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Abstract
Label distribution learning (LDL) assumes labels
can be associated to an instance to some degree,
thus it can learn the relevance of a label to a par-
ticular instance. Although LDL has got success-
ful practical applications, one problem with exist-
ing LDL methods is that they are designed for da-
ta with complete supervised information, while in
reality, annotation information may be incomplete,
because assigning each label a real value to indicate
its association with a particular instance will result
in large cost in labor and time. In this paper, we will
solve LDL problem when given incomplete super-
vised information. We propose an objective based
on trace norm minimization to exploit the correla-
tion between labels. We develop a proximal gradi-
ent descend algorithm and an algorithm based on
alternating direction method of multipliers. Exper-
iments validate the effectiveness of our proposal.

1 Introduction
Classical machine learning tasks assume that one label is ei-
ther associated with an instance or not. However, in some
real applications, labels may be associated with an instance
to some degree, thus each instance is annotated by soft labels
rather than a single label or a set of labels. Label Distribution
Learning (LDL) [Geng, 2016], which learns a mapping from
a particular instance to a distribution across all the labels, can
assign the relevance of a label to a particular instance. In re-
cent years, LDL has been successfully used in facial age esti-
mation [Geng et al., 2013], action detection in videos [Geng
and Ling, 2017], facial expression recognition [Zhou et al.,
2015], crowd opinion prediction [Geng and Hou, 2015] et al.

Despite the fact that LDL has been applied successfully in
recent years, one problem with existing LDL methods is that
they are designed for data with complete supervised informa-
tion. Nevertheless, in reality, annotation information may be
incomplete. In practice, annotations are often given by human
annotators, thus assigning each label a real value to indicate
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its association with a particular instance will result in a large
cost in labor and time, especially when there is a large number
of labels and instances. On the other hand, for some labels,
it may be difficult to give an accurate value to indicate how
they are related to a particular instance. All these phenomena
will result in training data with incomplete supervised infor-
mation, thus one question is put forward, that is, how to do
LDL with incomplete annotation (IncomLDL).

At first glance, it may be trivial to adapt existing LDL al-
gorithms to fit for the IncomLDL problem. Some of the LDL
algorithms are based on maximum entropy model [Geng et
al., 2010; 2013; Geng, 2016]. This type of algorithms can be
adapted by optimizing the sum of entropy of observed label-
s only. There are some other LDL algorithms transforming
the LDL problem into binary classification by sampling la-
bels according to their relevance degree [Geng, 2016]. They
can also be adapted to incomplete case by using the observed
supervised information as sampling weights. Even if these
algorithms can be adapted to solve the IncomLDL problem,
note that they treat each label separately, ignoring the fac-
t that LDL is used in scenarios when labels are interlaced
with each other [Geng and Ling, 2017]. Without considering
the correlation between labels, when facing the severe incom-
plete annotation, training instances for each single label will
be tremendously reduced, thus we need much more training
instances to learn a classifier as good as that learned from
complete data. Thus label correlations should be exploited
to reduce the effect of lacking training data in IncomLDL.
Moreover, although one advantage of LDL is that this learn-
ing paradigm can take label correlation into consideration by
assigning similar relevances to similar labels, however, when
annotations are missing, such similarities would also lost.
Without such similarity, we need find new ways to charac-
terize the label correlation in IncomLDL.

Multi-label learning (MLL) [Zhou and Zhang, 2017],
which assumes each instance is associated with multiple la-
bels, is highly related to LDL problem. However, there is
a fundamental difference between MLL and LDL. MLL as-
sumes one label is either related to an instance or not, while
in LDL, the relative importance of each label is used in de-
scribing the instances. Similar to LDL, MLL also faces the
incomplete annotation problem, and various algorithms are
proposed based on low-rank assumption [Xu et al., 2013],
instance-level smoothness [Wu et al., 2016], and label em-
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bedding [Bi and Kwok, 2014]. However, these algorithms are
required to give the hard 0/1 label for multi-label data, while
in LDL, the prediction is constrained to be within a proba-
bility simplex for a particular instance. Furthermore, adding
the probability simplex constraint to the non-smooth uncon-
strained incomplete MLL problem will result in difficulty in
optimizing, thus new optimization algorithms are need to be
exploited to solve the new problem.

