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Abstract

More and more multi-view data which can cap-
ture rich information from heterogeneous features
are widely used in real world applications. How
to integrate different types of features, and how to
learn low dimensional and discriminative informa-
tion from high dimensional data are two main chal-
lenges. To address these challenges, this paper pro-
poses a novel multi-view feature learning frame-
work, which is regularized by discriminative infor-
mation and obtains a feature learning model which
contains multiple discriminative feature weighting
matrices for different views, and then yields mul-
tiple low dimensional features used for subsequen-
t multi-view clustering. To optimize the formula-
ble objective function, we transform the proposed
framework into a trace optimization problem which
obtains the global solution in a closed form. Ex-
perimental evaluations on four widely used datasets
and comparisons with a number of state-of-the-art
multi-view clustering algorithms demonstrate the
superiority of the proposed work.

1 Introduction
Nowadays, with the rapid development of information tech-
nology, a large number of data can be described by differ-
ent kinds of features. These features usually are generated
by various feature extraction ways. Taking the image data
as an example, many heterogeneous visual features are wide-
ly used, which include SIFT [Lowe, 2004], HOG [Dalal and
Triggs, 2005], LBP [Ojala et al., 2002], GIST [Oliva and Tor-
ralba, 2001], CMT [Yu et al., 2002] and CENT [Wu and Re-
hg, 2008]. They describe the rich content of image data from
different viewpoints and capture their corresponding certain
properties.

For processing such data, there are two challenges. The
first is how to integrate different types of features effectively,
which certainly can lead to more accurate and robust perfor-
mance than by only using each individual type of features.
The second is how to reduce dimensions of high dimensional
heterogeneous features efficiently, which may lead to heavy
complexity and curse of dimensionality.

A number of earlier efforts have been devoted to address
these challenges. Focusing on the first challenge, many
multi-view methods have been developed [Eaton et al., 2010;
Kumar et al., 2011; Cai et al., 2011; Jiang et al., 2012;
Cai et al., 2013a; 2013b; Wang et al., 2014] based on vari-
ous techniques, such as Co-EM (which iteratively estimates
the propagation with each view and transfers the constraints
across views), Co-Regularized (which makes the clustering
hypotheses on different views agree with each other), Mini-
max (which achieves multi-feature fusion via minimizing the
maximum weighted disagreement costs) and so on. Although
they can achieve heterogeneous features integration in a com-
mon space, there still exist some drawbacks, such as the lack
of dimensionality reduction, which may result in the problem-
s of heavy computational complexity, curse of dimensionality
or over-fitting when dealing with high dimensional and com-
plex data.

To address the second challenge, much progress based on
multi-view setting has been made in recent years [Chaud-
huri et al., 2009; Han et al., 2012; Tang et al., 2013;
Wang et al., 2013; Zhao et al., 2014; Cao et al., 2015;
Xu et al., 2016]. These algorithms adopt a variety of meth-
ods to reduce data dimensionality, like CCA (which maxi-
mizes the total correlations between any two views to ob-
tain one common space), Co-training (which exploits label
learned automatically in one view to learn discriminative sub-
spaces in another), HSIC (as a diversity term to explore the
complementary of multi-view representation), LDA (which
maximizes the between-class scatter matrix and minimizes
the within-class scatter matrix) and so on. Although these al-
gorithms can learn low dimensional features to reduce heavy
computational complexity and curse of dimensionality, their
performance for subsequent multi-view tasks (i.e., cluster-
ing/classification) is still not satisfactory.

Most previous works perform the multi-view feature learn-
ing in the manner of unsupervised learning, thus the discrimi-
nant information, e.g., label information, is not explicitly tak-
en into account. Actually, nowadays in many real applica-
tions, the label information of the data is available already on
the web or can be acquired from sensors easily. For example,
image data and their label information, which are publicly
available and can be downloaded them from ImageNet 1, CV

1http://image-net.org/
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Datasets 2 and UCI Machine Learning Repository3. Thus,
a promising idea is to develop supervised feature learning
methods which may infer more discriminative information
with the help of data labels.

