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Abstract
Recently, many efforts have been put into tag-aware
personalized recommendation. However, due to un-
controlled vocabularies, social tags are usually re-
dundant, sparse, and ambiguous. In this paper, we
propose a deep neural network approach to solve
this problem by mapping the tag-based user and
item profiles to an abstract deep feature space,
where the deep-semantic similarities between users
and their target items (resp., irrelevant items) are
maximized (resp., minimized). To ensure the scal-
ability in practice, we further propose to improve
this model’s training efficiency by using hybrid
deep learning and negative sampling. Experimen-
tal results show that our approach can signifi-
cantly outperform the state-of-the-art baselines in
tag-aware personalized recommendation (3.8 times
better than the best baseline), and that using hybrid
deep learning and negative sampling can dramati-
cally enhance the model’s training efficiency (hun-
dreds of times quicker), while maintaining similar
(and sometimes even better) training quality and
recommendation performance.

1 Introduction
In the era of the Web 2.0, social tagging systems are intro-
duced by many websites, where users can freely annotate on-
line items using arbitrary tags (commonly known as folkson-
omy [Hotho et al., 2006]). Since social tags are good sum-
maries of the relevant items and the users’ preferences, and
they also contain little sensitive information about their cre-
ators, they are valuable information for privacy-enhanced per-
sonalized recommendation. Consequently, many efforts have
been put on tag-aware personalized recommendation using
content-based filtering [Cantador et al., 2010; Shepitsen et
al., 2008] or collaborative filtering [Bouadjenek et al., 2013;
Tso-Sutter et al., 2008]. However, as users can freely choose
their own vocabulary, social tags may contain many uncon-
trolled vocabularies, such as homonyms, synonyms, words in
arbitrary languages, or even user-created words. This results
∗Principal corresponding author
†Corresponding author

into very sparse, redundant, and ambiguous tag information,
which greatly degrades the performance of tag-aware recom-
mendation systems.

A solution to this problem is to apply clustering in the
tag space [Shepitsen et al., 2008]; however, clustering re-
quests to compute the similarity between tags, which is usu-
ally very time-consuming. Another solution is to use autoen-
coders; in [Zuo et al., 2016], abstract feature representations
for tag-based user profiles are first modeled by autoencoders
and then used as inputs of user-based collaborative filtering to
generate recommendations. Although this method is reported
to achieve better performance than the clustering-based col-
laborative filtering method [Zuo et al., 2016], it still suffers
from the following drawback: the model’s learning signal is
not directly related to the objective of personalized recom-
mendation, i.e., distinguishing the user’s target items from the
irrelevant ones; so, the resulting abstract feature representa-
tions may not be effective for personalized recommendation.

In this paper, motivated by the above observations, we pro-
pose to address the uncontrolled vocabulary problem by using
deep neural networks to map the tag-based user and item pro-
files to an abstract deep feature space, where the similarities
between users and their target items (resp., irrelevant items)
are maximized (resp., minimized). We call the similarities
on the deep feature space deep-semantic similarities and this
model the deep-semantic similarity-based personalized rec-
ommendation (DSPR) model. DSPR has the following advan-
tages: (i) the deep model is trained using a recommendation-
oriented learning signal, which is directly correlated with dif-
ferentiating the user’s target items from the irrelevant ones;
so, the resulting abstract features for user and item profiles
are very effective representations for personalized recommen-
dation. (ii) Deep neural networks in DSPR extract more ab-
stract and denser features layer-by-layer, so DSPR overcomes
sparsity and redundancy problems in the input tag space.
(iii) Also, the input synonyms (resp., homonyms) have similar
(resp., different) impact on output features of DSPR, which
addresses the ambiguity problem in the social tag space. (iv)
Interpretability (transparency) is a common concern for some
deep learning applications; this problem can be remedied in
DSPR by finding the most influential input tags for each ab-
stract feature in the output deep feature space and then using
them to summarize the semantics of corresponding features.

