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Abstract

What kinds of data does Label Propagation (LP)
work best on? Can we justify the solution of
LP from a theoretical standpoint? LP is a semi-
supervised learning algorithm that is widely used to
predict unobserved node labels on a network (e.g.,
user’s gender on an SNS). Despite its importance,
its theoretical properties remain mostly unexplored.
In this paper, we answer the above questions by
interpreting LP from a statistical viewpoint. As
our main result, we identify the network generative
model behind the discretized version of LP (DLP),
and we show that under specific conditions the so-
lution of DLP is equal to the maximum a poste-
riori estimate of that generative model. Our main
result reveals the critical limitations of LP. Specif-
ically, we discover that LP would not work best
on networks with (1) disassortative node labels, (2)
clusters having different edge densities, (3) non-
uniform label distributions, or (4) unreliable node
labels provided. Our experiments under a variety
of settings support our theoretical results.

1 Introduction

On most networks, such as social networks, nodes are asso-
ciated with labels such as gender, age, and locations of peo-
ple [Mislove et al., 2010]. Since these node labels are missing
in most cases [Backstrom er al., 2010], predicting these miss-
ing labels is meaningful for some applications [Chaudhari et
al., 2014; Jacob et al., 2014; Sen et al., 2008]. For Internet
advertising, for example, prediction of user demographics is
beneficial for both users and companies so that suitable adver-
tisements can be placed. We call this the node classification
problem—we want to recover the missing node labels given
the observed node labels and the network structure.

Label Propagation (LP) [Bengio et al., 2006] is a standard
algorithm for solving the node classification problem.! Given
a network and partially observed node labels, LP minimizes

!"Throughout this paper, we consider LP as an algorithm to solve
the node classification problem, although it can be applied to any
type of data by constructing a network based on the similarity of
data samples.
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the cost function, which consists of two terms that prefer that:
(1) predicted labels of connected nodes are the same, and (2)
predicted labels and observed labels are the same for each
labeled node (i.e., the nodes whose labels are observed). To
solve this optimization problem, LP propagates the observed
labels throughout the network along edges, which converges
to the optimal solution [Bengio et al., 2006].

Although LP works reasonably well in most cases, we do
not know exactly which kinds of data LP does and does not
work well on. This is our main research question (RQ). We
break down the details of this RQ into the following four
questions:

e RQO1: What type of node label is suitable for LP—
assortative, disassortative, or others? We say labels are
assortative when nodes with the same labels are densely
connected (e.g., age in SNS), or disassortative when
nodes with different labels tend to be connected (e.g.,
gender in SNS [Takac and Zabovsky, 2012]).

e RQ2: Should the density of intra-cluster edges be uni-
form or non-uniform? Some real networks have clusters
with varying densities; for example, in SNSs, classmates
form a densely connected cluster, whereas people in the
same city form a sparsely connected cluster.

e RQ3: Should the label distribution (i.e., the number of
occurrences of each label across the whole network) be
uniform or non-uniform? The label distribution is not
always uniform; people’s genders are almost uniformly
distributed, for example, whereas people’s home loca-
tions are not.

e RQ4: Can observed labels be allowed to be incorrect?
If so, with what probability? Observed labels could be
incorrect because of, for example, typing errors.

Admittedly, some of these questions have already been ad-
dressed individually. For example, at an objective function
level, it is clear that LP does not work at all with disassorta-
tive node labels. However, there has been no comprehensive
study that answers the above RQs at a much deeper level.
Meanwhile, in the network science community, a very sim-
ilar problem called the node clustering problem has been ex-
tensively studied. Although the objective of this problem is
also the prediction of node labels, the difference is that the
setting is unsupervised; i.e., all of the labels are assumed to
be unobserved. To solve this problem, the Stochastic Block-
model (SBM) is often used [Wang and Wong, 1987]. SBM is
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a generative model of a network that has a community struc-
ture. A remarkable property is that, in contrast to LP, SBM
explicitly characterizes the generative process of a network
by a few interpretable parameters, which means we can un-
derstand the underlying structures of a real network by esti-
mating these parameters. The above RQs are therefore com-
pletely clarified on SBM.

Present work. Although the problem settings are differ-
ent (semi-supervised and deterministic vs. unsupervised and
probabilistic), LP and SBM share the same goal. This raises a
natural question: Is there any theoretical connection between
LP and SBM? More specifically, can we interpret LP also as a
probabilistic network generative model like SBM? The short
answer is yes, and we use this key fact to derive the answers
to the above RQs.