In this paper, we will solve the IncomLDL problem by
considering the correlation between labels, which has nev-
er been considered by previous LDL algorithms. Consid-
ering labels are correlated and determined by a few factors,
we will assume the label distribution matrix is low-rank and
propose an optimization objective based on trace norm min-
imization [Cai et al., 2010]. Our optimization objective will
require the entries in the observed positions of the recovered
label distribution matrix to be close to those observed values,
under the constraint that the recovered label distribution for
every instance should form a probability simplex. By show-
ing that following the standard analysis of convex optimiza-
tion, it is non-trivial to get the optimum solution using the ac-
celerated proximal gradient descend technique [Tseng, 2008],
we will additionally develop an alternating direction method
of multipliers [Boyd et al., 2011] algorithm. Experiments on
15 real label distribution data sets with various missing per-
centages validate the effective of the proposed algorithms.

The paper is organized as follows. In Section 2 we will
briefly review related work. Our proposed two algorithms
IncomLDL-prox and IncomLDL-admm will be introduced in
Section 3. We will show experimental results in Section 4,
followed by conclusion in Section 5.

2 Related Work
Label distribution learning (LDL) [Geng, 2016] is first pro-
posed to solve the facial age estimation problem [Geng et al.,
2010; 2013] by noticing the fact that instances at neighbor-
ing ages are similar. In such problems, a distribution across
all ages is more desirable than a single age for a face. Later
on, [Geng, 2016] discovers that in some real applications the
distribution across all labels is more desirable than the associ-
ation of a single label to an instance. For example, in biology
experiments, the gene expression level across all time period
is more desirable than the expression level at a particular time
point [Geng, 2016]; in facial expression recognition, we can
hardly use a particular pure emotion to describe an expres-
sion, but a mixture of several basic emotions [Zhou et al.,
2015]. Additionally, for some applications, there is natural
uncertainty in annotation, thus the instance is annotated by
a distribution across labels rather than a single label or a set
of labels. One example is crowdsourcing data such as movie
ratings [Geng and Hou, 2015], in which different people may
have different attitudes, thus the crowd opinion will naturally
form a distribution across labels.

Various algorithms have been proposed for LDL, divided
into three groups. One group is based on optimizing the sum
of log-likelihood of all training labels and instances. Two
representative algorithms, IIS-LDL [Geng et al., 2013] and
BFGS-LDL [Geng, 2016] belong to this group, using im-

proved iterative scaling [Pietra et al., 1997] and BFGS [No-
cedal and Wright, 2006] respectively to do optimization. An-
other group of algorithms is based on problem transforma-
tion [Geng, 2016], transforming LDL into binary classifica-
tion problem by sampling from the original LDL data using
the description degree of that label as sampling weight. After
sampling, base learners such as SVM or Naive Bayes are used
to do binary classification, forming algorithms PT-SVM and
PT-Bayes respectively. The final group of LDL algorithms
are those based on algorithm adaptation. Existing algorithms
such as kNN [Geng, 2016] and boosting [Xing et al., 2016]
are adapted to fit the LDL schema.

When facing the training data with incomplete annotation,
some of these algorithms can be adapted to deal with it. How-
ever, these algorithms treat each label separately, ignoring the
fact that LDL is used in scenarios when labels are interlaced
with each other [Geng and Ling, 2017]. Without considering
the correlation between labels, when facing the incomplete
annotation, training data for a particular label will be dramat-
ically reduced, thus we will require much more training data
to give a satisfactory classifier. Moreover, although LDL can
naturally exploit label correlation [Geng, 2016] by assigning
similar description degrees to similar labels, we want to state
that when there are missing data in the label distribution ma-
trix (for example up to 90% in our experiments), most of the
annotation will be missing. It is hard for LDL to acquire the
similarity information from the incomplete annotations, thus
the classical way how LDL exploit label correlation cannot
be used, we need to find new ways to characterize label cor-
relation for IncomLDL.

