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Abstract

How can we decompose a data tensor if the indices
are partially missing? Tensor decomposition is a
fundamental tool to analyze the tensor data. Sup-
pose, for example, we have a 3rd-order tensor X
where each element Xijk takes 1 if user i posts
word j at location k on Twitter. Standard tensor
decomposition expects all the indices are observed.
However, in some tweets, location k can be miss-
ing. In this paper, we study a tensor decomposi-
tion problem where the indices (i, j, or k) of some
observed elements are partially missing. Towards
the problem, we propose a probabilistic tensor de-
composition model that handles missing indices as
latent variables. To infer them, we develop an al-
gorithm based on the variational MAP-EM algo-
rithm, which enables us to leverage the information
from the incomplete data. The experiments on both
synthetic and real datasets show that the proposed
model achieves higher accuracy in the tensor com-
pletion task than baselines.

1 Introduction
A tensor data is a set of values indexed by multiple indices.
Some kinds of real world data are naturally represented as
tensors, such as the number of times a user posts a word
at a specific location in social media. Tensor decompo-
sition, such as CP decomposition [Carroll and Chang, 1970;
Harshman, 1970], is a fundamental tool to analyze the ten-
sor data, which has various kinds of applications including
recommendation [Rendle and Schmidt-Thieme, 2010], rank-
ing semantic Web data [Franz et al., 2009], and many oth-
ers [Kolda and Bader, 2009].

One of the major applications of tensor decomposition is
the estimation of missing values. Suppose we have a movie
rating dataset, which contains a list of quadruplet (user,
movie, context, score) that indicates a user watched
a movie at a context and evaluated its quality as score.
As a tensor, (user, movie, context) represents its index
and score represents its value. In general, there are many
missing values, i.e., the number of observed samples (quadru-
plets) is much smaller than the number of all the possible

combinations of users, movies, and contexts. By esti-
mating the parameters from the observed quadruplets, tensor
decomposition can predict the missing values.

In real applications, not only values but also a part of in-
dices can be missing. Let us take a Twitter data as an ex-
ample, which consists of a set of tweets and each tweet con-
tains a lot of attributes such as a user ID, a message text, a
timestamp, and a location. This data can be represented as
a higher-order tensor and analyzing it by tensor decomposi-
tion looks promising. However, in Twitter, some attributes
are optional and they are not always observed, i.e., some in-
dices are missing. Indeed, only 0.42% of tweets contain the
location attribute [Cheng et al., 2010]. We call a sample (a
pair of indices and a value) whose indices are partially miss-
ing an incomplete sample, and call a sample whose indices
are completely observed a complete sample.

Existing tensor decomposition methods are not directly ap-
plicable to the tensors with missing indices. A straightfor-
ward way to handle the tensor data containing both complete
and incomplete samples is just ignoring the incomplete sam-
ples. That is, if we observe that user i posts word j at some
unknown location, we simply discard this information. How-
ever, when the majority of samples are incomplete, this ap-
proach is problematic—it may cause severe degradation of
solution due to the decrease of the sample size. Another way
of handling missing indices is to discard the index through
all samples. That is, we discard the location attributes of all
tweets if there is at least one tweet that does not have its loca-
tion attribute. This approach is again not desirable—we can-
not use the location attributes at all even though some tweets
have those information.

Present work. In this paper, we study the tensor decompo-
sition problem where indices are partially missing. For this
problem, we propose a probabilistic generative model for ten-
sor decomposition that handles missing indices. Our main
idea is to deal with the missing indices as latent variables.
By inferring the latent variables, we can leverage incomplete
samples as well as complete samples, to learn tensor decom-
position. One of the advantages of the proposed model is
its flexibility—it can be applied to the higher-order (>3) ten-
sors, and to any tensor decomposition models (e.g., CP de-
composition). For parameter inference, we develop an algo-
rithm based on the variational MAP-EM algorithm [Gupta et
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al., 2011]. We perform experiments on both synthetic and
real datasets. The experimental results show that utilizing
both complete and incomplete samples leads to improving the
accuracy of tensor decomposition, comparing the proposed
model and baselines that do not appropriately deal with in-
complete samples.

