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Abstract

Multi-Model Reuse is one of the prominent prob-
lems in Learnware [Zhou, 2016] framework, while
the main issue of Multi-Model Reuse lies in the
final prediction acquisition from the responses of
multiple pre-trained models. Different from multi-
classifiers ensemble, there are only pre-trained
models rather than the whole training sets provided
in Multi-Model Reuse configuration. This config-
uration is closer to the real applications where the
reliability of each model cannot be evaluated prop-
erly. In this paper, aiming at the lack of evalua-
tion on reliability, the potential consistency spread
on different modalities is utilized. With the consis-
tency of pre-trained models on different modalities,
we propose a Pre-trained Multi-Model Reuse ap-
proach (PM2R) with multi-modal data, which real-
izes the reusability of multiple models. PM2R can
combine pre-trained multi-models efficiently with-
out re-training, and consequently no more training
data storage is required. We describe the more re-
alistic Multi-Model Reuse setting comprehensively
in our paper, and point out the differences among
this setting, classifier ensemble and later fusion on
multi-modal learning. Experiments on synthetic
and real-world datasets validate the effectiveness
of PM2R when it is compared with state-of-the-art
ensemble/multi-modal learning methods under this
more realistic setting.

1 Introduction
Machine learning techniques have achieved great success in
many applications. Nowadays, many machine learning mod-
els are integrated as a part of functional software. Sim-
ilar to the developments of software engineering research,
machine learning researchers pay more attentions on the
reuse of pre-trained learners in real applications [Zhou, 2016;
Pan and Yang, 2010].
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Huawei Fund (YBN2017030027) and the Collaborative Innovation
Center of Novel Software Technology and Industrialization.

Model reuse is with different levels: transfer learning tech-
niques reuse models by obtaining middle level representa-
tions [Wei et al., 2016; Long and Wang, 2015; Isele et al.,
2016] for cross domain flexibility of models. However, it is
notable that in transfer learning both source domain and tar-
get domain data are required during the training phase, i.e.,
transfer learning is a technical engineer oriented reuse.

Nevertheless, learnware describes a substantially different
paradigm of model reuse: pre-trained models are ready with
specifications which are sufficient for users. In general, users
can fetch a group of similar models for their task. Note that
there are no source domain training examples in this kind
of model reuse, and pre-trained learners cannot be modi-
fied in their model essentially. This type of reuse paradigm
is more practical in real cases since most users can only
understand the specifications instead of managing the skills
of training/refining the model parameters. In addition, al-
though Zhou [2016] reserves the interface of retaining model
in learnware, users cannot afford re-training on the target do-
main in practice for lacking of their own techniques and ex-
periences, computational consumptions, and more important,
the lack of labeled data in target domain. Thus, the learnware
paradigm tends to propose a re-training free and general user
oriented model reuse.

How to reuse multi-model predictions becomes the most
important problem in this case. Since ideally, one can di-
rectly find a pre-trained model with the exact same specifica-
tion as the target domain requirement. However, due to the
differences between the environments of pre-training and the
user’s target domain, it is more common that one cannot find
a “perfect” pre-trained model but a set of analogous models.
We denote this problem as Multi-Model Reuse (MMR) prob-
lem in the context. MMR problem is similar to the scene
when a customer chooses the same type of goods in the su-
permarket. Ideally, if the customer is well experienced and
with demands precisely described, he can directly buy the ap-
pointed goods. However, a more real case is that he may take
more time on hesitating for equal confidence assignments to
the set of items. In MMR problem, users can also use some
ensemble techniques, e.g., the majority voting, for the confi-
dence assigned equally when there is no prior knowledge pro-
vided. Moreover, in ensemble learning, we can use weighted
voting for better performance since model-wise confidence
can be obtained with evaluation on the ground truth. Nev-
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ertheless, in MMR problem, labeled data are absent, and the
confidence re-weighting cannot be obtained directly. Similar
phenomenon occurs in the market example, it is also ridicu-
lous to ask the feelings before customers buy items.

Nevertheless, one in a supermarket can eventually make
the decision by reading the specifications, comparing the
“detail” and “consistency” of those descriptions. The “con-
sistency” in production specification can be described from
multiple aspects (modalities). In multi-modal learning, re-
searchers have explored the consistency of predictions from
different modalities for semi-supervised learning [Blum and
Mitchell, 1998; Wang et al., 2016], clustering [Li et al., 2014;
Xu et al., 2015], theoretical analysis [Wang and Zhou, 2013]
etc., and these show that the consistency among multiple
modalities can be very informative in the situation where pre-
cision evaluation cannot be applied.