Multi-label learning (MLL) [Zhou and Zhang, 2017] as-
sumes each instance is associated with a set of labels. La-
bel distribution learning is a natural extension of multi-label
learning, by extending the crisp 0/1 label belongingness to
soft probabilistic label belongingness. There are abundant
studies about multi-label learning with incomplete label as-
signments [Sun et al., 2010; Yang et al., 2013; Bi and Kwok,
2014; Wu et al., 2016]. Trace norm minimization [Gold-
berg et al., 2010; Zhao and Guo, 2015; Xu et al., 2013;
Yu et al., 2014] has been popularly used, for that it equals
to the low-rank assumption on label matrix, which implicitly
exploits the label correlation. These approaches are not di-
rectly applicable to LDL, because rather than crisp 0/1 label
outputs, the LDL outputs are constrained to follow a proba-
bility simplex.

To summarize, we need to propose new LDL algorithm-
s which can deal with incomplete supervised information.
By considering the label correlation, our proposed algorithms
should give a better result than existing LDL algorithms.

3 The IncomLDL Methods
3.1 Formalization
We will give a more formal definition of LDL. LDL assigns a
value dyx called description degree to instance x for a particu-
lar label y, which indicates the relevance of the label y to the
instance x. In LDL, all dyx-s for a particular instance form a
probability simplex. Note that dyx is not the probability that y
correctly labels x, but the proportion that y accounts for in a
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full description of x [Geng, 2016]. All labels with non-zero
dyx-s are actually the correct labels to describe the instance,
where their relative importance is measured by dyx.

Let X ∈ Rn×d be the feature matrix, where n is the num-
ber of instances and d is the number of features, thus the ith
row of X will be instance xi. D ∈ Rn×m is the label distribu-
tion matrix, where m is the number of labels and Dij is dyjxi .
Since the supervised information for one instance should fol-
low the probability simplex, we have

∑m
j=1Dij = 1 ∀i ∈ [n]

and Dij ≥ 0 ∀(i, j) ∈ [n]× [m].
When we are dealing with the incomplete annotation, we

assume that entries in label distribution matrix D are uni-
formly random missing. Let Ω ∈ [n] × [m] denote the in-
dices of observed entries sampled uniformly at random from
D. We denote the observed label distribution matrix by D̃,
which has equal size of D, with entries in the observed posi-
tions same as D and entries in unobserved positions 0. Spe-
cially, we will have linear operator RΩ : Rn×m → Rn×m
defined as,

[RΩ(M)]ij =

{
Mij if (i, j) ∈ Ω

0 otherwise

Finally, we will use ‖ · ‖F to denote the Frobenius norm of
a matrix, and ‖ · ‖tr to denote the trace norm of the matrix,
which is the sum of all singular values.

Based on the above notation, to solve the IncomLDL prob-
lem, we will propose a learning objective based on squared
loss and a regularizer exploiting label correlations. Specially,
we will have the following optimization objective,

min
W

1

2
‖RΩ(XW − D̃)‖2F + λ‖XW‖tr (1)

s.t. XW × 1m = 1n, XW ≥ 0n×m

where W ∈ Rd×m is our learning objective. 1n and 1m are
the length n and m vectors with all its entries equaling one,
respectively. 0n×m is an all-zero matrix of size n×m.

In Eq. 1, we assume that there is a linear relationship be-
tween the label matrix D and feature matrix X since linear
classifiers have acquired good performance in previous stud-
ies [Geng, 2016]. In this way, the recovered label matrix will
be D̂ = XW, where W is the linear coefficients and will be
our learning objective.

To exploit the correlation between labels, we assume that
D is low-rank, i.e. XW has a small trace norm. λ is the
regularization parameter trading off the importance between
trace norm and the difference in Frobenius norm in those ob-
served positions. Because the recovered supervised informa-
tion for each matrix need to be in the probability simplex, that
is, nonnegative and summing up to one, we add constraint
XW × 1m = 1n to make sure that each row of D̂ will sum
up to one and XW ≥ 0n×m to constraint all entries to be
nonnegative. Combining all these aspects, we will have Eq. 1
as our learning objective for IncomLDL problem.