Recently, two works of [Kan et al., 2012] and [Arora
and Livescu, 2014] were proposed by utilizing labeled da-
ta. The former, Multi-view Discriminative Analysis [Kan et
al., 2012], forms a generalized Rayleigh quotient by combin-
ing the between-class and within-class variations. Through
jointly optimizing multiple transforms, it learns single uni-
fied discriminant common space for multiple views. Unfor-
tunately, original objective function of [Kan et al., 2012] in
the form of trace ratio does not have the closed form solu-
tion, thus, authors reformulate their framework into a more
tractable one: ratio trace. However, [Wang et al., 2007] point-
ed out that transforming trace ratio into the corresponding
ratio trace form is inexact, thus its feature learning model-
s may not achieve satisfactory performance for multi-view
tasks. The latter [Arora and Livescu, 2014] is mainly applied
to bottleneck features, which can be learned if the training set
is phonetically labeled. It includes a series of combinations
of LDA and CCA. However, this simple concatenation of L-
DA and CCA renders its framework to be more separate and
cannot tackle high dimensional multi-view data efficiently.

According to above mentioned analysis, considering that
the cost of obtaining labeled data is no longer expensive and
two challenges are not well addressed based on unsupervised
framework, we design a novel framework, called Multi-View
Feature Learning (MVFL). Concretely, the proposed MVFL
method combines the regression-like objective function with
discriminative regularization (utilizing training label infor-
mation) to formulate a unified learning framework, where
multiple view-specific projections (transformations) can be
obtained and each projection learns much stronger discrim-
inative features with very low dimensions for each view. The
learned model has a good performance on test data for doing
multi-view clustering.

The contributions of the proposed work can be summarized
as follows. Firstly, as a feature learning framework, the pro-
posed method simultaneously preserves the certain property
of each view in its corresponding feature space and considers
the view-wise consistency of multiple views via the discrimi-
native regularization. The learned model realizes the integra-
tion of heterogeneous features and makes them complemen-
t with each other, which can generate a good performance
in subsequent multi-view clustering. Secondly, the proposed
method obtains multiple feature learning projections (trans-
formations) for different views regularized by label informa-
tion on training data, which has stronger discriminative abili-
ty to capture efficient and very low dimensional features, and
then does well on test data. Thirdly, the proposed method can
be rewritten as a trace optimization problem, which makes the
original problem be solved in a closed form by using eigen-
value decomposition. Finally, experimental evaluations on
four widely used datasets and comparisons with a number of
state-of-the-art multi-view clustering algorithms demonstrate

2http://www.cvpapers.com/datasets.html
3https://archive.ics.uci.edu/ml/datasets.html

the superiority of the proposed work.

2 Related Work
In the setting of clustering, given n data samples {xi}ni=1,
there is data matrix X = [x1,· · ·,xn] ∈ Rd×n, where each
column xi∈Rd is the input vector including all features. For
a matrix W=[wij ], we denote its i-th row as wi and its j-th
column as wj .

Previous work [Nie et al., 2009] showed the following
regression-like clustering objective, which is equivalent to the
Discriminative K-Means [Ye et al., 2008], obtains better re-
sults than K-Means or spectral clustering methods:

min
W,F
‖XTW+1nb

T−F‖2F

s.t.FTF = I
(1)

where b∈Rc×1 is the intercept vector, 1n is n × 1 constant
vector of all 1’s, F=[f1,· · ·, fn]T ∈Rn×c is the cluster indica-
tor matrix, and fi ∈Rc is the cluster indicator vector for data
point xi with fij indicating how likely xi belongs to the j-th
cluster.

Recently, the work [Wang et al., 2013] pointed out that
although the traditional K-Means clustering or spectral clus-
tering objectives can be extended for multi-view clustering,
many multi-view clustering objectives still only learn one
weight for all features from each sample. Thus, [Wang et al.,
2013] designed proper regularizers and learned the weight for
each feature to capture the feature-wise importance. Its objec-
tive function is as follows:

min
W,F
‖XTW+1nb

T−F‖2F +γ1‖W‖G1
+γ2‖W‖2,1

s.t.FTF = I
(2)

where xi ∈Rd is the input vector including all features from
a total of K views and each view j has dj features such that
d=
∑k

j=1 dj . Upon solution, [Wang et al., 2013] learned the
parameter matrix W=[w1

1,· · ·,w1
c ;· · ·,· · ·,· · ·;wk

1 ,· · ·,wk
c ]∈

Rd×c, where wq
p ∈ Rdq indicated the weights of all fea-

tures in the q-th view with respect to the p-th. ‖W‖G1 and
‖W‖2,1 were defined as the group `1-norm and the `2,1-
norm, respectively, where ‖W‖G1=