We explain the main idea step by step as follows. First,
we propose a semi-supervised network generative model—
Partially Labeled SBM (PLSBM)—that extends SBM so that
it accepts partial supervision. Second, to make the discus-
sion rigorous, we also introduce a discretized version of LP
(formally introduced in Section 5.1), which we call discrete
LP (DLP). Finally, as our main result, we show that the solu-
tion of DLP is identical to the maximum a posteriori (MAP)
estimate of PLSBM with restricted parameters. This result
reveals the theoretical properties of DLP (and LP) and allows
us to answer the RQs. We also perform experiments on syn-
thetic networks. The results on the synthetic datasets support
our theoretical results.

To summarize, the key contributions of this paper are
highlighted as follows.

e We propose PLSBM, which is the key to connecting the
LP and network generative models.

e We prove that the solution of DLP is identical to the
MAP estimate of a special case of PLSBM where some
parameters are restricted. This means that we identify
the data generative process behind DLP.

e Using the above result, we show the settings in which LP
does and does not work well, by answering RQ1-RQ4.

We emphasize that our interdisciplinary findings between
LP and SBM are not only theoretically interesting, but also
have several potential impacts, including the following:

e The connection between LP and SBM allows us to inter-
change the findings from the so far different two commu-
nities, Al / machine learning and network science. This
enables a deeper analysis of the theoretical properties of
both models.

e Now we have a guideline for using LP—we can safely
choose whether or not to use LP on a target dataset on
the basis of the answers to our four RQs.

2 Related Work

Label Propagation. There are many algorithms related to
LP; Harmonic Function [Zhu et al., 2003], Local and Global
Consistency [Zhou et al., 2004], Adsorption [Baluja et al.,
2008], and Modified Adsorption [Talukdar and Crammer,
2009] are the most commonly used algorithms that search for
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the fixed point state where as many connected nodes as pos-
sible have the same class labels. Whereas these algorithms
are designed for assortative labels, OMNI-Prop [Yamaguchi
et al., 2015] is an LP-like algorithm that is applicable to both
assortative and disassortative labels.

There are few studies exploring LP from a theoretical per-
spective. In his doctoral thesis [Zhu et al., 2005], Zhu ana-
lyzed LP from several perspectives, for example, interpreting
LP as a series of random walks or an electric network, and ex-
ploring connections between LP and Gaussian processes. A
recent study [Kyng et al., 2015] also theoretically investigated
related but not identical problem of graph regression, propos-
ing a fast algorithm to solve it. To the best of our knowledge,
our study is the first to address the network generative model
behind LP.

Stochastic Blockmodel. SBM is one of the most basic net-
work generative models; it takes an unattributed network and
outputs the clustering of nodes. This basic model has been ex-
tensively studied from a variety of perspectives such as phase
transition [Zhang et al., 2014], degree distribution [Karrer
and Newman, 2011], and cluster size [Zhang et al., 2016].
However, to the best of our knowledge, there has been no
study bridging the gap between LP and SBM to share the
findings from both research communities. In this paper,
to bridge this gap, we propose a network generative model
that is designed to be as simple as possible, in contrast to
other relatively complex models [Newman and Clauset, 2015;
Chang and Blei, 2010; Nallapati ez al., 2008; Cho et al., 2016;
Kim and Leskovec, 2012; Pfeiffer 111 et al., 2014]. Our model
is viewed as performing classification when it is provided
some degree of supervision, and it is viewed as performing
clustering when it is not provided any supervision. Hence, in
the rest of this paper, we discuss in detail both the node classi-
fication problem and the node clustering problem, which are
defined in the next section.

3 Settings

Let G = (X,Y) be an attributed graph with N nodes, M
edges, and K distinct labels. X is the N x N adjacency

matrix where z;; = 1 if node ¢ and j are connected, and
x;; = 0 otherwise. Y is the N x K partially observed
label assignment matrix where y;, = 1 if node 7 has la-

bel k, and y;» = O for k' # k. There are two types
of nodes, namely, labeled nodes V¥ = {1,...,Nr}, and
unlabeled nodes VY = {N; + 1,...,N}. Each labeled
node is explicitly assigned its label, whereas labels of un-
labeled nodes are unknown. That is, for each labeled node
1 <4 < Np, y, is a 1-of-K vector, whereas for each unla-
beled node Ny, +1 <7 < N, y, is a0 vector.