Contributions. The contributions of this paper are summa-
rized as follows:

1. New Problem: we define a tensor decomposition prob-
lem where the indices are partially missing.

2. Model: we propose a probabilistic generative model
for tensor decomposition, which handles the missing in-
dices as latent variables. The proposed model is flexible,
i.e., it can be applied to higher-order (>3) tensors, and
to any tensor decomposition models.

3. Algorithm: we develop a parameter inference algorithm
for the proposed model based on the variational MAP-
EM algorithm.

2 Related Work
In the history of the tensor decomposition research [Kolda
and Bader, 2009], many decomposition methods have been
proposed, such as CP decomposition [Carroll and Chang,
1970; Harshman, 1970], Tucker decomposition [Tucker,
1966], pairwise-interaction decomposition [Rendle and
Schmidt-Thieme, 2010], and RESCAL [Nickel et al., 2011],
to name a few. Since tensors are often very large, one of
the main streams of the tensor decomposition research is
about efficient computation, including sampling-based meth-
ods [Papalexakis et al., 2015], online/streaming computa-
tions [Sun et al., 2006; Maehara et al., 2016], memory ef-
ficient algorithms [Kolda and Sun, 2008; Oh et al., 2017],
and parallel computations [Jeon et al., 2016].

Tensor data in real world tends to have missing values,
which has triggered a lot of studies that tackle with them.
[Acar et al., 2011a] developed an extension of CP decom-
position that can handle missing values, which is solved as
a weighted least square problem. [Jain and Oh, 2014] the-
oretically studied how many samples are needed to exactly
reconstruct a data tensor. Similar to our study, some pa-
pers [Chu and Ghahramani, 2009; Rai et al., 2014; Zhao et
al., 2016] proposed probabilistic models to address missing
values. However, the problem these studies address is com-
pletely different from our problem, because their focus is on
the missing values, whereas our focus is on the missing in-
dices.

Although, to the best of our knowledge, there is no
study to address the missing indices, the most similar one
to ours would be coupled matrix and tensor factorizations
(CMTF) [Acar et al., 2011b]. CMTF decomposes a set of ten-
sors and matrices that share some of their modes. Although
CMTF is designed for utilizing side information matrices in
addition to the target data tensor, it is practically applicable to
our problem where some indices are missing. That is, it could
utilize incomplete samples by representing them as matrices,
and decompose them together with the tensor that represents
the set of complete samples. However, in this way, CMTF

simply ignores the missing indices. In contrast, our proposed
model infers the missing indices and utilize them for improv-
ing tensor decomposition. We compare these methods in the
experiments.

3 Setup
In this section, we introduce the notation and define the prob-
lem. To make the notation and the presentation easy to follow,
we only discuss the case where we are given a 3rd-order ten-
sor. However, we emphasize that our model can be naturally
generalized to higher-order tensors.

3.1 Conventional Tensor Decomposition
For n ∈ N, we write by [n] the set {1, 2, . . . , n}. Let X be
an I × J ×K tensor that can contain missing values, where
I, J,K ∈ N, and let D ⊆ [I] × [J ] × [K] be a set of indices
of observed values. We denote by ∅ the missing values, i.e.,
Xijk = ∅ if (i, j, k) /∈ D, or Xijk ∈ R otherwise. Using the
squared loss, tensor decomposition ofX is defined as follows:

Definition 1 (Squared-loss tensor decomposition). Let P be
a space of parameters and X̂ijk : P → R be a predictive
model. Given X ∈ {R ∪ {∅}}I×J×K , tensor decomposition
with X̂ is to compute Θ̂ = arg min

Θ∈P
L(X ; Θ) where

L(X ; Θ) =
1

2

∑
(i,j,k)∈D

(
Xijk − X̂ (Θ)ijk

)2

.

There are several choices for the predictive model X̂ . Here
we define CP decomposition model that is used as the exam-
ple in this paper:

Definition 2 (Rank-R CP decomposition). Given R ∈ N,
let Θ = {U, V,W} where U ∈ RI×R, V ∈ RJ×R, and
W ∈ RK×R. The predictive model is defined as

X̂ (Θ)ijk =

R∑
r=1

UirVjrWkr.