Despite achieving superior performance, the training of
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the DSPR model is usually very time-consuming in practice,
mainly because DSPR has many hidden layers and a huge
number of candidate items. Specifically, on the one hand,
since the deep neural networks in DSPR have many hidden
layers, when learning signals are backpropagated to the first
few layers, they become minuscule and insignificant, result-
ing into numerous training runs needed to reach model con-
vergence (widely known as diffusion of gradients). On the
other hand, to train DSPR, the deep-semantic similarities be-
tween the user in each training sample and all the candidate
items have to be computed in each training run. Since the
number of candidate items for an online recommendation sys-
tem is usually very large (millions), and training deep neural
networks often requires many training samples, the process-
ing of each training run is computationally very expensive.

To solve the former problem, we propose an approach,
called hybrid deep learning, which directly integrates autoen-
coders with the neural networks of DSPR to generate addi-
tional learning signals based on reconstruction errors. Exper-
iments show that hybrid deep learning can greatly accelerate
the deep model’s learning progress and reduce training runs
needed for model convergence by tens of times. As for the
latter problem, to reduce the processing time needed for each
training run, we further use negative sampling [Mikolov et
al., 2013] to randomly sample a small number of negative
examples to approximate the noise. The resulting efficient
model is called hybrid deep learning-based personalized rec-
ommendation with negative sampling (HDLPR-NS).

The contributions of this paper are briefly as follows: (i) We
propose DSPR which uses deep neural networks to solve the
uncontrolled vocabulary problem in social tags. (ii) We fur-
ther propose HDLPR-NS, which uses hybrid deep learning
and negative sampling to achieve very efficient model train-
ing. (iii) Experimental results show that DSPR and HDLPR-
NS both significantly outperform the state-of-the-art base-
lines in tag-aware personalized recommendation (3.8 times
better than the best baseline), and that, by using hybrid
deep learning and negative sampling, the model training of
HDLPR-NS is hundreds of times more efficient than DSPR,
while achieving similar (and sometimes even better) training
quality and recommendation performance.

2 Related Work
Deep learning has already been successfully applied in
many search and recommendation applications, such as mu-
sic [Van den Oord et al., 2013], movie [Salakhutdinov et
al., 2007], and item recommendation [Elkahky et al., 2015],
and Web search [Huang et al., 2013]. Similarly to our work,
Elkahky et al. [2015] and Huang et al. [2013] use deep-
semantic similarity models with a ranking-oriented training
objective. But these models are very different from the ones
proposed here: (i) they are not tag-aware systems and not de-
signed to solve the redundancy, sparsity, and ambiguity prob-
lems in the tag space; (ii) hybrid deep learning is not applied
in these works to accelerate the convergence of the model;
(iii) instead of using negative sampling, these two works in-
tentionally assume the number of candidate items to be very
small (5 in [Huang et al., 2013] and 10 in [Elkahky et al.,
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Figure 1: Overview of DSPR

2015]) to make the model trainable. Clearly, this assumption
is unreasonable in real-world situations. Negative sampling
has been introduced first in the NLP community to learn word
representations more efficiently [Mikolov et al., 2013]. To our
knowledge, we are the first who apply hybrid deep learning
and negative sampling to enhance the training efficiency of
deep-semantic similarity-based recommendation or search.

A widely used solution for the diffusion of gradients is to
pre-train each layer before using back-propagation to fine-
tune the entire deep neural network [Erhan et al., 2010],
where the pre-training is usually done by restricted Boltz-
mann machines (RBMs) [Hinton and Salakhutdinov, 2006;
Hinton et al., 2006] or autoencoders [Bengio et al., 2007]. In-
stead of using autoencoders for pre-training, in this work, we
propose to overcome the bottleneck of back-propagation by
directly integrating autoencoders into the network to gener-
ate additional learning signals based on reconstruction errors.
Here, hybrid deep learning is used individually to accelerate
the deep model’s learning progress; but it can also be used as
a complement of pre-training to speed up the learning process
in the “fine-tuning” step.

3 Preliminaries
Personalized recommendation is defined as follows. Given a
user u and a set of items {i1, . . . , in}, the system produces
a ranked recommendation list τ = [i1 ≥ i2 ≥ · · · ≥ in] s.t.
ia≥ ib iff Rlv(u, ia)≥Rlv(u, ib), where Rlv(u, i) is a func-
tion measuring how relevant an item i is to the user u.