Using the above notation, we formally define the K -class
node classification problem, which LP solves, and the K-
cluster node clustering problem, which SBM solves, as fol-
lows:

Problem 1 (K -class node classification).

e Given: anadjacency matrix X and a partially observed
label assignment matrix Y,
e Find: the label of each unlabeled node i € V'V
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(a) SBM (b) PLSBM

Figure 1: Graphical models of (a) SBM and (b) PLSBM. Shaded
nodes represent the observed variables.

Note that in the K -class node classification problem, we as-
sume that at least one label assignment for each class is pro-
vided.

Problem 2 (K -cluster node clustering).

e Given: an adjacency matrix X and the number of clus-
ters K,

e Find: the cluster assignment for each node i € V1 U
VY.

3.1 LP: Label Propagation

Given an attributed graph G, the objective of LP is to predict
the label of each unlabeled node i € VU. Let fir € [0,1] be
the value that represents how likely it is that node ¢ has label
k. The objective function of LP to be minimized is defined as
follows:?

QUF; XY, \) = Emem
i=1 j=1

ey
where A > 0 is the trade-off parameter, and || - ||2 denotes
the ¢2-norm. The first term prefers that the predicted labels
are the same as the observed labels, whereas the second term
prefers that connected nodes have the same predicted labels.
Note that since y, is a 0 vector for unlabeled node i, the first
term works as a regularization term for unlabeled nodes so
that f, moves toward 0. By setting the derivative of ) equal
to zero, we have the closed-form solution of F' as follows:

F=(I+)L)'Y, )
where L = D — W is the graph Laplacian, and D is the
diagonal degree matrix with d;; = Zj\;l Tij

After F is obtained, node labels are predicted by discretiz-
ing F as follows:

Definition 1 (Solution of LP).
A L (ifk = arg max fi)
[ZLP]ik = { S 3)

0 (otherwise)

“This objective function is the same as [Zhou et al., 2004] except
for the square root degree normalization [Zhou er al., 2004].
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3.2 SBM: Stochastic Blockmodel

SBM takes an adjacency matrix X and a user parameter K as
input, and outputs K clusters of nodes. SBM has two param-
eters v and II, which have to be estimated from X. v isa K-
dimensional vector for which Zszl v = 1, and y; € [0,1],
which represents the fraction of the number of nodes in clus-
ter k. II is the K x K symmetric matrix whose element
71 € [0, 1] represents the probability that a node in cluster &
and a node in cluster [ are linked by an edge.

The key idea of SBM is stochastic equivalence, which
means that nodes in the same cluster have stochastically the
same connection patterns (i.e., nodes in cluster k are all as-
signed my; for all [). SBM produces clusters composed of
stochastically equivalent nodes, which means that the result-
ing clusters are not always densely connected.

Generative Model
Let Mult denote the multinomial distribution and let Bern
denote the Bernoulli distribution. Also, let z; be the 1-of-
K indicator vector where z;; = 1 indicates that node 7 is
predicted to belong to cluster k. The generative process of
SBM is then written as follows:
e Foreachnodei=1,..., N
— Generate z; ~ Mult(-|7y)
e For each node pair (i, j)
- Generate x;; ~ Bern(-|z1T1z;)
In the generative process, z; is generated for each node by the
multinomial distribution with parameter «. Then, x;; is gen-
erated for each node pair by the Bernoulli distribution with
parameter ziTsz, which equals 7y if z;; = 1 and z;; = 1.
The graphical model of SBM is shown in Fig. 1(a).
Based on this generative process, the log-likelihood of
SBM is written as:

K
InP(X,Z|IL,~) = ZZzikln'yk
i=1 k=1

N N K K
+ Y DI ez (Inmy’ 4+ In(1—m) )

Inference
We follow [Daudin er al., 2008] who developed the varia-
tional EM (VEM) algorithm for estimating the SBM parame-
ters.

In the E-step, we update the posterior distribution ¢(Z) as
follows:

q;xexp [Iny+a;+(Indl) > g, (4)
JEN(3)
where q; = q(z;) for brevity, and a@; = In(11T —

I > i3 1 denotes the vector with appropriate dimen-
sions where all elements are 1.
In the M-step, we then update the parameters II and ~ as
follows:
N N
>im1 ijl Tijqikdjl

Tkl = , an

N N
Dim1 2o jo1 dikdjl

LN
k:NZIQik- (5)
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The iterative update of g, II, and = is guaranteed to con-
verge, which achieves the local maxima of the marginal log-
likelihood [Daudin et al., 2008].