Hereafter we write X̂ijk instead of X̂ (Θ)ijk if it is not con-
fusing.

3.2 Tensor Decomposition with Missing Indices
Next we consider the case where a part of indices are missing.
In such a case it is difficult to represent data as a tensor. In-
stead, we consider the data as a set of indices and values. Sup-
pose we have N ∈ N observations (i.e., samples) and denote
by X = {xn}Nn=1 the values and by Ẑ = {(̂in, ĵn, k̂n)}Nn=1
the corresponding indices that can be missing. As well as
missing values, we denote the missing index by ∅.

The tensor decomposition problem with missing indices is
then defined as follows:

Problem 1 (Tensor decomposition with missing indices).
Suppose we have a set of values X ∈ RN , a set of indices
Ẑ ∈ {[I] ∪ {∅}} × {[J ] ∪ {∅}} × {[K] ∪ {∅}}N , a ten-
sor decomposition model (P, X̂ ), and an oracle O that re-
turns the true indices for all missing indices. We want to find
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Figure 1: The graphical model of the proposed model (3rd-order).
Shaded circles denote the observed variables, white circles denote
the latent variables, and small black circle denotes the parameter.

Θ̂ = arg min
Θ∈P

L(X,Z; Θ), where Z = O(Ẑ) is a set of true

indices fulfilled by the oracle and

L(X,Z; Θ) =
1

2

∑
n

(
xn − X̂injnkn

)2

.

4 Proposed Model
Since the oracle in Problem 1 is in reality not in hand, we
solve the relaxed problem by estimating set of true indices
Z to obtain the minimizer Θ̂. To handle missing indices, we
consider them as latent variables. Let in ∈ [I] be the la-
tent variable denoting the true index which is not given, and
în ∈ {[I] ∪ ∅} be the given index, which can be observed or
missing. We hypothesize the latent variable in is generated
from the following distribution:

pI(in |̂in) =

{
δ(in, î) (în = î ∈ [I])

Unif (1, I) (̂in = ∅),
where δ(a, b) is the delta function taking 1 if a = b, or 0 oth-
erwise, and Unif (1, I) is the categorical uniform distribution
from 1 to I . pJ and pK are also defined in the same way. The
above definition means that, in prior, we have no informa-
tion about true index in if given index în is missing, whereas
true index in is always the same as the given index if it is
observed. In our model, we infer those latent variables (i.e.,
missing indices) and learn tensor decomposition simultane-
ously, which improves the accuracy of tensor decomposition
as will be shown in the experiments.

The generative process of our proposed model is written as
follows:
• Generate Θ ∼ pΘ(·|λ)
• For n from 1 to N

– Generate in ∼ pI(·|̂in)

– Generate jn ∼ pJ(·|ĵn)

– Generate kn ∼ pK(·|k̂n)

– Generate xn ∼ N(·|X̂injnkn , 1)

where N(·|µ, σ2) is Gaussian distribution with mean µ and
variance σ2, and pΘ(·|λ) is the prior distribution of Θ with
some parameter λ depending on the tensor decomposition
model. Fig. 1 shows the graphical model of the proposed
model. Note that the proposed model allows the duplicated
indices, that is , there exist samples n1 and n2 such that în1

=
în2

, ĵn1
= ĵn2

, and k̂n1
= k̂n2

.
The following proposition states that, if we could estimate

the true indices correctly for all n, the MLE of Θ in this model
is identical to the solution of Problem 1:

Proposition 3. If the estimted indices Z̄ are the same as the
true indices Z, the following holds:

arg min
Θ∈P

L(X,Z; Θ) = arg max
Θ∈P

p(X|Z̄,Θ). (1)

Proof. We can write the log-likelihood as follows:

ln p(X|Z̄,Θ) = −1

2

∑
n

(
xn − X̂injnkn

)2

+ C,

where C is some constant, which concludes the proof.

