others are all 0. We do
not consider xi itself is the neighbor of xi. For the diagonal
entries of S, we simply have {sii = 0}ni=1. In Eq.(2), we can
measure the distance in the projected space by replacing xi,
xj with WTxi, WTxj , respectively. Moreover, we enforce S
to be symmetric by (ST + S)/2.

3 The Proposed Method
3.1 Formulation
It is not difficult to verify that

Tr(WTXLXTW ) =
1

2

n∑
i,j=1

‖WTxi −WTxj‖22sij . (3)

Based on Eq.(1) to Eq.(3), by incorporating the adaptive neigh-
bor learning into the objective function of LapRLS/L, the
proposed LMRAG is formulated as follows:

min
W,b,S

n∑
i,j=1

‖WTxi −WTxj‖22sij + γ‖S‖2F + β‖W‖2F

+ αTr(WTX + b1T − Y )U(WTX + b1T − Y )T ,

s.t. S ≥ 0, ST1 = 1 (4)
where α, β and γ are three trade-off parameters. The fourth
term is the label fitness term. U is a diagonal matrix with the
first l and the last u diagonal entries being 1 and 0, respectively.

By solving Eq.(4), we can learn an adaptive graph while in
most cases all the data points are in one connected component.
According to [Mohar et al., 1991], the multiplicity c of eigen-
value 0 of the graph Laplacian matrix is equal to the number
of connected components in the graph. Therefore, to make the
adaptive graph structured, we can add a structure constraint
by restricting the rank of L to be (n− c).

However, it is challenge to directly solve the problem of
Eq.(4) with the rank constraint. Suppose σi(L) is the i-th
smallest eigenvalue of L, we can transform the rank constrain-
t to the sum of the first c smallest eigenvalues. Note that
σi(L) ≥ 0, since L is positive semi-definite. The objective
function of LMRAG then becomes:

min
W,b,S

n∑
i,j=1

‖WTxi −WTxj‖22sij + γ‖S‖2F + β‖W‖2F

+ αTr(WTX + b1T − Y )U(WTX + b1T − Y )T

+ 2λ

c∑
i=1

σi(L), s.t. S ≥ 0, ST1 = 1 (5)

As we can see, for a large enough λ, solving Eq.(5) will
make

∑c
i=1 σi(L) get infinitely close to zero, then the rank

constraint is approximately satisfied. Such a relaxation is
beneficial to the subsequent optimization, while Eq.(4) with
the rank constraint is hard to tackle.

Further, we have the following equation:
c∑
i=1

σi(L) = min
F∈Rc×n,FFT=Ic

Tr(FLFT ), (6)
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where the optimal F is formed by eigenvectors of L corre-
sponding to the first c smallest eigenvalues as rows. fi ∈ Rc×1
can be seen as a kind of embedding of xi. The term on the
right hand side of Eq.(6) is actually the objective function of
spectral clustering [Von Luxburg, 2007]. Therefore, our final
objective function is formulated as follows:

min
W,b,S,F

n∑
i,j=1

‖WTxi −WTxj‖22sij + γ‖S‖2F + β‖W‖2F

+ αTr(WTX + b1T − Y )U(WTX + b1T − Y )T

+ 2λTr(FLFT ), s.t. S ≥ 0, ST1 = 1, FFT = Ic (7)

3.2 Optimization
We divide the problem in Eq.(7) into three subproblems, and
propose an alternative and iterative algorithm to optimize them.
The whole procedure is summarized in Algorithm 1.

Step 1: Update F with W , b and S fixed. The problem
in Eq.(7) becomes:

min
FFT=Ic

Tr(FLFT ). (8)

The optimal solution F is formed by eigenvectors of L corre-
sponding to the first c smallest eigenvalues.