3.2 Optimizing using Proximal Gradient Descend
Following [Xu et al., 2013], we will first use Accelerated
Proximal Gradient Descend to optimize Eq. 1, which can

achieve a convergence rate of O(1/T 2) [Tseng, 2008], where
T is the number of iterations. Since it is difficult to handle the
trace norm of XW, we will assume X is orthonormal without
losing of generality. If X is not orthonormal, we can do SVD
on X and use the top right singular vectors as a replacement
for X. After assuming X is orthonormal, the optimization
will become,

min
W

1

2
‖RΩ(XW − D̃)‖2F + λ‖W‖tr (2)

s.t. XW × 1m = 1n, XW ≥ 0n×m

Ignoring the constraints, Accelerated Proximal Gradien-
t Descend will optimize Eq. 2 iteratively. In the tth iteration,
it will introduce an auxiliary variable Yt, which is,

Yt = Wt + θt(
1

θt−1
− 1)(Wt −Wt−1) (3)

After introducing Yt, we have the following subproblem
in the tth iteration,

min
W

λ‖W‖tr + (4)

L

2

∥∥∥∥W −
(

Yt −
1

L
X>RΩ(XYt−1 − D̃)

)∥∥∥∥2

F

which has closed form solution by SVT [Cai et al., 2010].
Note that here L is the Lipschitz constant which can be

found by linear search, i.e., we will initialize L and increase
it until the following is violated.

`(Wt+1) ≤ `(Yt) + (5)

〈∇f(Yt),Wt+1 −Yt〉+
L

2
‖Wt+1 −Yt‖2F

where `(Wt+1) = ‖RΩ(XW − D̃)‖2F /2.
One problem with the above procedure is that, it is used

for unconstrained problem, while in our setting, the problem
is constrained. One straightforward solution is to project the
solution Wt onto the set defined by the constraints, that is,
we will project each row of D̂t = XWt onto the probability
simplex. Assuming the ith row of D̂t is d̂it, to do projection,
we will solve the following problem,

min
d

‖d− d̂it‖ s.t. d>1m = 1, d ≥ 0m, (6)

while without misunderstanding, we will omit i and t in d̂it.
The above problem has an O(m logm) solution by sorting

all the elements in d̂ in descending order into u. Then we
find the maximum position index ρ such that θ = uρ + (1 −∑ρ
i=1 ui)/ρ > 0. With ρ, we will get the optimal d in which

dj = max{d̂j + θ, 0}, ∀j ∈ [m]. The proof of correctness of
the projection procedure can be found in [Duchi et al., 2008;
Wang and Carreira-Perpiñán, 2013].

After we get the Rprob(D̂t) which project each row of D̂t

onto a probability simplex, we will recover Wt as follows,

min
W
‖XW> −Rprob(D̂t)‖2F (7)

which has closed-form solution as (X>X)†[X>Rprob(D̂t)].
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Algorithm 1 IncomLDL-prox

1: Initialization: θ1 = θ2 ∈ (0, 1], W1 = W2, L, γ > 1,
and stopping criterion ε

2: t = 2;
3: while stopping criterion is not satisfied do
4: Calculate Yt by Eq. 3
5: Calculate Wt+1 by Eq. 4
6: while Eq. 5 is satisfied do
7: L = L ∗ γ
8: Update Wt+1 by Eq. 4 with the new L
9: end while

10: θt+1 = (
√
θ4
t + 4θ2

t − θ2
t )/2

11: t = t+ 1
12: D̂t = XWt

13: Calculate each row ofRprob(D̂t) by solving Eq. 6
14: Update Wt by Eq. 7
15: end while

The IncomLDL-prox algorithm which uses accelerated
proximal gradient descend with a projection onto the prob-
ability simplex is shown in Alg. 1.