With regard to the above proposition, we can say that we
can solve Problem 1 at least approximately by estimating the
missing indices and Θ simultaneously.

To prevent from the overfitting, instead of MLE, we aim to
obtain the marginal MAP as follows:

Θ̂MAP = arg max
Θ

p(Θ|X, Ẑ, λ).

Since p(Θ|X, Ẑ, λ) ∝ p(X, Ẑ,Θ|λ), the marginal MAP can
be obtained maximizing the joint distribution of the model
written as follows:

ln p(X, Ẑ,Θ|λ) = ln
∑
Z

p(X,Z, Ẑ|Θ) + ln p(Θ|λ),

where

ln
∑
Z

p(X,Z, Ẑ|Θ) =

∑
n

ln
∑

injnkn

N(xn|X̂injnkn
, 1)pI(in |̂in)pJ(jn|ĵn)pK(kn|k̂n).

4.1 Parameter Inference
In this section, we develop a parameter inference algorithm
based on the variational MAP-EM algorithm. The joint dis-
tribution defined in the previous section can be written in the
variational form as follows:

ln p(X, Ẑ,Θ|λ) = L[q,Θ] +KL(q||p),

where

L[q,Θ] = Eq(Z)

[
ln
p(X,Z, Ẑ,Θ|λ)

q(Z)

]
,

KL(q||p) = Eq(Z)

[
ln

q(Z)

p(Z|X, Ẑ,Θ, λ)

]
,

and q is any distribution over Z. Since KL(q||p) > 0, the
joint distribution is always greater than L[q,Θ] that is called
variational lower bound (VLB). In the variational MAP-EM
algorithm, instead of directly maximizing the joint distribu-
tion, the VLB is maximized to obtain the marginal MAP by
alternatively performing E-step and M-step as described in
the following paragraphs.

In the E-step, L[q,Θ] is maximized with regard to q(Z)
with Θ fixed. Assuming the mean field approximation
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q(Z) =
∏

n q(in)q(jn)q(kn), and differentiating L[q,Θ] by
q(in = i), we get the following updating equation:

q(in = î) =
pI(in = î|̂in)ean,̂i∑
i pI(in = i|̂in)ean,i

, (2)

where an,i = − 1
2Eq(jn,kn)

[
(xn − X̂ijnkn

)2
]
. We can also

update q(jn) and q(kn) in the same way. Since q(in), q(jn),
and q(kn) depend on each other, we repeatedly calculate
them until they converge. Note that if în = î (i.e., în is
not missing), q(in) is instantly obtained as δ(in, î) because
p(in |̂in) = δ(in, î), which means that there is no need to cal-
culate q for observed indices.

In the M-step, L[q,Θ] is maximized with regard to Θ with
q(Z) obtained in the previous E-step fixed. Differentiating
L[q,Θ] by θ ∈ Θ, we get:

∂L[q,Θ]

∂θ
=
∑
n

∑
zn

q(zn)
(
xn − X̂zn

) ∂X̂zn

∂θ
+
∂ ln p(Θ|λ)

∂θ
,

where we denote zn = (in, jn, kn).
The concrete computations of the E-step and the M-step

depend on the tensor decomposition model, in other words,
depend on how to define X̂ijk and p(Θ|λ). In the next sub-
section, we describe the parameter inference algorithm for CP
decomposition as an example. However, we emphasize again
that any tensor decomposition models can be plugged-in to
our proposed model.

Parameter inference for CP decomposition
Recall that the parameters of CP decomposition are Θ =
{U, V,W}. Hereafter we write E [·] for Eq [·] if it is not con-
fusing. In the E-step, we can calculate an,i as follows:

an,i = xnU
T
i (E [Vjn ]� E [Wkn

])

−1

2
UT
i

(
E
[
VjnV

T
jn

]
� E

[
Wkn

WT
kn

])
Ui, (3)

where� denotes the Hadamard product, and we omit the con-
stant terms that are not needed to compute q(in).