Step 2: Update W , b with F and S fixed. The problem
in Eq.(7) becomes:

min
W,b

αTr(WTX + b1T − Y )U(WTX + b1T − Y )T

+
n∑

i,j=1

‖WTxi −WTxj‖22sij + β‖W‖2F .
(9)

To obtain the optimal solution, by setting the derivatives of
the objective function with respect to W and b equal to zero,
respectively, we have:

W = α(2XLXT + αXHcuX
T + βId)

−1XHcuY
T ,

b =
1

l
(Y −WTX)U1,

(10)

where Hcu = U − 1
lU11TU is the centering matrix for the

labeled data.
Step 3: Update S with W , b and F fixed. The problem

in Eq.(7) becomes:

min
S

n∑
i,j=1

‖WTxi −WTxj‖22sij + γ‖S‖2F

+ 2λTr(FLFT ), s.t. S ≥ 0, ST1 = 1

(11)

We have 2Tr(FLFT ) =
∑n
i,j=1 ‖fi − fj‖22sij which is sim-

ilar to Eq.(3). Note that it is independent to conduct adaptive
neighbor learning for each data point. Thus we can solve the
following problem for the i-th sample:

min
si

n∑
j=1

(‖WTxi −WTxj‖22sij + γs2ij)

+ λ
n∑
j=1

‖fi − fj‖22sij , s.t. si ≥ 0, sTi 1 = 1

(12)

Algorithm 1 The Proposed Method LMRAG

Input: Data matrix X ∈ Rd×n, where {xi}li=1 are labeled
and {xi}ni=l+1 are unlabeled, label matrix Y ∈ Rc×n,
trade-off parameters α,β, and the neighbor number k.

1: Initialize S, λ, γ according to the initialization section.
2: while not converge do
3: Update F , which is formed by eigenvectors of L corre-

sponding to the first c smallest eigenvalues.
4: Update W ,b by Eq.(10).
5: Update S by solving Eq.(13) for each sample.
6: end while

Output: Projection matrix W .

Denote dij = ‖WTxi −WTxj‖22 + λ‖fi − fj‖22, and denote
di ∈ Rn×1 as a constant vector with the j-th entry as dij ,
Eq.(12) can be rewritten as follows:

min
si≥0,sTi 1=1

‖si − (− 1

2γ
)di‖22. (13)

The problem in Eq.(13) naturally has a sparse solution and
can be solved by an efficient iterative algorithm [Huang et al.,
2015]. We can also just update the k nearest similarities for
each sample to ensure a sparse solution.

3.3 Initialization
We can learn an initial graph by solving the problem of Eq.(2),
and the algorithm proposed in [Huang et al., 2015] can be
adopted again. Alternatively, based on k-nearest neighbor
(KNN) assumption, we apply another strategy to tackle the
problem, and at the same time to determine the parameter γ.
The Lagrangian function of Eq.(2) for the i-th sample can be
written as follows:

L(si, η, ξ) =
1

2
‖si +

1

2γi
zi‖22 − η(sTi 1− 1)− ξTi si, (14)

where zij = ‖xi − xj‖22, η and ξ ∈ Rn×1 are the Lagrangian
multipliers. zi ∈ Rn×1 is a constant vector with the j-th
entry as zij , and the overall γ can be set to the average of
{γi}ni=1. Based on the KKT condition, the optimal si has
sij = (− zij

2γi
+ η)+, where (z)+ = max(z, 0).

We consider that each sample has k nearest neighbors, i.e.,
si has k nonzero entries. Let us rank zi in ascending order, we
have

sik = − zik
2γi

+ η > 0

si,k+1 = −zi,k+1

2γi
+ η ≤ 0

sTi 1 =
k∑
j=1

(− zij
2γi

+ η) = 1

⇒


γi =

k

2
zi,k+1 −

1

2

k∑
j=1

zij

η =
1

k
+

1

2kγi

k∑
j=1

zij

In above derivations, we get a value range for γi and we set it
to the maximum. Consequently, the initial S can be computed
by

sij =

{
zi,k+1−zij

kzi,k+1−
∑k

m=1 zim
, j ≤ k

0, j > k
(15)
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As for parameter λ, in practice, we can use a dynamic
strategy to determine it and to accelerate the iterative process.
Specifically, we can initialize λ = γ. Denote the number of
connected components in S as ncc, then in each iteration, we
double λ if c > ncc, halve λ if c < ncc, and we stop the
iteration, otherwise.

3.4 Computational Complexity
The complexity of step 1 is O(n3). Considering that L is
sparse, the ARPACK eigensolver [Lehoucq et al., 1998] can
be adopted to reduce the cost to (O(p3)+ [O(np)+O(nk)]×
O(p− c))× T , where p is a value several times larger than c,
and T is the number of times of restarted Arnoldi.