There remains one question, that is, does the projection
procedure really lead to a minimum of the following con-
strained optimization problem in the tth iteration?

min
W

λ‖W‖tr +
L

2
‖W −Qt‖2F (8)

s.t. XW × 1m = 1n, XW ≥ 0n×m

where Qt = Yt −X>RΩ(XYt−1 − D̃)/L
Note the Lagrange dual problem of Eq. 8 is as following,

max
α,B

Dλ/L[Qt −X>A + X>B] + α> × 1n

−1

2
‖Qt −X>A + X>B‖2F

where α and B are Lagrange multipliers associated with
the equality constraint and inequality constraint respective-
ly. A ∈ Rn×m is the catenation of m α-s. Dλ/L[·] is the
SVT solver [Cai et al., 2010].

To solve Eq. 8, we will first solve α and B for the La-
grange dual problem. With the optimal solution α∗ and B∗,
the original unconstrained optimizer W∗ can be calculated.
However, maximizing Dλ/L[·] does not have closed-form so-
lution for α and B. Although Algo. 1 solves the problem
by calculating Dλ/L[Qt] and then projecting the solution to a
probability simplex, it cannot be guaranteed to find the opti-
mal solution following the standard analysis of convex opti-
mization [Boyd and Vandenberghe, 2004]. Thus we need to
find new optimization strategy to optimize Eq. 1.

3.3 Optimizing using ADMM
ADMM (Alternating Direction Method of Multipliers) [Boyd
et al., 2011] which is suitable to those objectives summing up
a smooth function and a non-smooth function, is proper for
solving Eq. 1. To use ADMM, we first rewrite our objective

into the following equivalent form,

min
W∈C

1

2

∥∥∥RΩ(XW − D̃)
∥∥∥2

F
+ λ‖Z‖tr (9)

s.t. XW − Z = 0

where

C = {W|XW × 1m = 1n and XW ≥ 0n×m}.

Eq. 9 can be solved by the following alternative methods
in iteration t,

Wt+1 = arg min
W∈C

1

2
‖RΩ(XW − D̃)‖2F (10)

+〈Λt,XW − Zt〉+
ρ1

2
‖XW − Zt‖2F

Zt+1 = arg min
Z

λ‖Z‖tr + 〈Λt,XWt+1 − Z〉 (11)

+
ρ1

2
‖XWt+1 − Z‖2F

Λt+1 = Λt + ρ1(XWt+1 − Zt+1) (12)

in which Eq. 11 can be rewritten into

Zt+1 = arg min
Z

1

2
‖Z− (XWt+1 +

Λt

ρ1
)‖2F +

λ

ρ1
‖Z‖tr

which has closed form solution. Thus the problem remained
is how to solve Eq. 10.

Assuming M = XW, we rewrite Eq. 10 here,

min
M

1

2
‖RΩ(M− D̃)‖2F + 〈Λt,M− Zt〉

+
ρ1

2
‖M− Zt‖2F

s.t. M× 1m = 1n, M ≥ 0n×m

We can decompose the above problem into optimizing each
row of M, while the ith row of M is denoted as Mi, so is Λi,
D̃i, Zi and Ωi,

min
Mi

1

2
‖RΩi

(Mi − D̃i)‖2 (13)

+〈Λti,Mi − Zti 〉+
ρ1

2
‖Mi − Zti‖2

s.t. Mi × 1m = 1, Mi ≥ 0m

Although in [Duchi et al., 2008; Wang and Carreira-
Perpiñán, 2013], the projection onto a probability simplex
problem is solved using an O(m logm) algorithm by brute
force searching through [m] from the largest entry to the s-
mallest one for a particular j satisfying the KKT condition,
the algorithm is inefficient to be used here. The reason is the
m entries in Mi are divided into Ωi and Ω̄i, and the non-zero
Mijs will have different weights and different projection ob-
jectives due to the KKT condition, thus we need to search all
possible positions in Ωi and Ω̄i for a pair of perfect solution,
which will cost a lot of time (O(m2) for the worst case) and
cannot guarantee a unique optimal solution. Thus we will
solve Eq. 13 by forming it into a standard QP problem, and
use state-of-the-art QP solvers, such as interior-point-method.
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Algorithm 2 IncomLDL-admm