In this paper, we propose the Pre-trained Multi-Model
Reuse method, PM2R, to tackle the MMR problem under
the multi-modal learning scenario. Different from ensemble
methods, no training data and validation instances are pro-
vided in the MMR problem, thus PM2R is a re-training free
strategy. Comparing to the multi-modal late fusion methods,
the MMR emphasizes user oriented reuse and requires the
pre-trained models fixed, therefore, PM2R is built with no
modification on pre-trained models. PM2R can be imple-
mented from various ways, yet in this paper, a belief prop-
agation style updating is demonstrated and the effectiveness
of this PM2R implementation is shown in the experiment.

The rest of this paper starts from introduction of related
work. Then we propose our approach, followed by experi-
ments and conclusion.

2 Related Work
This work focuses on reuse of multiple models and is related
to multi-classifier systems, transfer learning and multi-modal
learning. In this section, we first review these topics and fig-
ure out the main differences between these existing work and
our new settings eventually.

Multi-classifier systems or know as ensemble learning are
proposed to increase generalization abilities of single type of
base classifiers. Breiman [1996] proposed Bagging, which
trains a component model from several training sets gener-
ated from the original training set. Schapire [1990] proposed
Boosting, which generates a series of component neural net-
works whose training sets are determined by the performance
of former ones. Zhou et al. [2002] analyzed the ensemble
learning, pointed that with a portion of selected base learners,
the ensemble learner can be with even higher generalization
ability than using all base learners and consequently proposed
the GASEN approach which selects a portion of neural net-
works based on the evolved weights to make up the ensemble;
[Ueda, 2000] optimized linear weights to combine compo-
nent predictions based on statistical pattern recognition the-
ory. Stacking [Wolpert, 1992] is a special kind of ensemble
which can be regarded as a complicated vote scheme gener-
ated by a second level classifier. The majority voting can be
used for our MMR problem for lacking of prior knowledge on
pre-trained models, however, an obvious gap between MMR

problem and ensemble techniques lie in the availability of la-
beled training data and the existence of modifiable models.
In the MMR setting, no labeled data can be revisited since
there are rarely labeled training examples stored in learnware
repositories, and no apparent adjustments can be made by in-
experienced users.

Transfer learning concentrates on solving the prediction
tasks on target domains. In recent, many transfer learning
approaches are proposed for expanding the scope of learning
applications, e.g., Tan et al. [2017] proposed a selective learn-
ing algorithm to solve the distant domain transfer learning
problem, Kandemir [2015] performed knowledge transfer by
projecting the target data onto the source domain and linearly
combining its representations on the source and target domain
manifolds. However, similar issues in ensemble learning are
also appeared on solving MMR with transfer learning: it re-
quires both source and target labeled data for transfer learn-
ing, while in MMR setting, only unlabeled data can be gath-
ered by model reuse users (denoted as user domain data with-
out any confusion).

Without labeled examples in user domain, model evalua-
tion cannot be precisely established in MMR setting, and con-
sequently, it may be hard to re-weight the confidences of mul-
tiple models with classification precision. Applications with
complicated object descriptions are usually brought forward
the problem of multi-modal learning. In multi-modal learn-
ing, different modalities can provide uncorrelated predictions
and consistency becomes an important evaluation than preci-
sion. Blum and Mitchell [1998] trained two classifiers sepa-
rately on two modalities and then uses them to label unlabeled
instances for each other, Wang and Zhou [2013] presented
the theoretical analysis on co-training when neither modality
is sufficient. Multi-modal learning approaches can be cate-
gorized into 3 types, i.e., pre-fusion, subspace, late-fusion,
and late fusion is more closed to MMR problem, e.g., Wang
et al. [2013] proposed the WNH to integrate all modal fea-
tures and learn the corresponding weights for every modality,
Ye et al. [2015] proposed RANC in a hybrid fusion manner.
However, both in WNH and RANC, the classifiers of differ-
ent modalities are adjusted in different iterations during the
training phase, which is not agreed with the MMR setting.

There have been some model reuse approaches, e.g.,
FMR [Yang et al., 2017] which tries to integrate the discrim-
inative ability of fixed models into one deep network, and
eventually can be applied in various applications. However,
in our MMR settings, a different barrier of model reuse is
tackled, i.e., weighting or selection of proper multiple mod-
els for reuse is mainly focused.

We propose the PM2R approach for classifying new in-
stances directly from a collection of responses from different
pre-trained models with various modalities. Note that PM2R
can be implemented from various ways, yet a belief propaga-
tion style updating is demonstrated in this paper.

3 Proposed Method
3.1 Notations
In this paper, without any loss of generality, suppose there
are N instances on the user’s side, which are denoted by
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Figure 1: The overall flowchart. Test instances are with vari-
ous modalities, while the pre-trained multi-models are from other
datasets (the upper side); the predictions gathered are formed into
matrices {A1, A2, · · · , AM}, the final predictions are obtained by
PM2R with the consistency among different modalities considered.
Note that PM2R is built with no modification on pre-trained models.