4 PLSBM: Partially Labeled SBM

SBM is an unsupervised model; i.e., its estimate of the cluster
structure is based solely on the network structure X. How-
ever, when the partially observed labels Y are given, we
should use them because it will make clustering more accu-
rate. This motivates us to introduce PLSBM.

4.1 Generative Model
Now we consider that, in addition to X, Y is also generated
by the model. Since the given observed labels are possibly in-
correct, we introduce an additional parameter «« € [0, 1] that
represents the probability of the correctness of the observed
labels. Let B be the K x K matrix where by, = « for all &,
and bg; = ﬁ for k # [. The generative process of PLSBM
is written as follows:
e Foreachnode:=1,...,N
- Generate z; ~ Mult(-|7y)
e Foreachlabelednodei=1,..., N,
- Generate y; ~ Mult(-|Bz;)
e For each node pair (i, j)
- Generate 7;; ~ Bern(-|z1T1z;)
Note that the only difference between SBM and PLSBM is
that PLSBM generates Y (see Fig. 1).
The log-likelihood of PLSBM is written as:

InP(X,Y,ZI,«a,v) =nP(X,Z|IL,v)+ n P(Y|Z,a),

N, K K
mP(Y|Z,«a) = Z ZZZW In by,
i=1 k=1 1=1

where P(X, Z|II, ) is the same as in SBM, and P(Y'| Z, o)
is the likelihood of generating partially observed labels Y.

4.2 Inference

Inspired by [Daudin et al., 2008], we derive the VEM algo-
rithm of PLSBM. Details of the derivation are omitted since
it is not very different from [Daudin er al., 2008].

In the E-step, we update the posterior distribution ¢(Z) as
follows:

g, xexp | lny + In By, + a; + (InIT) Z q; |- (©)
JEN(3)
The difference from SBM (Eqn. (4)) is the effect of Y. If it
is observed that node ¢ has label & (i.e., y;5x = 1), the second
term on the right-hand side is In by, where the k-th element
is larger than the other elements when o > 1/K. This means
that node ¢ is supervised toward being predicted as label k.
In the M-step, we then update the parameters II, «, and «
as follows:

N K
Zi:Ll Zk:l qikYik
N K :
Dict 2okt Yik
The updating equations for IT and -y are the same as those for
SBM.

)

(07
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4.3 SBM as a Special Case of PLSBM

We prove that SBM is a special case of PLSBM when we
ignore observed labels Y.

Proposition 2. If o = 1/ K, the difference between the like-
lihood functions of SBM and PLSBM is constant.

Proposition 2 indicates that, when the given labels are
assumed to be completely random, the log-likelihoods of
SBM and PLSBM are equivalent, and any estimation method
(e.g., maximum likelihood, MAP, or other Bayesian infer-
ence method) results in the same estimators of the parameters.
Proof is omitted since it is obvious.

S Theory
5.1 DLP: Discrete Label Propagation

Recall that LP solves the continuous optimization problem
for F' and then discretizes it to predict node labels (Defini-
tion 1). This approach is advantageous in terms of compu-
tational efficiency. As shown in Eqn. (2), LP is essentially
a problem of inverting (I + AL), which is efficiently solved
by calculating the Neumann series [Harville, 1998]. The post
hoc discretization is not satisfactory, however, in terms of the
principle of optimization. Indeed, the discretized solution
(Def. 1) is not the minimizer of Eqn. (1) under the 1-of-K
constraint. Moreover, there is no explicit objective function
for which the discretized solution (Def. 1) is the minimizer.
Motivated by this, we reformulate the LP problem as a dis-
crete optimization problem that we call DLP.

The input and the output of DLP are the same as those for
LP. The objective function of DLP is the same as that of LP
(Eqn. (1)) except that ) can be negative.® This is because even
if A < 0, the solution of DLP does not diverge because of the
constraint that the z;’s are 1-of-K vectors. The solution of
DLP is defined as follows:

Definition 3 (Solution of DLP).
Zprp =argminQ(Z; X, Y, \), (3)
Zev
where U is the entire space consisting of N 1-of-K vectors.

Since the solution of LP (3) is an approximated solution of
the objective function of DLP (8), the achievable minimum of
LP with post hoc discretization is always worse than or equal
to the minimum for DLP.

Proposition 4. Forany X, Y, and )\,
Q(ZDLP;X7Y7)\) < Q(Z[JD,X,Y,A)

5.2 DLP as a Special Case of PLSBM
First we define the MAP estimate of PLSBM as follows:
Definition 5 (MAP estimate of PLSBM).
ZpLsem = arg max P(Z|X,Y I, ~v, a).
Zeb

SIf A < 0 in LP, the second term of Eqn. (1) can be made ar-
bitrarily small by increasing some of the F's, and the solution can
diverge to infinity.
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Now, we show the sufficient conditions for the equivalence
between the MAP estimate of PLSBM and the solution of
DLP.