A folksonomy is a tuple F = (U, T, I, A), where U , T ,
and I are sets of users, tags, and items, respectively, and A ⊆
U × T × I is a set of assignments (u, t, i) of a tag t to an
item i by a user u [Hotho et al., 2006].

A user profile is a feature vector xu = (gu1 , . . . , g
u
M ),

where M = |T | is the tag vocabulary’s size, and guj =
|{(u, tj , i) ∈ A | i∈ I}| is the number of times that user u
annotates items with tag tj . Similarly, an item profile is a vec-
tor xi = (gi1, . . . , g

i
M ), where gij = |{(u, tj , i)∈A | u∈U}|

is the number of times that the item i is annotated with the
tag tj [Cantador et al., 2010].

4 Deep-semantic Similarity-based
Personalized Recommendation

Figure 1 shows an overview of the deep-semantic similari-
ty-based personalized recommendation (DSPR) model. Gen-
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erally, DSPR takes the tag-based user and item profiles xu
and xi (as defined above) as inputs of two deep neural net-
works with shared parameters. These inputs are then passed
through multiple hidden layers and projected into an abstract
deep feature space on the final hidden layer, where the simi-
larities between the abstract representations of user and item
profiles are computed. Finally, ranked recommendation lists
are generated using relevance scores, computed by applying
the softmax function on the resulting similarities.

Formally, given the user profile xu, the item profile xi, a
weight matrix W1, and a bias vector b1, the intermediate out-
put h1 of the first hidden layer is defined as follows:

h1(u) = tanh(W1xu + b1), (1)
h1(i) = tanh(W1xi + b1), (2)

where tanh is used as the activation function. Similarly,
the intermediate output of the jth hidden layer hj , j ∈
{2, . . . ,K}, is defined as:

hj(u) = tanh(Wjhj−1(u) + bj), (3)
hj(i) = tanh(Wjhj−1(i) + bj), (4)

where Wj and bj are the weight matrix and the bias vector,
respectively, for the jth hidden layer, and K is the total num-
ber of hidden layers. The outputs of the Kth hidden layer are
the abstract feature representations of user and item profiles,
denoted x̃u and x̃i, respectively. Formally,

x̃u = hK(u), x̃i = hK(i). (5)

Then, the similarity between a user u and an item i is mea-
sured using the cosine similarity between the abstract repre-
sentations of their profiles, formally defined as

Sim(u, i) = x̃u · x̃i / (‖x̃u‖‖x̃i‖), (6)

and called deep-semantic similarity.
Finally, the relevance scores [Huang et al., 2013] of items i

to a given user u are measured by applying the softmax func-
tion on the resulting deep-semantic similarities between u
and i, which are then used to rank a personalized recommen-
dation list for the given user u. Formally,

Rlv(u, i) = eSim(u,i) /
∑
i′∈I e

Sim(u,i′). (7)

As we assume that the target items of a given user are
those annotated by this user, to achieve good personalized
recommendation, these items should have higher relevance
scores than others. We thus conduct the model training with
an objective to maximize the relevance scores of target items;
equivalently, this means to maximize the deep-semantic sim-
ilarities between users and their target items and minimize
those with irrelevant ones. Formally, this is equivalent to min-
imizing the following loss function:

L(Θ) = −
∑

(u,i∗) log(Rlv(u, i∗))

= −
∑

(u,i∗)[log(eSim(u,i∗))− log(
∑
i′∈I e

Sim(u,i′))], (8)

where Θ represents the parameters Wj and bj in the neu-
ral networks; (u, i∗) are training samples, which are pairs of
a user u and his/her target item i∗, generated from assign-
ments (u, t, i∗) in a training dataset.
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Figure 2: Overview of HDLPR

In training, we first initialize the weight matrices Wj , us-
ing the random normal distribution, and initialize the bi-
ases bj to be zero vectors; the model is then trained by back-
propagation using mini-batch gradient descent; finally, the
training stops when the model converges or reaches the max-
imum training runs.

5 Hybrid Deep Learning-based Personalized
Recommendation with Negative Sampling

To enhance DSPR’s training efficiency and ensure the scal-
ability in practice, we propose to use hybrid deep learning
and negative sampling [Mikolov et al., 2013] to reduce the
number of training runs needed for model convergence and
to reduce the processing time needed for each training run.
This is called hybrid deep learning-based personalized rec-
ommendation with negative sampling (HDLPR-NS).