∑c
i=1

∑k
j=1 ‖w

j
i ‖2 and

‖W‖2,1=
∑d

j=1 ‖wj‖.
Although this recent work involves the interrelations a-

mong multi-view features, concatenating heterogeneous fea-
tures (multiple views) directly ignores the view-specific in-
formation which has the certain property and denotes the
specific physical significance and statistical property of each
view. Thus it may lose their corresponding certain proper-
ties. Besides, this work is unsupervised, which may be lack of
discriminative ability because of ignoring label information.
Furthermore, the solution of problem (2) is not a closed for-
m by iterative method and easily runs into the local extreme.
In order to address above drawbacks, this paper proposes a
novel multi-view framework to learn multiple feature weight-
ing matrices (feature learning models) in a supervised way,
which not only maintains the relative independence on het-
erogeneous view-specific properties but also keeps the consis-
tency of multiple views through discriminative information.
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3 The Proposed Method
In this section, we propose a novel supervised multi-view
learning framework, which can be obtained by exploring
some heterogeneous training data, and then use this frame-
work to learn multiple discriminative and low dimensional
features by testing data, and further to improve multi-view
clustering.

3.1 Formulation
Inspired by problem (1), we construct a multi-view frame-
work from a new perspective, which considers the hetero-
geneous features from both view-wise and individual view-
points. Thus, our framework can be formulated as follows:

min
W,b,
C,Z

K∑
i=1

‖XT
i Wi+1nb

T
i −Zi‖2F +γ‖[Z1,· · ·,ZK ]−YC‖2F

s.t.ZT
i Zi = I,ZT

i 1 = 0, i=1, · · · ,K
(3)

where the index i of variable means the i-th view and there are
K views. Xi ∈ Rdi×n is the data matrix, Wi ∈ Rdi×mi trans-
forms original features from di-dimension to mi-dimension
in each view, bi ∈ Rmi×1 is the intercept vector, Zi ∈ Rn×mi

denotes the learned features of each view, C is defined as the
cluster centroid in multiple discriminative feature spaces, and
Y ∈ Rn×c is the cluster indicator matrix of all views. Be-
cause problem (3) is a supervised model, Y essentially is the
label matrix, where each row of Y denotes the label vector of
each sample and its c-th element is 1 and other elements are
0 if the sample belongs to the c-th class.

In this proposed model, we can achieve two goals. On one
hand, for the residual term, we use current learned features
Zi in the i-th discriminative subspace to approximate the
regression-like objective XT

i Wi+1nb
T
i . This maintains their

own specific properties of different views. On the other hand,
for the regularized term, we utilize the label information Y to
keep the consistency of clustering results of different views.
This regularization essentially is like a K-Means objective but
the labeling knowledge is available here, which makes multi-
ple feature weighting matrices (models) more discriminative
(calculated by multiple discriminative features [Z1,· · ·,ZK ] of
training data), and can improve the performance of subse-
quent multi-view clustering.

3.2 Optimization
The problem (3) comprises two constraints for Zi, which re-
quires Zi to be orthogonal and requires the sum of each col-
umn of Zi to be zero. Thus, directly solving problem (3) is
difficult and we need a series of mathematical transformations
as follows.

Theorem 1. Solving problem (3) is equivalent to solving
the following objective function:

min
Z

K∑
i=1

Tr(ZT
i MiZi)+γTr

(
[Z1,· · ·,ZK ]TN[Z1,· · ·,ZK ]

)
s.t.ZT

i Zi = I,ZT
i 1 = 0, i=1, · · · ,K

(4)

where H = I− 1
n1n1

T
n is the centering matrix and Mi =

HXT
i (XiHXT

i )
−1XiH−H, and N=I−Y(YTY)−1YT are

Laplacian-like matrices.