D = {x1,x2, · · · ,xN}. Each instance has d−dimensional
inputs as raw features, i.e., xi = [xi1 , xi2 , · · · , xid ] ∈ Rd.
Meanwhile, in multi-modal learning, instance space can be
denoted as, at least M parts without any overlap, v =
{v1, v2, · · · , vM}, where vm ∈ Rdm is raw features from
j−th modality, d = d1 + d2 + · · · + dM . Therefore, in
multi-modal settings, instance xi can be further denoted as
(xi,v1

,xi,v2
, · · · ,xi,vM

), where xi,vm
denotes the raw fea-

ture representation of the m-th modality of i-th instance. In
this paper, those multiple modalities are homogeneous ones,
e.g., face photographs of the same person with different ex-
pressions or from different poses. Suppose there are C pre-
trained models in “learnware market” chosen and denoted
as {f1, f2, · · · , fC}. The corresponding prediction of user’s
side instances on a concerned modality is Am

i,j = fj(xi,vm),
and Am

i,j ∈ {−1,+1}.

3.2 The Pre-trained Multi-Model Reuse Method
PM2R focuses on the MMR problem under the homoge-
neous multi-modal learning scenario. Different from ensem-
ble methods, there are no training data or validation set pro-
vided in the MMR settings. Meanwhile, the MMR empha-
sizes user oriented reuse and requires the pre-trained mod-
els fixed, therefore, PM2R is built with no modification on
pre-trained models. In practice, as a re-training free strat-
egy, PM2R only has the corresponding predictions of user’s
side as inputs. More specially, for the m−th modality, we
can denote the prediction values of all the instances as Am ∈
RN×C , where

Am =
{
Am

i,j , i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , C}
}
.

That is, for each modality, C classifiers are invoked for pre-
dicting and returns N predictions for all instances. Assign-
ment bipartite graph Gm(Xm, V, Em) is further used for rep-
resenting the responses between instances and models in de-
tail, where the superscript m represents the m-th modality,
Xm is the set of instances on the m-th modality, V is the set
of pre-trained models, and (im, j) ∈ Em means the j-th clas-
sifier makes prediction on instance i on modality m. Eventu-

ally, there are M assignment bi-graphs {G1, G2, · · · , GM}
due to the multi-modal setting. The overall flowchart is
shown in Fig. 1.

To solve the MMR problem under this setting, we claim
that the modal consistency should be considered and PM2R
can be implemented in various ways. Yet in this paper, a self-
consistent weight propagation strategy is used for passing the
weights between the two sides of bi-graph, and a message
passing style algorithm operating two types of messages are
proposed for seeking the equilibrium state of the weight prop-
agation system. In detail, two types of messages are used,
i.e., the instance messages {zim→j}, (im, j) ∈ Em captur-
ing how likely instance i being predicted as positive on the
m−th modality, and the model messages {yj→im} capturing
how reliable the j-th model is.

Implementation by Considering Multi-Modal as One
First, we can concatenate the prediction values of each modal-
ity, denoted as A = [A1, A2, · · · , AM ] ∈ RN×(CM). Be-
sides, the set of edge assignment between the pre-trained
model j and predict instance im of different modalities can
be concatenated as E = E1∪E2 · · ·∪EM as well. Specially,
the instance messages can be denoted as {zi→j}, (i, j) ∈ E,
and the model messages can be represented as {yj→i}. In
each round, all the messages are updated as follows:

zi→j =
∑
j
′ 6=j

Ai,j
′ yj′→i

yj→i =
∑
i
′ 6=i

Ai
′
,jzi′→j ,

(1)

where the first is generally the weighted majority voting ac-
cording to how reliable every model is, and the second is up-
dating the reliability according to how many times the model
agreed. It is notable that the inherent updating of model mes-
sages utilizes all the instance with multi-modal information.
This approach is denoted as the PM2Rone in the following
text. The pseudo code of PM2Rone is given in Algorithm 1.

Implementation by Considering Consistency Explicitly
Besides considering multi-modal as one, a more reason-
able approach lies considering the consistency between dif-
ferent modalities. The PM2Rone method implicitly uses
multi-modal information, while we also implement PM2R
by utilizing the consistency explicitly between different
modalities in iterations. In PM2R all messages are up-
dated separately according to the consistency index function
I(zim→j

∑
m zim→j ≥ 0). I(stat.) = 1 iff. the statement

stat. is true, which figures out whether modal consistency
meets. In this version, Am and Em are independent for dif-
ferent modalities. In detail, after passing the message from
model to instance, the instance messages of each modality,
i.e., zi1→j , · · · , ziM→j , are re-consisted and updated accord-
ing to following equations:

zim→j =


zim→j , (zim→j

∑
m
zim→j ≥ 0),∑

m zim→jI(zim→j

∑
m zim→j ≥ 0)∑

m I(zim→j

∑
m zim→j ≥ 0)