5.1 Hybrid Deep Learning
Training deep neural networks using back-propagation is dif-
ficult, because the learning signals become minuscule and in-
significant when they are backpropagated to the first few lay-
ers, which results into a very slow learning progress and nu-
merous training runs for model convergence. This problem
is called diffusion of gradients, which can be remedied by
pre-training each layer before using back-propagation to fine-
tune the entire network [Hinton and Salakhutdinov, 2006;
Bengio et al., 2007]. In this work, we propose a new solu-
tion called hybrid deep learning with an idea of integrating
autoencoders with the neural networks of DSPR to generate
additional learning signals based on reconstruction errors,
which is then combined with the deep-semantic similarity-
based relevance scores in DSPR to form a hybrid deep learn-
ing signal for model training. The model is called hybrid deep
learning-based personalized recommendation (HDLPR).

Intuitively, for the following reason, adding reconstruc-
tion errors as learning signals can greatly accelerate the deep
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model’s learning progress and reduce training runs needed for
model convergence: In DSPR, the deep-semantic similarity-
based learning signal becomes very weak when it is back-
propagated to the first few layers, so learning the first few
weight matrices, e.g., W1 and W2, is very slow. In HDLPR,
since we use tied weights in autoencoders, i.e., the weight ma-
trices in the decoder are the transposes of those in the encoder,
the reconstruction-error-based learning signal will be used to
first updateWT

1 , then back-propagated to updatingWT
2 ,WT

3 ,
and so on. As updating WT

j is equivalent to updating Wj , it
remedies the diffusion of gradients in DSPR.

Figure 2 shows the overall process of the proposed hybrid
deep learning-based personalized recommendation (HDLPR)
model. The structure of HDLPR is similar to the one of
DSPR, but adds K layers to form a decoder; so, by taking the
first K+1 layers as encoder, we convert each neural network
to an autoencoder with tied weights. Then, the decoders take
the abstract feature representations of user and item profiles,
x̃u and x̃i, as inputs and generate reconstructed user and item
profiles in their output layers, denoted x′u and x′i. Finally, the
reconstruction errors of user (resp., item) profiles are com-
puted as the Euclidean (i.e., L2) norms of the differences be-
tween xu (resp., xi) and x′u (resp., x′i).

Formally, the definitions of layers in encoders are the same
as the ones in the neural networks of DSPR. As for the de-
coders, the intermediate output of the K + jth hidden layer
hK+j , j ∈ {1, . . . ,K − 1}, is formally defined as:

hK+j(u) = tanh(W T
K−(j−1)hK+(j−1)(u) + bK+j), (9)

hK+j(i) = tanh(W T
K−(j−1)hK+(j−1)(i) + bK+j), (10)

where WT
K−(j−1) is the transpose of WK−(j−1), and bK+j is

the bias vector for the (K + j)th hidden layer. The outputs of
the (2K−1)th hidden layer are used to generate reconstructed
user and item profiles, denoted x′u and x′i, in the output layer:

x′u = tanh(W T
1 h2K−1(u) + b2K), (11)

x′i = tanh(W T
1 h2K−1(i) + b2K), (12)

Then, the reconstruction errors of user (resp.,item) profiles
are computed as the Euclidean (i.e., L2) norms of the differ-
ences between xu (resp., xi) and x′u (resp., x′i). By integrating
the reconstruction errors with the deep-semantic similarity-
based relevance scores in DSPR, the training objective of
HDLPR is to maximize the relevance scores of target items
and also to minimize the reconstruction errors of the user and
target item profiles in each training sample. Formally, it is
equivalent to minimizing the following hybrid loss function:

Lh(Θ) = λθ(
∑K
j=1 ‖Wj‖2 +

∑2K
j=1 ‖bj‖

2)

+ λe
∑

(u,i∗)(‖x
′
u − xu‖+ ‖x′i∗ − xi∗‖)

− (1− λθ − λe)
∑

(u,i∗)[log(eSim(u,i∗))

− log(
∑
i′∈I e

Sim(u,i′))], (13)

where the first term is a L2 regularization used to prevent
overfitting; the second term is the sum of reconstruction er-
rors of the user and target item profiles in each training sam-
ple; and the third term is the deep-semantic similarity-based
learning signal, L(Θ), as defined in Eq. (8); λθ and λe are
parameters representing different importances of the corre-
sponding terms, where λe > 0, λθ > 0, and λθ + λe < 1.