Proof. Using the properties of matrix trace, the objective of
problem (3) can be rewritten as follows:

K∑
i=1

[
Tr(WT

i XiX
T
i Wi)+2Tr(bT

i W
T
i Xi1n)

−2Tr(WT
i XiZi)−2Tr(bT

i Z
T
i 1n)+Tr(bi1

T
n1nb

T
i )
]

+γ
[
Tr
(
[Z1,· · ·,ZK ]T[Z1,· · ·,ZK ]

)
−2Tr

(
CTYT [Z1,· · ·,ZK ]

)
+Tr

(
CTYTYC

)]
(5)

Due to solving the minimum, we get the derivative of Eq.(5)
with respect to bi and C, respectively. Ignoring irrelevant
terms and using the rules of matrix derivative, there is:{

WT
i Xi1n − ZT

i 1n + bi1n1
T
n = 0

YT [Z1,· · ·,ZK ]−YTYC = 0
(6)

⇔
{
bi =

1
n (−W

T
i Xi1n + ZT

i 1n)

C = (YTY)−1YT [Z1,· · ·,ZK ]
(7)

where C is the cluster centroid of multiple discriminative fea-
ture spaces. Through Eq.(7), the objective of problem (3) be-
comes:
K∑
i=1

‖H(XT
i Wi−Zi)‖2F +γTr

(
[Z1,· · ·,ZK ]TN[Z1,· · ·,ZK ]

)
(8)

where H= I− 1
n1n1

T
n is the centering matrix and N= I−

Y(YTY)−1YT are Laplacian-like matrices.
Along the similar way, taking derivative of Eq.(8) with re-

spect to Wi, we have:

Wi = (XiHXT
i )

−1XiHZi (9)

Substituting Wi into Eq.(8), we can achieve problem (4) and
complete the proof.

In the analysis of transforming problem (3) to problem (4),
it can be seen that Wi can be solved completely depending
on Zi and H. Thus, solving Wi in problem (3) can be trans-
formed into solving Zi in problem (4) which has only one
variable Zi. In addition, problem (4) contains not only a data-
driven term of Zi but also a regularization term of Zi. So, the
proposed method will not lead to an over-fitting result and its
solution can be calculated in a closed form by eigen decom-
position to avoid running into the local extreme.

Furthermore, according to the optimization theory, it is
known that min[A+B] equals to min[A]+min[B]. Thus,
problem (4) can be decoupled to the following problem:

min
Zi

Tr
(
ZT

i (Mi + γN)Zi

)
s.t.ZT

i Zi = I,ZT
i 1 = 0

(10)
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Algorithm 1 : The algorithm for solving MVFL.

1: Input: Training set
2: Multi-view data X= {Xi}Ki=1, Xi ∈Rdi×n, label infor-

mation Y ∈Rn×c, the number of clusters c, the reduced
dimension mk and parameterλ.

3: for i← 1,K do
4: Learn features Zi ∈Rn×mi of each view by solving

problem (11).
5: Calculate Wi,bi and C using Eq.(9) and Eq.(7).
6: end for
7: Output: Trained feature learning model {Wi,bi}Ki=1.
8: Use trained model on testing set X̃= {X̃i}Ki=1, and ob-

tain testing features Z̃={Z̃i}Ki=1.
9: Perform multi-view K-Means clustering on Z̃ to eval-

uate the accuracy of trained feature learning model
{Wi,bi}Ki=1.

It can be seen that the problem (10) is equivalent to the fol-
lowing problem for a large enough value of λ:

min
Zi

Tr
(
ZT

i (Mi + γN)Zi

)
+ λTr(ZT

i 11
TZi)

s.t.ZT
i Zi = I

(11)

When parameter λ is large enough, for every i, the optimal
solution Zi to the problem (11) will make the second term
Tr(ZT

i 11
TZi) be zero, and thus the constraint ZT

i 1 = 0 in
problem (10) could be satisfied.