In the M-step, pΘ(Θ|λ) needs to be defined. For CP de-
composition, we define pΘ(Θ|λ) as follows:

pΘ(Θ|λ) =∏
i

N(Ui|0, λ−1I)
∏
j

N(Vj |0, λ−1I)
∏
k

N(Wk|0, λ−1I),

where I denotes the identity matrix with the appropriate num-
ber of dimensions. Keeping in mind the above definition of
pΘ(Θ|λ), we differentiate L[q,Θ] by Ui, and get the follow-
ing updating equation:

Ui = (Gi + λI)
−1
Hi, (4)

where

Gi =
∑

n:in=i

q(in = i)
(
E
[
VjnV

T
jn

]
� E

[
Wkn

WT
kn

])
,

and

Hi =
∑

n:in=i

q(in = i)xn (E [Vjn ]� E [Wkn
]) .

V and W can also be updated in the same way. Since U , V ,
and W depend on each other, we alternatively update them
until they converge. The sufficient statistics of the algorithm
are E [Uin ], E [Vjn ], E [Wkn

], E
[
UinU

T
in

]
, E
[
VjnV

T
jn

]
, and

E
[
Wkn

WT
kn

]
for all n.

To summarize, the parameter inference algorithm for the
proposed model with CP decomposition is shown in Algo-
rithms 1-3. Every time q and Θ are updated, the related suffi-
cient statistics have to be also updated.

Complexity. We show the time complexity of the pro-
posed algorithm for higher-order tensors. Suppose we have
M th-order tensor where the number of dimensions of mth
mode is Im. The time complexity of the proposed al-
gorithm with CP decomposition model for each iteration
is O(R3

∑
m Im + R2(N +

∑
m N−mIm)), where N−m is the

number of missing indices for mth mode. This complex-
ity becomes the same as the conventional CP decomposition
when there is no incomplete samples (i.e., N−m = 0 for all
m).

5 Experiments
In this section, we report the results of the experiments con-
ducted on both synthetic and real datasets. We compare the
three variants of the proposed model, and three baselines as
follows:
• MAP-EM (Proposed): Algorithm 1 with q inferred

by the data.
• Uniform (Proposed): Algorithm 1 with q fixed as

the categorical uniform distribution.
• Prior (Proposed): Algorithm 1 with q fixed as

the distribution that is estimated from the data as a his-
togram. It is obtained as q(in = i) = N+

i /N
+
I for all n

where N+
i is the number of samples where în = i, and

N+
I is the number of samples where în 6= ∅.

• Minimal: CP decomposition using only complete sam-
ples.
• Complete: CP decomposition using only modes with-

out missing indices. For example, when the 3rd index
of the 3rd-order tensors can be missing, this method
performs matrix decomposition using only 1st and 2nd
modes.
• CMTF: coupled matrix and tensor factorization proposed

in [Acar et al., 2011b]. This method can utilize a set of
incomplete samples by representing it as a matrix.

The first three are our proposed models with q set in different
way.

Reproducibility. Our code to reproduce the experiments is
available at https://goo.gl/W4K86I. The real dataset
used in the experiments in Section 5.2 is publicly available.

5.1 Synthetic Dataset

Settings. To see on what condition the parameters of the pro-
posed model is correctly recovered, we generate two data ten-
sors with a large/small number of samples. The size of the
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Algorithm 1 Variational MAP-EM algorithm for the pro-
posed model with CP decomposition (3rd-order)
Input: R, λ.
Output: U , V , W .

1: Initialize q, U , V , and W .
2: Calculate all sufficient statistics.
3: while convergence criterion is met do
4: # E-step
5: for n = 1 to N do
6: while convergence criterion is met do
7: if în = ∅ then
8: Update-q(in) (Alg. 2)
9: Update E [Uin ] and E

[
UinU

T
in

]
10: end if
11: if ĵn = ∅ then
12: Update-q(jn) (Alg. 2)
13: Update E [Vjn ] and E

[
VjnV

T
jn

]
14: end if
15: if k̂n = ∅ then
16: Update-q(kn) (Alg. 2)
17: Update E [Wkn ] and E