5.2 Negative Sampling
Although hybrid deep learning greatly reduces the number
of training runs needed for model convergence, the pro-
cessing of each training run in both DSPR and HDLPR is
still very time-consuming, since the deep-semantic similarity-
based loss function L(Θ) as defined in Eq. (8), which is also
the third term of Lh(Θ), is computationally very expensive.

Specifically, for each training sample (u, i∗) in each train-
ing run, the second term of L(Θ) requests to compute and
sum the deep-semantic similarities between u and all candi-
date items in I . In practice, the number of candidate items
for an online recommendation system is usually very large
(millions), and training a deep neural network often requires
numerous training samples; therefore, the cost of processing
each training run in both DSPR and HDLPR is very high.
However, this term is essential: with its help, minimizing
L(Θ) not only maximizes the deep-semantic similarity be-
tween the given user and his/her target items, but also min-
imizes those with irrelevant items. Consequently, it helps to
distinguish the target item from the irrelevant ones.

To tackle this dilemma, in this work, we use negative sam-
pling [Mikolov et al., 2013] to greatly reduce the time needed
to process each training sample. In negative sampling, instead
of using all irrelevant items, for each training sample, we ran-
domly sample only a small number (S) of irrelevant items
from the set of candidate items as negative examples to ap-
proximate the noise and to differentiate target items from ir-
relevant ones. The resulting efficient model is called HDLPR
with negative sampling (HDLPR-NS); and its loss function is
formally defined as follows:

LNSh (Θ) = λθ(
∑K
j=1 ‖Wj‖2 +

∑2K
j=1 ‖bj‖

2)

+ λe
∑

(u,i∗)(‖x
′
u − xu‖+ ‖x′i∗ − xi∗‖)

− (1− λθ − λe)
∑

(u,i∗)[log(eSim(u,i∗))

− log(
∑

(u,i−)∈D− e
Sim(u,i−))], (14)

where (u, i−) are negative samples, which are contained in a
negative dataset D− and generated by randomly sampling S
negative examples i− for each training sample (u, i∗).

6 Experiments
Three state-of-the-art solutions for the uncontrolled vocab-
ulary problem as baselines are: (i) Clustering-based cosine
similarity (CCS): hierarchical clustering [Shepitsen et al.,
2008] models the users and items as cluster-based feature
vectors, upon which content-based filtering with the cosine
similarity is used for recommendations. (ii) Clustering-based
collaborative filtering (CCF): CCF is similar to CCS in fea-
ture modeling, but uses user-based collaborative filtering for
recommendations. (iii) Autoencoder-based collaborative fil-
tering (ACF) [Zuo et al., 2016]: an autoencoder is used to
obtain abstract representations of user profiles, on which user-
based collaborative filtering is applied for recommendations.

For a fair comparison, the experiments are performed on
the same public real-world datasets, Delicious and Last.Fm,
as used in [Zuo et al., 2016], which are gathered from the
Delicious bookmarking system and the Last.Fm online mu-
sic system, respectively, and are both released in HetRec

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3199



Table 1: Dataset information

Dataset Users Tags Items Assignments

Delicious 1 843 3 508 65 877 339 744
Last.Fm 1 808 2 305 12 212 175 641

2011 [Cantador et al., 2011]. After using the same pre-
processing to remove infrequent tags, which are used less
than 15 (resp., 5) times in Delicious (resp., Last.Fm), the in-
formation of the resulting datasets is shown in Table 1.

As we assume that the target items of a given user are those
annotated by this user, for both datasets, we randomly select
80% of the assignment data as training set, 5% as validation
set, and 15% as test set. The assignments (u, t, i∗) in the train-
ing set are used to construct user and item profiles and to ex-
tract the user-item pairs (u, i∗) as training samples. We also
extract user-item pairs from the assignments in the validation
set as validation samples, which are used to avoid over-fitting
by early stopping. Finally, user-item pairs extracted from the
assignments in the test set are used as test samples to evaluate
the recommendation performance.