Step 2 mainly takes O(n2d + nd2 + d3). We can use the
Nyström method [Fowlkes et al., 2004] to reduce the cost
of the inverse operation performed on a symmetric matrix.
Woodbury formula can also be used when d > n.

Comparing to step 1 and step 2, the complexity of step
3 can be ignored since the algorithm proposed in [Huang
et al., 2015] is based on Newton method that has quadratic
convergence rate, and in practice we can just update the local
similarities.

4 Discussions
There have been extensive study on the problem of dimen-
sionality reduction. Besides the traditional KNN graph, there
also exist many graph construction methods [Liu et al., 2010;
Zhang et al., 2014]. However, most graph-based methods
conduct graph construction and dimensionality reduction in
two separate steps, and a very limited number of works have
devoted to learning an optimized graph for dimensionality
reduction.

Graph optimized locality preserving projection (GoLPP)
[Zhang et al., 2010] is the first attempt to perform graph op-
timization during a specific dimensionality reduction task ac-
cording to the authors. The idea of GoLPP is to regularize the
objective function of asymmetrical LPP [He et al., 2005] by
an entropy term. However, GoLPP suffers the nonuniqueness
of the solutions, since GoLPP is formulated in the trace ratio
form while solved in the ratio trace form [Wang et al., 2007;
Jia et al., 2009]. Due to the entropy regularizer, the graph
learned by GoLPP is dense even though a sparse initial graph
is given.

To address the problems of GoLPP, graph optimization for
dimensionality reduction with sparsity constraints (GODRSC)
was then proposed [Zhang et al., 2012], based on the orthogo-
nalization of sparsity preserving projections (SPP) [Qiao et al.,
2010]. GODRSC obtains the sparsity of graph by replacing
the entropy regularizer in GoLPP with an `1-norm minimiza-
tion, and avoids nonunique solution by directly solving the
trace ratio formulation.

GoLPP and GODRSC are both proposed for unsupervised
dimensionality reduction. Therefore, LMRAG is of great
value as an effective extension of the existing graph optimized
dimensionality reduction methods in semi-supervised case.
In fact, LMRAG can be easily extended to the unsupervised
case, by removing the label fitness term in the formulation
and adding an orthogonal constraint to the projection matrix
to avoid trivial solution.

Table 1: Description of Datasets

dataset Type # samples # Dim # Classes
Corel feature 2074 144 18

COIL-20 object 1440 1024 20
JAFFE face 213 1024 10

CMU PIE face 3332 1024 68
UMIST face 575 2576 20
YALE-B face 2414 1024 38

YALE face 165 1024 15

Recently, [Meng et al., 2015] proposed the adaptive semi-
supervised dimensionality reduction (ASSDR), trying to opti-
mize the graph by a heuristic iteration scheme. Two matrices
of size n × n need to be stored in each iteration, which is
quite memory consuming. ASSDR may rely on kmeans in
the second step while kmeans itself is sensitive to initializa-
tion. Compared to ASSDR, LMRAG has several advantages:
(1) LMRAG has a specific objective function, while ASSDR
does not have one since it is based on a heuristic scheme. (2)
LMRAG adaptively learns the graph, while ASSDR still uses
the pre-defined way in each iteration. (3) The adaptive graph
learned by LMRAG is sparse and structured, and the initial
graph computed by Eq.(15) is also scale invariant.

5 Experiments
5.1 Datasets
We use several widely used benchmark datasets JAFFE1 , C-
MU PIE [Sim et al., 2003], UMIST2, YALE, YALE-B3, Corel
[Chen et al., 2011] and COIL-204 to evaluate the proposed
LMRAG in our experiments. We provide a brief description
of these datasets below.

JAFFE contains 213 images of 7 facial expressions posed by
10 Japanese female models. We used the frontal pose subset
(C27) of CMU PIE, in which the images were acquired under
variable illuminations and with different expressions. The
images in UMIST cover a wide range of poses from profile to
frontal views. YALE contains 15 individuals and each one has
11 grayscale images under variable illuminations. YALE-B is
an extended version of YALE. Corel has 2074 images, which
are represented by color, texture, and shape. COIL-20 is an
object dataset that the images were captured from varying
angles.