[
WknW

T
kn

]
18: end if
19: end while
20: end for
21: # M-step
22: while convergence criterion is met do
23: Update-U (Alg. 3)
24: for each n where în = ∅ do
25: Update E [Uin ] and E

[
UinU

T
in

]
26: end for
27: Update-V (Alg. 3)
28: for each n where ĵn = ∅ do
29: Update E [Vjn ] and E

[
VjnV

T
jn

]
30: end for
31: Update-W (Alg. 3)
32: for each n where k̂n = ∅ do
33: Update E [Wkn ] and E

[
WknW

T
kn

]
34: end for
35: end while
36: end while

Algorithm 2 Update-q(in)

Output: q(in)
1: z ← 0
2: for i = 1 to I do
3: Calculate an,i (Eqn. 3).
4: z ← z + exp(an,i).
5: end for
6: for i = 1 to I do
7: q(in = i)← exp(an,i)/z.
8: end for

tensors is 10 × 10 × 10. First, we generate each element
of U true ∈ R10×R, V true ∈ R10×R, and W true ∈ R10×R

from Gaussian distribution N(·|0, λ−1) with λ = 1.0 and
R = 3. Then, we randomly divide the set of all indices
D = [10] × [10] × [10] into training set Dtrain (90%) and
test set Dtest (10%). For each index in Dtrain, we generate
S samples from Gaussian distribution N(·|Xijk, 1), where
Xijk =

∑
r U

true
ir V true

jr W true
kr . S = 1 for small dataset,

Algorithm 3 Update-U
Output: U

1: for i = 1 to I do
2: Gi ← O # zero matrix of size R×R
3: Hi ← 0 # zero vector of size R
4: end for
5: for n = 1 to N do
6: z ← E

[
VjnV

T
jn

]
� E

[
WknW

T
kn

]
7: zz ← E

[
VjnV

T
jn

]
� E

[
WknW

T
kn

]
8: if în = ∅ then
9: for i = 1 to I do

10: Hi ← Hi + q(in = i)xnz
11: Gi ← Gi + q(in = i)zz
12: end for
13: else
14: Hîn

← Hîn
+ xnz

15: Gîn
← Gîn

+ zz
16: end if
17: end for
18: for i = 1 to I do
19: Ui ← (Gi + λI)−1Hi

20: end for

whereas S = 10 for large dataset. For each index in Dtest,
we use Xijk itself without Gaussian noise.

We compare the cases where the different ratio of in-
dices are missing. After generating the data tensors, we
delete the 3rd index by probability α. We vary α from
0 to 0.9 by the step size 0.1. For each α, we perform
5 trials and report the mean and the standard deviation of
the results. Note that since Complete discards the 3rd
mode, it predicts the test samples as matrix decomposi-
tion, i.e., X̂ijk =

∑
r UirVjr for all k. We use the root

mean square error (RMSE) defined as follows: RMSE =√
(1/|Dtest|)

∑
(i,j,k)∈Dtest

(Xijk − X̂ijk)2.
Results. Figs. 2(a) and 2(b) show the results. We do
not compare Prior because the prior is the categorical
uniform distribution in this experiment, which is the same
as Uniform. On the large dataset (Fig. 2(a)), MAP-EM
achieves the smallest RMSE among all compared methods,
which means that the parameters are correctly recovered. On
the other hand, on the small dataset (Fig. 2(b)), Uniform
is better than MAP-EM when α ≥ 0.6, which indicates that
the distribution q is not correctly inferred when the number
of samples is not enough and the missing ratio is too large.
CMTF and Minimal are almost always worse than MAP-EM
and Uniform, meaning the proposed model works reason-
ably well for our problem where some indices are missing.
Complete does not work at all when the missing ratio is not
so large, because it discards all the information about the 3rd
mode when at least one sample is incomplete. However, it
shows comparable (or even better) results to other methods
when the number of samples is too few and the missing ra-
tio is too large, because, in such a case, the provided data is
almost a matrix (i.e., most of 3rd indices are missing).