All models are implemented using Python and Theano, and
run on a GPU server [Richards, 2015] with an NVIDIA Tesla
K40 GPU and 12GB GPU memory. The parameters of DSPR
are selected by grid search and set as follows: (i) # of hidden
layers (i.e., K) is 3; (ii) # of neurons in the 1st, 2nd, and 3rd
hidden layers are 2 000, 300, and 128, respectively; (iii) train-
ing batch size is 128; and (iv) learning rate for model training
is 0.005. These parameters are the same in HDLPR-NS, with
the following additional settings: (v) two extra hidden layers,
and # of neurons in the 4th and 5th hidden layers are 300 and
2 000, respectively; (vi) the balancing parameters λθ and λe
are set to 0.01 and 0.2, respectively; and (vii) # of negative
examples for each training sample (i.e., S) is 127.

The most popular metrics for the evaluation of recommen-
dation systems are precision, recall, and F1-score [Bobadilla
et al., 2013]. Since users usually only browse the topmost
recommended items, we apply these metrics at a given cut-
off rank k, i.e., considering only the top-k results on the
recommendation list, called precision at k (P@k), recall at
k (R@k), and F1-score at k (F@k). Since users always
prefer to have their target items ranked in the front of the
recommendation list, we also employ mean reciprocal rank
(MRR) [Voorhees, 1999] as the evaluation metric, which gives
greater importance to items ranked higher. The p-value [Rice,
1989] is used to measure the significance of improvements.

6.1 Main Results
Figure 3 depicts in detail the personalized recommendation
performances of DSPR, HDLPR-NS, and the three baselines
on the Delicious and Last.Fm datasets in terms of MRR,
P@k,R@k, and F@k, where ten cut-off ranks k= 5, 10, . . . ,
50 are selected for evaluation.

In Figure 3, despite some slight differences due to the ran-
dom weights’ initializations and dataset partitions, the results
of CCF and ACF in Figure 3 are highly consistent with the
results reported in [Zuo et al., 2016] in terms of orders of
magnitude, tendencies, and relative performances. Further-
more, the performances of the proposed DSPR and HDLPR-

NS models are very similar (e.g., p-value = 94.31% in MRR)
on the Delicious dataset; while HDLPR-NS slightly outper-
forms DSPR on Last.Fm. This indicates that integrating hy-
brid deep learning and negative sampling with DSPR will not
degrade its performance (and sometimes even improve it).

In general, Figure 3 shows that the DSPR and HDLPR-NS
models both significantly outperform the three baselines in all
metrics; e.g., the MRRs (resp., average R@k) of DSPR and
HDLPR-NS are both more than 3.8 times (resp., 34%) bet-
ter than the best baseline, CCS, on Delicious (resp., Last.Fm)
with p-value both smaller than 0.04% (resp., 0.09%), and the
improvements in other metrics are also similar. The superior
performances of DSPR and HDLPR-NS are mainly because
the training objectives of DSPR and HDLPR-NS are both di-
rectly correlated with distinguishing the user’s target items
from the irrelevant ones; so, the resulting abstract features for
user and item profiles are much more effective representa-
tions for personalized recommendation than those generated
solely by clustering and autoencoders.

We also note in Figure 3 that DSPR and HDLPR-NS
achieve much higher improvements on Delicious than on
Last.Fm, as DSPR and HDLPR-NS maintain a relatively sta-
ble performance on both datasets, but the performance of the
baselines dramatically degrades on Delicious: all metrics are
1/5 or less than those on Last.Fm. This may be because: items
in Last.Fm are solely in the domain of music, but items in De-
licious are webpages in various domains; so, even with higher
tag-removing threshold, Delicious still has a more variable,
redundant, and ambiguous tag space than Last.Fm, which can
not be properly handled by the baselines. This shows that
DSPR and HDLPR-NS can solve the uncontrolled vocabulary
problem better than the baselines; and the more uncontrolled
the dataset, the higher the achieved improvement.