Compared with the original problem (10), the problem (11)
is much easier to be solved. For a large enough value of λ, the
optimal solution Zi of problem (11) is formed by mi eigen-
vectors of Mi+γN+λ11T corresponding to mi smallest
eigenvalues. Besides, because of (Mi+γN)1 = 0, mi s-
mallest eigenvectors of Mi+γN+λ11T from the first to the
mi-th are actually mi smallest eigenvectors of Mi+γN from
the second to the mi+1-th.

Thus, we further calculate Wi, bi and C according to E-
q.(9) and Eq.(7), respectively, which makes us obtain K fea-
ture learning models for K views.

To sum up, the whole procedure of our work can be de-
scribed as follows. Given the training data {Xi}Ki=1 and it-
s corresponding label Y, we can obtain the feature learning
model for K views, i.e., feature weighting matrix {Wi}Ki=1

and intercept vector {bi}Ki=1. Such model will be evaluat-
ed on testing data. That is to say, we use the trained model
to learn some low dimensional features based on testing data
and utilize the multi-view K-Means clustering to verify the
effectiveness of the trained model. Concretely, we learn new
features {Z̃i}Ki=1 on testing data {X̃i}Ki=1 using the model
{Wi,bi}Ki=1, and then cluster these features {Z̃i}Ki=1 by per-
forming multi-view K-Means clustering according to [Xu et
al., 2016]. We describe this process in Algorithm 1.

3.3 Convergence Analysis
As mentioned above, it is obvious that problem (3) can be
transformed into problem (4) which is further equivalent to
problem (11) for a large λ, which makes the original problem

Table 1: Descriptions of testing datasets.

View MSRCv1 Caltech101-7 Handwritten Yale

1 CENT(1302) CENT(1302) FOU(76) v1(4096)
2 CMT(48) CMT(48) FAC(216) v2(3304)
3 GIST(512) GIST(512) KAR(64) v3(6750)
4 HOG(100) HOG(100) PIX(240) -
5 LBP(256) LBP(256) ZER(47) -
6 SIFT(210) SIFT(441) MOR(6) -

Images 210 441 2000 165
Classes 7 7 10 15

be solved by a trace optimization problem and obtains the
global optimal solution in a closed form.

4 Experiments
In this section, we evaluate the proposed framework through
clustering task on four widely used datasets in terms of four s-
tandard clustering evaluation metrics, namely Accuracy (AC-
C) [Cai et al., 2005], Normalized Mutual Information (NMI)
[Cai et al., 2005], Jaccard Index (Jaccard) [Varshavsky et al.,
2005] and Purity [Varshavsky et al., 2005].

4.1 Datasets
In our experiments, by following [Cai et al., 2013b; Cao et al.,
2015; Xu et al., 2016], four datasets including MSRCv1 [Lee
and Grauman, 2009; Cai et al., 2013b], Caltech101-7 [Dueck
and Frey, 2007], Handwritten [Asuncion and Newman, 2007]
and Yale [Cao et al., 2015] datasets are adopted for evalu-
ations. Tabel 1 summarizes the information of each dataset
including the number of samples and classes, heterogeneous
features and the dimensionality of each type of feature in the
parenthese. Besides, we need to normalize and center all data
values before experiments.

4.2 Experiment Setup
Following [Cai et al., 2013b; Xu et al., 2016], firstly, we
applied the proposed MVFL (Multi-view Feature Learning)
on each type of features to form a baseline SVFL (Single-
view Feature Learning) to demonstrate that the multi-view
method MVFL has advantages of multi-view with respect
to the single-view method SFL. Next, we compared MVFL
with AVFL (All-view Feature Learning), where AVFL con-
catenates all heterogeneous features directly as one view and
performs the proposed feature learning algorithm. However,
AVFL dose not consider specific properties of different views
and relationships between them. Thus, AVFL is not as good
as the proposed MVFL method.

Furthermore, we compared MVFL method with some
state-of-the-art multi-view clustering methods: NMVKM
(Naive Multi-view K-Means), RMVKM (Robust Multi-view
K-Means) [Cai et al., 2013b] and DEKM (Discriminative-
ly Embedded K-Means) [Xu et al., 2016]. Besides, we
compared our method with MvDA (Multi-view Discriminant
Analysis) [Kan et al., 2012] which projects multi-view data
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Table 2: Comparison of MVFL and SVFL on MSRCv1 and Caltech101-7 datasets.