5.2 Real Dataset
Settings. We use the Twitter dataset that is publicly avail-
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(a) Synthetic (large; S = 10) (b) Synthetic (small; S = 1) (c) Twitter data

Figure 2: The experimental results on (a) synthetic data (large), (b) synthetic data (small), and (c) Twitter data. The x-axes denote the ratio of
missing indices, and the y-axes denote (a,b) the RMSE or (c) the AUC. Error bars denote the standard deviation. MAP-EM achieves the best
results except when there is too few samples and the ratio of missing indices is too large.

able.1 This dataset consists of about 13M geotagged tweets.
We construct a user-hashtag-location (3rd-order) tensor as
follows. First, we discard all the tweets posted from outside
the US. The number of remained tweets posted from inside
the US is about 2.85M. Then we extract user ids, hashtags,
and locations from those tweets. We use 49 states that ap-
pear in the dataset as locations. We filter user ids that oc-
cur less than 5 times, and hashtags that occur less than 30
times. As a result, we construct a 25297 × 2616 × 49 tensor
X where Xijk = 1 if user i posts hashtag j at location k,
or Xijk = 0 otherwise. The number of non-zero elements is
125, 017. Since this data is very sparse, we randamly sample
the same number of zero elements as non-zero elements, that
is, the number of observed (zero and non-zero) samples is
N = 250, 034. We randomly divide the samples into training
set (70%) and test set (30%).

As the same as the previous experiment, we delete the 3rd
index by probability α that vary from 0.1 to 0.9 by the step
size 0.2. To delete the indices, we randomly sample user ids
by probability α, and then delete the 3rd index (i.e., location)
of the samples. For each α, we perform 5 trials and report the
mean and the standard deviation of the results. Parameters
are set to λ = 1.0 and R = 10.

We use the area under ROC curve (AUC) [Fawcett, 2006]
as the evaluation metric. The AUC is often used to evaluate
binary classification. In this experiment, our objective is to
predict the value of the target data tensor, which takes 0 or 1.
Hence this task can be evaluated as binary classification. To
calculate the AUC, we first sort the test samples in descending
order in terms of its predicted values. Then we calculate the
number of true positives and false positives at each position
in the ranking, and calculate the AUC using those numbers.

Results. Fig. 2(c) shows the results. First of all, our three
proposed methods (i.e., MAP-EM, Prior, and Uniform)
outperform CMTF and Minimal, which suggests that the
proposed model works well even on the real dataset. How-
ever, when there are too many missing indices (α ≥ 0.7),
Complete shows the highest AUCs, which agrees with the
previous experiment on the small synthetic data.

Comparing the three proposed methods, MAP-EM and

1
http://noisy-text.github.io/2016/geo-shared-task.html

Prior show almost the same AUCs, which are larger than
that of Uniform especially when α ≤ 0.5. We observed
that the q inferred by MAP-EM is very close to the prior q in
this experiment. This observation suggests that, even though
MAP-EM can infer the global trend, it cannot infer the correct
q for each sample n when the missing ratio is large.

Although we do not report the actual computational time,
it almost follows the theoretical time complexity.

6 Conclusion
In this paper, we define and address a tensor decomposition
problem where the indices can be missing. We propose a
probabilistic generative model that handles the missing in-
dices as a latent variables, and develop the parameter infer-
ence algorithm based on the variational MAP-EM algorithm.
The experimental results show that our proposed model out-
performs the baselines except when there are only too few
samples and the ratio of missing indices is too large. There
are options how to deal with the latent variables. Performing
the full variational MAP-EM works the best when the enough
samples are available, whereas when we are given only scarce
samples, simply using the prior q achieves reasonable results
and reduces the computational cost.

There are several open problems as follows. First, it is
important to theoretically guarantee how many samples are
needed to recover the missing indices correctly. Second,
since any tensor decomposition models can be plugged-in
to our proposed model, it is interesting to develop the con-
crete parameter inference algorithm for those models. Fi-
nally, we can also consider different models that are not as-
suming Gaussian. For example, for 0-1 or count data such as
Twitter data, assuming Poisson or Bernoulli distribution for
p(xn|in, jn, kn,Θ) would be promissing.
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