Theorem 6. Let Zprp (M) be the set of solutions of DLP
with A € R. Let us introduce two variables p,v € [0,1] and

let ZPLSBM(Ma v, @) be the set of MAP estimates of Z with
the subclass of PLSBM where

e Condition 1. v, = 1/K for all k,
e Condition 2. TI = puI + v(11" — I), and

e Condition 3. the number of nodes assigned to cluster k
is specified in advance for all k.

Then, ZDLP(A) =

tions are satisfied:

e Condition 4. if A\ > 0, then pp > v; else if A < 0, then
u<v;elseif \ =0, then = v; and

(K Dy #0=v)
e Condition 5. \In “=— PIEEmE

Proof sketch. The log-likelihood of PLSBM satisfying Con-
ditions 1 and 2 is rewritten as follows:

ZpLsem (1, v, @) if the following condi-

=In

nP(Z|X,Y,II,~,0) =1 oK —1) EL T
n o) =In ——= zZ Y.
) ) ) ) 1 o — K3 y’L

N N

1—-v
+ In M Z Z(zijz?zj +272;)+C, 9
i=1 j=1

where C' is some constant.
Denoting by n,, = ). 2 the number of nodes assigned

to cluster k we can write: Y3 Zj 2Tz, = YK n2,
Since this term becomes constant under Condmon 3, accord-
ing to Eqn. (9) we can again rewrite the log-likelihood as fol-
lows:

a(K —1) .
_ - T
mnP(Z|X,Y,II,v,a) =ln - Eﬁ 2z, Y,

ZZLL‘”Z zj+C',  (10)

i=1 j=1

)
where C’ is some constant. In addition, we can rewrite
Eqn. (1) as follows:

-Q(Z; X, Y, \) = Zz yL—i—)\ZZx”z zj+C",
=1 j=1

1)

where C” is some constant. To show the equivalence of the

maximizers, Eqns. (10) and (11) need to be equal up to a

positive scale ¢/ > 0. This requires, by comparing the first

and second terms in Eqns. (10) and (11), we need to have

In O‘(IK al) = andIn y((1 u; = /. Substituting the former

into the latter, we obtain Condition 5. In addition, because ¢’

is positive, } In £ 8 Z; must be positive, which yields Con-

dition 4. O
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According to Conditions 4 and 5, A (the LP parameter) is
related to IT and « (the PLSBM parameters). It is interesting
to note that the label correctness probability a and the edge
probability IT in PLSBM are controlled by just one parameter
Ain DLP.

5.3 Answers to Our RQs

Having proved Theorem 6, we are now in a position to answer
our four RQs.

(RQ1) Assortativity and disassortativity. Condition 4 im-
plies that positive A leads to . > v. This indicates that since
LP requires A > 0, it works only on networks with assorta-
tive labels where the diagonal value 1 of I is larger than the
off-diagonal value v of II.

(RQ2) Uniform or non-uniform cluster density. Condi-
tion 2 implies that DLP assumes the uniform cluster density.
Therefore, DLP may not work well on networks that have
clusters with different densities, i.e., those for which the di-
agonal elements of IT are not the same.

(RQ3) Uniform or non-uniform label distribution. Condi-
tion 1 implies that DLP assumes the uniform label distribu-
tion. This means that DLP may not work well for cases in
which the ratio of labels in each class is non-uniform.

(RQ4) Label correctness probability Condition 5 implies
a large odds ratio (7£-)/(1%;), which indicates strong as-
w v

sortativity, leads to large a.. This means that, when LP deals
with a network having strong assortativity, it requires « to be
large. However, there could be labels with strong assortativ-
ity but small « (observed labels that are incorrect with high
probability.) Therefore, DLP may not handle the case where
there are many label noises but strong assortativity.

Although we interpret DLP as a special case of PLSBM in
Theorem 6, there is still a gap between DLP and LP, namely,
that LP involves a continuous relaxation. Furthermore, for
PLSBM, Theorem 6 only shows the equivalence of its MAP
estimate, not the solution given by the VEM algorithm. This
gap will be shown to be sufficiently small, however, in the
next section.