1: Initialization: W1, Λ1 and Z1, λ and ρ1, t = 1
2: while stopping criterion is not satisfied do
3: Calculate each row of M∗ by Eq. 13
4: Wt+1 = (X>X)†[X>M∗]
5: Solve Zt+1 by Eq. 11
6: Update Λt+1 by Eq. 12
7: t = t+ 1
8: end while

Table 1: Statistics of the 15 data sets, where n is number of instance,
d is number of features and m is number of labels.

Dataset n d m
Yeast-alpha 2465 24 18
Yeast-cdc 2465 24 15
Yeast-elu 2465 24 14

Yeast-diau 2465 24 7
Yeast-heat 2465 24 6
Yeast-spo 2465 24 6
Yeast-cold 2465 24 4
Yeast-dtt 2465 24 4

Yeast-spo5 2465 24 3
Yeast-spoem 2465 24 2

Human Genes 20,542 36 68
Natural Scene 2,000 294 9

SJAFFE 213 243 6
SBU 3DFE 2,500 243 6

Movie 7,755 1,869 5

After we get M∗, we can project it back into the space de-
fined by X through (X>X)†[X>M∗]. We will summarize
the proposed IncomLDL-ADMM algorithm in Alg. 2

According to [He and Yuan, 2012], our IncomLDL-admm
will converge at O(1/T ) rate to the optimum solution. Al-
though it is slow compared to the O(1/T 2) rate by acceler-
ated proximal gradient descend method, in practice, a good
approximate solution is sufficient to obtain satisfactory per-
formance [Boyd et al., 2011].

4 Experiment
We evaluate the proposed algorithms for IncomLDL prob-
lem on 15 real data sets. We implement our approaches in
Matlab. All the results were obtained on a Linux server
with CPU 2.53GHz and 48GB memory.

The algorithm is evaluated on 15 data sets covering fields
of biochemistry, natural scene recognition, facial expression
and movie-rating. Details of them can be found in [Geng,
2016]. Here we summarize their statistics in Table 1.

Settings and Baselines To make these data sets incomplete,
we will use two kinds of settings. In the first setting, we will
make all elements in the label distribution matrix uniformly
random missing and call it the (general) incomplete setting.
We vary the observed rate ω% from 10% to 40%, and mea-
sure the difference between the groundtruth and the predicted

label distribution matrix. We will then test our proposed algo-
rithm in the second setting, the transductive setting, in which
we have 10% test data with no supervised information, ac-
companied by incomplete training data, while the observed
rate ω% will also vary from 10% to 40%. We will use the
incomplete training data and features of the test data together
to give a prediction. Difference between the ground truth and
the predicted distribution matrix for test data will be mea-
sured. We will repeat each experiments 10 times and report
the results averaged over 10 trials.

In IncomLDL-prox, the regularization parameter is select-
ed from 2{−10,−9,...,9,10} by cross-validation on training data.
Parameters γ and ε are set to be 2 and 10−5 respectively. The
maximum iteration is set to be 100. In IncomLDL-admm,
regularization parameter λ and number of maximum iteration
are selected in the same way as IncomLDL-prox. ρ1 is sim-
ply set as 1 and all the variables are initialized to be all-zero.
The stopping criterion parameters εabs and εrel are set as 10−4

and 10−2 as suggested in the survey [Boyd et al., 2011].
We will compare our proposed IncomLDL algorithm with

several baselines. They are all adapted from existing la-
bel distribution algorithms to fit for the incomplete situa-
tion. Note that although these algorithms can solve the in-
complete label distribution problem, they consider each la-
bel separately thus are expected to work worse than our pro-
posal. These algorithms include two maximum entropy al-
gorithms IIS-LDL [Geng et al., 2013], BFGS-LDL [Geng,
2016] and two problem transformation algorithms PT-Bayes
and PT-SVM [Geng, 2016]. All the codes are shared by origi-
nal authors, and we use the default parameter suggested there,
except that we tune the regularization parameter for the PT-
SVM algorithm using 10-folder cross-validation in the same
way as in IncomLDL-prox.