These datasets were first scaled to [0,1] by feature. We
cropped UMIST to the size of 56× 46. Except for Corel, PCA
is then conducted on them with 98% information reserved.
The detailed statistics can be seen in Table 1.

5.2 Comparison Algorithms
We compare LMRAG with five existing methods: semi-
supervised discriminant analysis (SDA) [Cai et al., 2007],
trace ratio based flexible SDA (TR-FSDA) [Huang et al.,
2012], stable semi-supervised discriminant learning (SSDL)

1http://www.kasrl.org/jaffe.html
2http://www.cs.nyu.edu/ roweis/data.html
3http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
4http://www.cs.columbia.edu/CAVE/software/softlib/coil-

20.php
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Figure 1: Illustrations of the KNN graph, the initial graph and the
adaptive graph on JAFFE. The neighbor number k is 5 in (a)(b)(c)
and increases to 10 in (d)(e)(f). The data points are reorganized such
that the samples with the same label are placed continuously.

[Gao et al., 2015], FME [Nie et al., 2010] and LapRLS/L
[Sindhwani et al., 2005b].

SDA is a representative method that imposes the graph
Laplacian regularization into the objective function of linear
discriminant analysis (LDA) [Belhumeur et al., 1997]. Based
on SDA and FME, TR-FSDA was proposed as the first semi-
supervised dimensionality reduction method using trace ratio
criterion. SSDL considers both the similarity and diversity of
data to design the graph, which is then incorporated into the
objective function of LDA. We also evaluate the projection a-
bility of LapRLS/L to verify the effectiveness of incorporating
LapRLS/L and the adaptive neighbor learning.

Since ASSDR [Meng et al., 2015] is based on pairwise
constraints rather than directly uses the label information, to
be fair, we do not consider it as a comparison method.

5.3 Experimental Setting
The parameters α and β in LMRAG, SDA, TR-FSDA and
SSDL5, µ and γ in FME, γA and γI in LapRLS/L need to be
tuned, respectively. We searched their values in the range of
{10−6, 10−4, 10−2, 100, 102, 104, 106}. For fair comparison,
the reduced dimensionality was fixed as c in SDA, TR-FSDA
and SSDL. We randomly chose 40% samples per class as the
training data, and used the remaining 60% as the test data.
Among the training data, we randomly selected p = {1, 2, 3}
samples per class as the labeled data, and used the remaining
as the unlabeled data.

To evaluate the projection ability, the nearest neighbor clas-
sifier was performed on the projected data for final classifi-
cation. We uniformly set the neighbor number k to 5 and
chose the band width σ of Gaussian kernel in a self-tuning
way [Chen et al., 2011] while evaluating the classification
performance. We report the best mean accuracy and standard
deviation (std) over 20 random splits on each dataset.

5We applied the Tikhonov regularization to handle the singular
problem, thus an additional parameter β is introduced to SSDL.
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Figure 2: The effect of parameters α and β to accuracy (Acc). U
denotes the unlabeled training data and T means the test data.

5.4 Experimental Results
In Figure 1, we tested on JAFFE to give intuitive and practi-
cal illustrations of the initial graphs and the adaptive graphs
learned by LMRAG with the different neighbor number k. For
comparison, the traditional KNN graphs were also illustrated.
As can be seen, there are many strong inter-class connections
in the KNN graph when k is just a small value 5, and the
situation becomes much worse as k increases to 10. We see
that the initial graphs of LMRAG are sparse and the sparsity
marginally changes with k increasing. With the good initial-
ization and structure constraint, the final adaptive graphs of
LMRAG are indeed sparse and structured.

Since parameter γ can be initialized adaptively, and in prac-
tice λ can be tuned by a dynamic strategy, we only studied
the effect of parameters α and β to the final classification
performance on three datasets Corel, CMU PIE and YALE-B.
The parameter p was set to 3 during the tests. Figure 2 dis-
plays the 3D mesh plots, from which we have the following
observations:

1. On each dataset, the performance on the unlabeled train-
ing data is basically consistent with the performance on
the test data.