6 Experiments

6.1 Settings

We use PLSBM to generate the synthetic datasets (i.e., X
and Y') with varying parameters. We also vary the ratio of
the training nodes (N, /N) from 0.1 to 0.9 by steps of 0.2.
For each setting, we generate 20 networks with N = 1,000
nodes and report the mean accuracy and the standard devia-
tion. Note that although using the LFR benchmark [Lanci-
chinetti et al., 2008] would be interesting, it is better to use
PLSBM to generate the data to investigate the properties of
LP. We compare SBM, PLSBM, and LP. SBM and PLSBM
learn all the parameters from the data, whereas LP determines
its parameter by 5-fold cross validation.

We use the standard classification accuracy for our evalu-
ation metric, which is defined as the ratio of the number of
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Figure 2: Experimental results at different settings. (a,f) Dense assortative vs. dense disassortative. (b,g) Uniform vs. non-uniform cluster
densities. (c,h) Uniform vs. non-uniform label distribution ~. (d,i) High vs. low label correctness probability «. (e,j) Sparse assortative vs.

sparse disassortative.

correctly classified test nodes against all test nodes. For eval-
uating SBM and PLSBM, which essentially perform cluster-
ing, we take the best match between correct labels and the
results of cluster numbers.

Reproducibility. Our code to reproduce the experiments is
available at https://goo.gl/VWggEy.

6.2 Results

We perform experiments on four scenarios each of which cor-
responds to one of our four RQs.

(RQ1) Assortativity and disassortativity. We compare the
results on assortative and disassortative labels with K = 2.
For the network with assortative labels, we use 3 S
(4L 0L, whereas for the network with disassortative la-

bels, we use IT(Y = ( 9.1 0:15). The other parameters are set
to v = (0.5,0.5) and o = 0.99. The results (Figs. 2(a) and
2(f)) show that LP does not work on the disassortative labels.

(RQ2) Uniform or non-uniform cluster density. We com-
pare the results on networks with uniform and non-uniform
cluster densities with & = 3. For the uniform case, we use IT
whose diagonal elements are all 0.2, and for the non-uniform
case, we use II whose diagonal elements are II;; = 0.2,
Il = 0.15, and 133 = 0.1. Off-diagonal elements of IT in
both settings are all 0.05 (so generated labels are assortative).
The other parameters are set to uniform v and o = 0.99. The
results (Figs. 2(b) and 2(g)) show that the accuracy of LP is
lower than that of SBM and PLSBM when the cluster den-
sity is non-uniform, indicating that LP does not work well on
networks with a non-uniform cluster density.

(RQ3) Uniform or non-uniform label distribution. We
compare the results on K = 3 networks with uniform (v =
(1/3,1/3,1/3)) and non-uniform (v = (1/2,1/4,1/4)) la-
bel distributions. We use o = 0.99, and IT where II;; = 0.15
if k =l and IIg; = 0.1 if & # [. The results (Figs. 2(c) and
2(h)) show that LP does not work in the non-uniform setting
even when the 90% of nodes are used as training nodes.
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(RQ4) Label correctness probability. We compare the re-
sults on networks with high (v = 0.9) and low (o = 0.6) la-
bel correctness probabilities. The other parameters are set to
K = 2, uniform «, and IT = . Figs. 2(d) and 2(i) show
that, whereas SBM and PLSBM achieve almost 100% accu-
racy in both cases, LP shows lower accuracy when oo = 0.6,
meaning that LP does not adapt to varying o when IT is fixed.

7 Discussion

As shown in Figs. 2(a) and 2(f), on the dense networks,
PLSBM achieves almost 100% accuracy. More surpris-
ingly, SBM achieves almost the same high performance even
though it does not use any observed labels. On the other hand,
as shown in Figs. 2(e) and 2(j), SBM and PLSBM do not work
well when we use 0.1 - IT(*) and 0.1 - TI(¥).. This behavior is
explained by the notion of detectability [Saade et al., 2014].
That is, without any supervision, SBM can recover true labels
perfectly if the given network satisfies |¢;, — cout| > K1/C,
where K = 2, ¢;,, and c,,,; are the diagonal and off-diagonal
parts of IT multiplied by NV, respectively, and c is the average
degree. Whereas II in the dense setting has the detectabil-
ity property, IT in the sparse setting does not, which is also
confirmed from the results.

In contrast, LP does not perfectly classify the nodes even
on the dense networks, indicating that LP does not leverage
the detectability. This can be explained by the weak expres-
sive power of LP compared to PLSBM. As shown in Theorem
6, LP can handle only the subclass of networks that PLSBM
generates because of some fixed parameters.
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