Following [Geng, 2016], we will use five measurements
for incomplete label distribution problem. Among them,
Chebyshev, Clark and Canberra measure the distance
between two vectors, thus they are the lower the better.
Cosine and Intersection measure the similarity be-
tween two vectors, thus they are the higher the better. Details
of these measurements can be found in [Geng, 2016]. Note
that there is one additional measurement proposed in [Geng,
2016], which measures the KL-divergence between two vec-
tors. For KL-divergence is calculated by log(dyx/d̂

y
x), and it

will be meaningless when d̂yx is zero, we will not use it here.

Results Due to space limitation, here we only present rep-
resentative results. Other results are similar and we will put
them in a longer version. Note that we have done experi-
ments on 4 different ω% within both incomplete and trans-
ductive setting, measured on 5 measurements. Here we will
present the Chebyshev (the lower the better) results for in-
complete setting on all the data with ω = 10 in Table 2 and
the Intersection (the higher the better) results for trans-
ductive setting on test data only with ω = 30 in Table 3.

We can see in both these two scenarios, our proposed t-
wo algorithms are superior to the baselines. The results are
as expected since these two methods exploit the label cor-
relation when there are insufficient training data facing the
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Table 2: Chebyshev (the lower the better) results for incomplete setting on all data when ω% = 10%. Each column corresponds to an algo-
rithm, while IncomLDL-a and IncomLDL-p are abbreviation for IncomLDL-admm and IncomLDL-prox respectively. Each row corresponds
to a data set. The value is measured by 10-folder cv shown in mean±std form. The best results on each row are bolded, with its comparable
ones (pairwise single-tailed t-test at 95% confidence level ) marked by •.

Data Set IncomLDL-a IncomLDL-p IIS-LDL BFGS-LDL PT-Bayes PT-SVM
Yeast-alpha .0135± .0000• .0135± .0000 .0214± .0003 .0361± .0000 .4401± .0329 .0178± .0012
Yeast-cdc .0161± .0001 .0162± .0000• .0247± .0006 .0427± .0000 .4543± .0359 .0221± .0021
Yeast-cold .0513± .0001 .0514± .0002• .0636± .0013 .0945± .0000 .4624± .0298 .0672± .0085
Yeast-diau .0370± .0003 .0371± .0001• .0479± .0009 .0751± .0000 .4917± .0408 .0510± .0064
Yeast-dtt .0361± .0000 .0362± .0001• .0518± .0011 .0851± .0000 .4718± .0373 .0501± .0096
Yeast-elu .0162± .0000 .0163± .0000• .0255± .0005 .0441± .0000 .4431± .0254 .0223± .0019
Yeast-heat .0422± .0002 .0425± .0002• .0545± .0013 .0802± .0000 .4590± .0315 .0530± .0049
Yeast-spo .0584± .0000• .0582± .0001 .0671± .0015 .0927± .0000 .4847± .0271 .0684± .0058
Yeast-spo5 .0912± .0002 .0913± .0001• .0989± .0014 .1327± .0000 .4478± .0426 .0997± .0063
Yeast-spoem .0875± .0003• .0874± .0004 .0939± .0018 .1190± .0000 .3565± .0269 .0980± .0126
Human Gene .0533± .0000• .0533± .0000 .0535± .0000 .0543± .0000 .5453± .1388 .0537± .0001
Natural Scene .3360± .0031 .3380± .0025• .3576± .0024 .7179± .0000 .3690± .0000 .4168± .0213
SJAFFE .1078± .0021 .1083± .0024• .1279± .0089 .7771± .0000 .1204± .0000 .1417± .0185
SBU 3DFE .1170± .0000 .1185± .0009• .1351± .0012 .2301± .0000 .1389± .0000 .1414± .0028
Movie .1257± .0000• .1237± .0011 .3697± .0038 .4952± .0000 .1807± .0000 .2510± .0278

Table 3: Intersection (the higher, the better) results for transductive setting on test data when ω% = 30%. Each column corresponds to
an algorithm, while IncomLDL-a and IncomLDL-p are abbreviation for IncomLDL-admm and IncomLDL-prox respectively. Each row
corresponds to a data set. The value is measured by 10-folder cv shown in mean±std form. The best results on each row are bolded, with its
comparable ones (pairwise single-tailed t-test at 95% confidence level ) marked by •.