6.2 Efficiency and Scalability
We also investigate the training efficiency and scalability of
DSPR and HDLPR-NS. The training time is recorded to com-
pare the training efficiency of the two models. But the stan-
dard training loss is not suitable to compare the models’ train-
ing quality, as DSPR and HDLPR-NS have different loss
functions. Here, we use MRR on validation samples (MRR-
VS) to measure the training quality, because (i) the training
objectives of both models are to get a better performance in
personalized recommendation, so the higher the MRR-VS,
the better the models, and (ii) the values of MRR-VS are com-
puted every 10 training runs to avoid over-fitting, so using it
will not increase the training time.

We first explore the effect of using hybrid deep learning.
To avoid interference, we use HDLPR (hybrid model with-
out negative sampling) for comparison. As shown in Figure 4,
with the increase of the number of training runs, HDLPR con-
verges much faster than DSPR on both datasets. DSPR takes
810 (resp., 1750) training runs to reach model convergence
on Delicious (resp., Last.Fm), which costs HDLPR only 70
(resp., 80) runs. This shows that hybrid deep learning can
significantly enhance the model’s learning progress and re-
duce the training runs needed for model convergence by tens
of times. Also, when the models converge, the MRR-VS of
HDLPR is almost the same as that of DSPR on Delicious
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Figure 3: The personalized recommendation performances in terms of P@k, R@k, F@k, and MRR
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Figure 4: Training progress in DSPR and HDLPR

(0.0244 in HDLPR vs. 0.0245 in DSPR) and is slightly higher
on Last.Fm (0.0306 in HDLPR vs. 0.0291 in DSPR), which
demonstrates that using hybrid deep learning will not degrade
the models’ training quality.

We then apply negative sampling on HDLPR and find
that the resulting HDLPR-NS has a very similar training
progress to HDLPR: as shown in Table 2, it takes HDLPR-
NS 70 (resp., 80) runs to converge at MRR-VS = 0.0243
(resp., = 0.0304) on Delicious (resp., Last.Fm); these values
are almost the same as those of HDLPR as shown in Fig-
ure 4. Therefore, using negative sampling will not influence
the benefit of using hybrid deep learning. Furthermore, Ta-
ble 2 also shows that, with the help of negative sampling, the
time needed to process one training run on Delicious (resp.,
Last.Fm) is greatly reduced from 0.405 (resp., 0.1133) hours
in DSPR to 0.0095 (resp., 0.0037) hours in HDLPR-NS. This
proves that using negative sampling can substantially reduce
the processing time needed for each training run.

Consequently, the total time-cost to reach model conver-
gence in HDLPR-NS is only 0.665 (resp., 0.296) hours on
Delicious (resp., Last.Fm), which is roughly 492 (resp., 668)
times quicker than that in DSPR. In summary, by using hy-
brid deep learning and negative sampling, the model training
efficiency of HDLPR-NS is hundreds of times better than the
one of DSPR, while maintaining a similar training quality.

Table 2: DSPR vs. HDLPR-NS in training time and quality

Delicious Last.Fm
DSPR HDLPR-NS DSPR HDLPR-NS

runs to converge 810 70 1750 80
MRR-VS 0.0245 0.0243 0.0291 0.0304

time for 1 run (hr) 0.405 0.0095 0.1133 0.0037
total time (hr) 328.0 0.665 198.3 0.296

7 Summary and Outlook
We have proposed a deep-semantic similarity model, DSPR,
to address the uncontrolled vocabulary problem and to
achieve superior personalized recommendations. We have
also proposed an improved model, HDLPR-NS, to use hy-
brid deep learning and negative sampling to greatly reduce
the system’s training time and to ensure a good scalability
in practice. Experiments show that DSPR and HDLPR-NS
both significantly outperform the state-of-the-art baselines in
personalized recommendation in all metrics. In addition, the
training efficiency of HDLPR-NS is hundreds of times better
than the one of DSPR, while maintaining a similar training
quality and performance in personalized recommendation.

In the future, we will further improve our models with
more sophisticated neural networks, e.g., recurrent networks.
We will also apply the hybrid deep model on other real-world
applications and conduct extensive experiments to get more
insights about its performance in various practical situations.
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