Method MSRCv1 Caltech101-7
ACC NMI Jaccard Purity ACC NMI Jaccard Purity

SVFL(view1) 0.7905 0.6934 0.4930 0.6479 0.8778 0.7893 0.6893 0.8181
SVFL(view2) 0.6381 0.5343 0.3010 0.4144 0.4977 0.3564 0.2077 0.3220
SVFL(view3) 0.8571 0.7581 0.5789 0.7139 0.8100 0.6497 0.5432 0.7179
SVFL(view4) 0.3429 0.2059 0.1148 0.1807 0.6742 0.4708 0.3181 0.4443
SVFL(view5) 0.6381 0.4864 0.2761 0.4142 0.5928 0.4432 0.3307 0.4283
SVFL(view6) 0.5048 0.3673 0.1979 0.2941 0.7240 0.5853 0.4639 0.6647

MVFL 0.9619 0.9274 0.8541 0.9188 0.9367 0.8747 0.8359 0.9143

Table 3: Comparison of MVFL and SVFL on Handwritten and Yale datasets.

Method Handwritten Yale
ACC NMI Jaccard Purity ACC NMI Jaccard Purity

SVFL(view1) 0.7110 0.6219 0.4013 0.5656 0.7667 0.8343 0.4844 0.6200
SVFL(view2) 0.9750 0.9434 0.9054 0.9500 0.9000 0.8948 0.6307 0.7449
SVFL(view3) 0.9200 0.8444 0.7374 0.8473 0.9111 0.9168 0.7041 0.8174
SVFL(view4) 0.9095 0.8185 0.6966 0.8196 - - - -
SVFL(view5) 0.7850 0.7159 0.5309 0.6797 - - - -
SVFL(view6) 0.5600 0.6370 0.3237 0.4001 - - - -

MVFL 0.9870 0.9704 0.9494 0.9738 0.9667 0.9654 0.8607 0.9170

Table 4: Clustering results of compared methods on MSRCv1 and Caltech101-7 datasets.

Method MSRCv1 Caltech101-7
ACC NMI Jaccard Purity ACC NMI Jaccard Purity

NMVKM 0.7810 0.7122 0.4356 0.5737 0.7143 0.7337 0.5575 0.7195
RMVKM 0.9048 0.8463 0.6301 0.7412 0.7846 0.7145 0.6065 0.7516
DEKM 0.9238 0.8649 0.7477 0.8471 0.8503 0.8231 0.7553 0.8624
MvDA 0.5524 0.4559 0.2656 0.3869 0.7376 0.5548 0.4697 0.6479
AVFL 0.9238 0.8787 0.7432 0.8470 0.8552 0.8135 0.7641 0.8773

gMVFL 0.9429 0.8917 0.7934 0.8812 0.8733 0.8285 0.7462 0.8471
MVFL 0.9619 0.9274 0.8541 0.9188 0.9367 0.8747 0.8359 0.9143

Table 5: Clustering results of compared methods on Handwritten and Yale datasets.

Method Handwritten Yale
ACC NMI Jaccard Purity ACC NMI Jaccard Purity

NMVKM 0.7810 0.7661 0.4927 0.6290 0.4606 0.4990 0.1659 0.2408
RMVKM 0.9125 0.8539 0.6020 0.7014 0.6000 0.6377 0.2689 0.3729
DEKM 0.9530 0.9080 0.8333 0.9069 0.5576 0.6107 0.2500 0.3719
MvDA 0.9790 0.9536 0.9199 0.9579 0.8889 0.8946 0.6439 0.7716
AVFL 0.9710 0.9368 0.8913 0.9420 0.9111 0.9080 0.6752 0.7906

gMVFL 0.9520 0.9089 0.8289 0.9033 0.8111 0.8510 0.5294 0.6667
MVFL 0.9870 0.9704 0.9494 0.9738 0.9667 0.9654 0.8607 0.9170

into a discriminative common space by using multiple trans-
formations and performs multi-view K-Means clustering on
this space.