2. Comparing to the performance on Corel and YALE-B, the
performance on CMU PIE is pretty robust to parameters
α and β in a wide range, perhaps because there are more
training data in CMU PIE to make up for the accuracy
loss caused by inappropriate parameter settting.

3. As parameter α goes up in a range, which means the
label fitness term plays a more and more important role
in Eq.(7), the performance on all datasets tends to become
better. This point is consistent with the first observation
from Table 2 listed below. The accuracy may drop when
α gets too large, since the model can not make the best
use of the unlabeld training data.

Table 2 shows the classification performance in the project-
ed space. Several observations can be made as follows:

1. As the number of labeled samples goes up, the perfor-
mance of all the methods tends to be better, which demon-
strates the usefulness of the labeled data.
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Table 2: Performance Comparison (% ± std)

Dataset Method 1 labeled sample 2 labeled sample 3 labeled sample
Unlabeled Test Unlabeled Test Unlabeled Test

Corel

SDA 25.44± 3.42 25.42± 2.81 34.86± 3.67 34.58± 2.71 39.61± 4.68 38.39± 1.43
TR-FSDA 25.44± 4.46 25.70± 2.97 33.83± 3.16 33.46± 3.27 38.07± 4.00 38.55± 3.56

SSDL 26.75± 1.93 27.20± 2.84 34.89± 2.55 34.08± 2.26 38.32± 1.79 37.62± 2.74
FME 23.65± 3.13 24.44± 2.56 30.15± 3.16 31.83± 4.46 33.79± 1.06 32.60± 1.26

LapRLS/L 26.90± 1.60 26.60± 3.65 33.83± 2.34 34.31± 0.55 40.49± 1.42 39.94± 3.52
LMRAG 27.86± 3.49 27.73± 3.00 36.12± 2.56 36.46± 1.06 41.13± 1.28 41.27± 2.08

COIL-20

SDA 69.75± 3.46 68.42± 2.35 77.85± 2.87 76.70± 3.29 82.23± 2.50 81.79± 2.74
TR-FSDA 69.54± 2.36 68.53± 2.01 76.52± 3.11 76.69± 3.62 83.00± 1.18 82.77± 3.23

SSDL 65.29± 2.54 64.56± 2.53 75.11± 2.04 75.56± 2.08 79.69± 3.37 80.12± 1.53
FME 69.36± 4.12 69.35± 2.28 78.48± 1.95 76.98± 2.38 84.38± 1.74 84.35± 2.70

LapRLS/L 68.68± 4.29 66.38± 1.69 75.85± 1.29 75.98± 2.67 79.69± 1.33 79.30± 1.61
LMRAG 70.75± 1.80 70.12± 2.57 79.70± 2.73 77.84± 3.09 84.58± 1.86 85.00± 1.45

JAFFE

SDA 91.62± 1.76 88.06± 4.05 95.94± 2.84 97.36± 1.41 98.52± 1.55 99.22± 1.88
TR-FSDA 87.84± 3.02 86.05± 7.25 96.88± 3.66 96.28± 2.76 98.15± 3.21 99.22± 1.34

SSDL 83.24± 3.65 84.65± 3.97 94.69± 2.61 94.26± 2.72 98.89± 1.01 98.29± 1.77
FME 80.27± 8.23 82.48± 5.20 92.19± 5.18 90.23± 3.54 94.81± 4.22 94.57± 1.98

LapRLS/L 86.49± 6.12 86.51± 4.98 95.63± 5.11 94.57± 3.84 99.26± 2.69 98.29± 1.01
LMRAG 97.84± 2.80 98.45± 1.55 99.38± 2.09 98.45± 1.45 99.26± 1.66 99.69± 0.43

CMU PIE

SDA 31.53± 3.71 32.29± 1.68 68.40± 2.31 68.38± 1.78 77.47± 2.32 77.57± 2.63
TR-FSDA 18.98± 0.92 22.56± 1.37 67.55± 2.85 67.51± 1.35 79.27± 1.79 78.13± 1.30

SSDL 53.78± 1.98 53.17± 2.35 70.28± 2.83 70.69± 2.10 77.49± 1.14 78.14± 1.11
FME 53.49± 1.47 52.26± 1.24 69.92± 2.17 69.06± 1.36 78.06± 2.39 77.19± 1.92