Data Set IncomLDL-a IncomLDL-p IIS-LDL BFGS-LDL PT-Bayes PT-SVM
Yeast-alpha .9621± .0001• .9625± .0005 .9417± .0016 .8845± .0038 .5749± .0180 .9548± .0027
Yeast-cdc .9567± .0013• .9575± .0011 .9386± .0011 .8862± .0030 .5888± .0136 .9512± .0027
Yeast-cold .9406± .0015 .9398± .0011• .9264± .0019 .8902± .0035 .6292± .0199 .9279± .0050
Yeast-diau .9391± .0008• .9394± .0013 .9249± .0018 .8825± .0019 .5974± .0183 .9249± .0053
Yeast-dtt .9605± .0014 .9582± .0015• .9406± .0025 .8971± .0041 .6338± .0186 .9514± .0044
Yeast-elu .9573± .0008• .9584± .0010 .9383± .0014 .8831± .0034 .5724± .0292 .9508± .0015
Yeast-heat .9393± .0014• .9402± .0015 .9233± .0021 .8858± .0031 .6166± .0187 .9324± .0046
Yeast-spo .9175± .0028 .9161± .0031• .9048± .0032 .8680± .0037 .6114± .0233 .9022± .0064
Yeast-spo5 .9154± .0031 .9086± .0043• .9026± .0049 .8727± .0052 .6644± .0224 .9033± .0055
Yeast-spoem .9112± .0036• .9133± .0035 .9063± .0028 .8893± .0058 .7430± .0218 .9054± .0080
Human Gene .7868± .0007 .7868± .0042• .7840± .0042 .7761± .0040 .2707± .0769 .7821± .0042
Natural Scene .4753± .0092• .5073± .0129 .4635± .0127 .2529± .0170 .2927± .0172 .3686± .0408
SJAFFE .8555± .0070 .8481± .0100• .8440± .0115 .2014± .0156 .8461± .0098 .8346± .0156
SBU 3DFE .8588± .0037 .8574± .0038• .8385± .0028 .7044± .0081 .8382± .0037 .8351± .0044
Movie .8256± .0021 .8211± .0033• .6841± .0055 .4500± .0098 .7391± .0027 .6719± .0475

incomplete annotation. However, although we cannot give a
guarantee that IncomLDL-prox does optimize our objective
Eq. 1, IncomLDL-prox’s performance is comparable with
that of IncomLDL-admm, even though IncomLDL-admm get
the best results most of the time. We plan to study this phe-
nomenon in our future work.

For those baseline methods, PT-SVM and IIS-LDL perfor-
m the best. BFGS-LDL, although reported to be better than
IIS-LDL when data are complete [Geng, 2016], however, are
not suitable for incomplete case, especially on Natural Scene
and SJAFFE data sets. Comparing Table 2 and Table 3, we
can see that for the incomplete setting, all algorithms except
PT-Bayes are more stable. Thus it is much difficult to predict

the total unlabeled test data in the transductive setting.

5 Conclusion
In this paper, we solve the problem of Incomplete Label Dis-
tribution Learning (IncomLDL) where the supervised infor-
mation are incomplete. To solve the problem of data defi-
ciency when facing incomplete data, we propose to use the
trace norm minimization technique, thus we can exploit label
correlation, reducing the effect of lacking training data. T-
wo algorithms are then proposed based on proximal gradient
descend and alternative direction method of multipliers. Ex-
periments on all 15 data sets show the merits of the proposed
algorithms compared to baselines.
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