Finally, we performed a simple version of the proposed
MVFL method, gMVFL (γ=0), to evaluate the effectiveness

of its regularized term in multi-view framework. Obviously,
we only use the first term of problem (3), which is equiva-
lent to linear regression to learn features, and then performed
multi-view K-Means clustering on these learned features.
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Figure 1: Dimensions of different views on (a) MSRCv1, (b) Caltech101-7, (c) Handwritten and (d) Yale datasets.

4.3 Experiment Results
The comparison results measured by ACC, NMI, Jaccard and
Purity are reported in Tables 2 to 5, respectively. For these
metrics, the higher value indicates better clustering quality.
Each metric penalizes or favors different properties in the
clustering, and hence we report results on these diverse mea-
sures to perform a comprehensive evaluation.

The experimental results, in Tables 2 and 3, show that the
proposed method (MVFL) performs generally better than that
on each view (SVFL), which validates the superiority of het-
erogeneous features integration. For example, for MSRCv1
and Caltech101-7 datasets shown in Table 2, the results of
SVFL method (for each view) are lower than that of MVFL
method. Because in multi-view setting, each view of the data
may contain some knowledge that other views do not have.
It is straightforward to demonstrate the superiority of multi-
view.

In Tables 4 and 5, MVFL method on multiple views out-
performs AVFL on the concatenation of all views. Taking
Handwritten dataset as an example, the performance of AVFL
is not as good as that of MVFL. Because MVFL not only p-
reserves the certain property of each view but also consider-
s the intercoordinations of different views while the simple
features concatenation does not have such capability. Some-
times, AVFL is unable to appropriately cope with multiple
views, and may even degrade the performance of multi-view
clustering compared with some single views.

Moreover, compared with other four multi-view method-
s (NMVKM, RMVKM, DEKM and MvDA), the proposed
MVFL method can achieve the best performance. This is
consistent with our theoretical analysis in the above sections.
Concretely, compared with NMVKM and RMVKM, MVFL
method obtains the low dimensional and discriminative learn-
ing model by feature weighting matrices (projections), such
as the results of Handwritten dataset in Table 5. In addition,
although DEKM also can achieve feature projections using
dimensionality reduction, without help of training data label
information, the learned features of DEKM are lack of dis-
criminative ability. Besides, compared with MvDA which is a
supervised method, MVFL obtains better results on different
datasets. It is because although MvDA utilizes the label infor-
mation in training stage, its original objective function dose
not have the closed form and its approximate objective func-

tion is inexact, which affects the performance of MvDA to
some extent. In contract, MVFL can be solved analytically in
a closed form. Finally, we implement a simple version of the
proposed method, i.e., gMVFL, which only has a regression-
like objective function. Actually, gMVFL is actually an unsu-
pervised method and its performance is degenerated without
the discriminative regularization.

4.4 Parameters Setup
For comparison methods, we performed them according to
their corresponding original works and selected their optimal
parameters by using grid search. For the proposed method,
we set the regularized parameter γ = 1 in (3), and tuned the
dimension parameters {mi}Ki=1(mi < min(di, n)) heuristi-
cally by searching the grid with proper step-size. Besides, if
XiHXT

i is nearly singular, we can regularize it as XiHXT
i +

εIdi
by introducing a small perturbation ε(ε = 10−4). It

is demonstrated that if ε → 0, minimizing the perturbation
version is reduced to problem (3). Besides, we compared
total dimensions of different multi-view methods (NMVK-
M, RMVKM, DEKM, gMVFL, MvDA and MVFL) which
is shown in Figure 1. It is observed that the proposed MVFL
method only learns a few of discriminative features to achieve
satisfactory experimental results.

5 Conclusion
In this paper, we proposed a novel supervised multi-view
learning framework, which efficiently learns multiple dis-
criminative feature weighting matrices for different views
with the help of label information. In this framework,
the regression-like objective and discriminative regulariza-
tion were utilized to yield multiple feature learning models
with stronger discriminative abilities, and then learned low
dimensional features for subsequent processing. Besides, our
method can be transformed into a trace optimization problem,
which obtains the global solution in a closed form. Com-
parisons with existing state-of-the-art multi-view clustering
methods, our framework captured the efficient features and
achieved better performance in multi-view clustering tasks.
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