LapRLS/L 53.31± 2.19 52.80± 2.68 69.15± 2.09 68.63± 1.77 77.35± 2.33 76.57± 2.20
LMRAG 61.30± 2.29 61.29± 1.08 72.61± 2.50 72.61± 2.71 82.42± 1.06 81.93± 1.15

UMIST

SDA 50.67± 5.17 47.54± 2.80 77.68± 4.20 77.10± 4.01 85.06± 5.01 86.03± 2.44
TR-FSDA 47.81± 4.50 50.78± 6.00 77.37± 6.15 76.93± 4.68 87.47± 4.42 87.62± 3.36

SSDL 48.57± 2.65 48.93± 2.55 79.16± 3.85 78.03± 3.96 84.71± 4.01 84.93± 1.93
FME 48.57± 3.70 48.00± 3.61 76.00± 4.69 74.06± 4.96 83.41± 5.42 82.42± 2.76

LapRLS/L 48.29± 4.44 46.32± 4.68 66.21± 1.55 67.88± 4.21 78.71± 3.56 75.54± 4.28
LMRAG 58.38± 3.39 57.33± 3.86 80.84± 2.70 79.30± 2.29 86.47± 5.03 88.87± 3.37

YALE-B

SDA 21.47± 2.24 22.87± 2.49 49.51± 1.32 48.36± 2.01 58.31± 2.40 59.35± 1.94
TR-FSDA 13.70± 2.03 16.27± 2.43 45.52± 2.31 45.49± 2.49 57.29± 1.77 58.09± 2.26

SSDL 29.81± 0.98 29.87± 1.72 47.07± 2.43 47.47± 2.82 59.54± 1.14 57.66± 2.36
FME 31.23± 1.62 32.87± 1.74 49.48± 1.37 49.79± 3.23 58.65± 1.11 59.77± 2.19

LapRLS/L 32.85± 2.79 33.97± 2.09 49.07± 3.54 49.05± 3.55 60.02± 3.86 58.73± 3.51
LMRAG 46.17± 3.65 44.86± 3.45 57.41± 3.13 57.14± 3.16 61.76± 1.89 62.84± 2.24

YALE

SDA 43.11± 7.47 40.38± 4.24 54.00± 5.48 56.95± 2.17 68.00± 7.30 68.76± 2.97
TR-FSDA 43.56± 7.37 40.95± 5.95 60.67± 6.41 58.29± 5.28 66.67± 8.16 67.62± 4.40

SSDL 42.22± 7.03 41.14± 6.58 56.00± 7.01 57.71± 5.83 72.00± 9.05 68.00± 5.35
FME 40.89± 5.31 37.71± 4.88 49.33± 7.23 53.71± 5.11 62.67± 5.58 58.67± 3.73

LapRLS/L 38.67± 4.33 39.05± 4.86 58.67± 7.67 56.95± 4.54 74.67± 7.60 64.57± 5.97
LMRAG 45.78± 5.75 44.95± 4.01 66.67± 4.35 61.33± 4.38 76.00± 5.58 69.90± 3.96

2. With respect to the mean accuracy, LMRAG outperforms
the other five methods in 40 out of 42 cases, showing the
effectiveness of learning an adaptive graph.

3. On four face datasets, when p equals to 1, the perfor-
mance of LMRAG has a great improvement over oth-
ers. Specifically, for unlabeled training data, LMRAG
exceeds the second best results 6.22%, 7.52%, 7.71%
and 13.32% on JAFFE, CMU PIE, UMIST and YALE-B,
respectively. For test data, LMRAG exceeds 10.39%,
8.12%, 6.55% and 10.89%, respectively.

4. The superior of LMRAG over LapRLS/L demonstrates
the effectiveness of incorporating the adaptive neighbor
learning into the objective function of LapRLS/L.

6 Conclusion
In this paper, we have proposed a novel approach denoted
by LMRAG which incorporates the graph construction into
the semi-supervised dimensionality reduction. The projection
matrix and the optimal graph for the specific task are then both
obtained. The proposed LMRAG is meaningful as an effective
extension and supplement of the existing graph optimized
dimensionality reduction methods. Extensive experiments
have demonstrated the superiority of LMRAG, comparing to
other state-of-the-art methods.
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