, otherwise,

(2)

The pseudo code is described in Algorithm 2.
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Algorithm 1 The pseudo code of PM2Rone
Input:
A ∈ RN×(CM) is outputs of C classifiers on M modalities
E = E1 ∪E2 · · · ∪EM , is the union of all linkages between

multi-modal features and pre-trained models
K is the maxIter
Output:
{p1, p2, · · · , pN}: the final predictions for all N instances

1: for all (i, j) ∈ E do
2: Initialize model messages y0j→i with random values

under Normal distribution
3: end for
4: for k = 1, 2, · · · ,K do
5: for all (i, j) ∈ E do
6: zki→j =

∑
j′ 6=j Ai,j′ y

(k−1)
j′→i

7: end for
8: for all (i, j) ∈ E do
9: ykj→i =

∑
i′ 6=i Ai′ ,jz

k
i′→j

10: end for
11: end for
12: for all i do
13: pi = sign

(∑
j Ai,jy

K
j→i

)
,

14: end for

4 Experiment
In the MMR problem, PM2Rone/PM2R can classify new in-
stances directly from a collection of predictions provided by
a bundle of different pre-trained models with various modali-
ties. Besides, PM2Rone/PM2R are built without modification
on pre-trained models.

In this section, we will provide the empirical investigations
and performances of PM2Rone/PM2R from the users’ side
of model reuse. In particular, investigations on both synthetic
dataset and real-world tasks, i.e., gender classification, are
studied. The real-world task is to predict the gender of people
with different modalities, i.e., in different expressions, poses,
etc. There are 3 different subsets in gender prediction task.

Some of the ensemble methods without re-training can be
used in MMR problem, thus, PM2Rone/PM2R are compared
to the widely used ensemble method, i.e., Majority Voting
(denoted as MV). For PM2Rone/PM2R are related to late
fusion style multi-modal learning approaches, WNH, RLF,
RANC are also compared in our experiments. The test sets
are drawn from the users’ side data with bootstrap, and re-
peated for 30 times for each task. For both synthetic and real
world task, the average accuracies and standard deviations are
recorded. In detail, the compared methods are listed as:

• MV: classifies instances from different modalities with
the collected predictions provided by different pre-
trained models via majority voting, i.e., suppose there
are M modalities and C classifiers, then the majority
voting is performed on M × C prediction values;

• WNH: combines all prediction values from different
modalities together and then uses l2,1-norm to regular-

Algorithm 2 The pseudo code of PM2R

Input:
{A1, A2, · · · , AM} ∈ RN×C are outputs of C classifiers on
M modalities seperately
{E1, E2, · · · , EM} are the linkages between different modal
instances and pre-trained models
K is the maxIter
Output:
{p1, p2, · · · , pN}: the final predictions for all N instances

1: Initialize y0j→im , m ∈ {1, 2, · · · ,M} as steps 1-3 in Al-
gorithm 1

2: for k = 1, 2, · · · ,K do
3: Update zkim→j , m ∈ {1, 2, · · · ,M} as steps 5-7 in Al-

gorithm 1
4: for all (im, j) ∈ Em do
5: Update zkim→j as in Eq. 2
6: end for
7: Update ykj→im , m ∈ {1, 2, · · · ,M} as steps 8-10 in

Algorithm 1
8: end for
9: pi = sign

(∑
m

∑
j A

m
i,jy

K
j→im

)
, i ∈ {1, 2, · · · , N}

ize the modality selection process and finally gives the
prediction [Wang et al., 2013];
• RLF: minimizes the rank of indicator matrix to maxi-

mize the modal consistency and fuse the predicted con-
fidence scores of multiple models [Ye et al., 2012]. Note
that RLF can only provide the final prediction rather than
predictions on single modality;
• RANC: truncated low-rank regularized approach for

fusing the prediction values, modal consistency is con-
sidered through truncated nuclear norm regularization.
Final fusing steps in [Ye et al., 2012] are used;
• BPE: belief propagation style method. In implementa-

tion, belief propagation is invoked on every modality,
and then majority vote across different modalities for fi-
nal predictions [Yedidia et al., 2003].

4.1 Synthetic Data
Synthetic data are generated according to [Khetan and Oh,
2016]. For every modality, the prediction confidence of in-
stances i is parameterized by qi ∈ [0, 1] which represents
how likely the instance is positive. More specifically, when
j−th pre-trained model predicts the i−th instance on m−th
modality as positive, we assign the instance as positive with
probability qi. Hence, when qi is close to 0.5, the instances on
the concerned modality can be regarded as confusing and is
difficult to correctly classify. Meanwhile, the j-th pre-trained
model is parameterized by pj ∈ [0, 1], which represents how
trustable the model is. The closer pj approaches one, the
more trustable this model is. pj closed to 0.5 indicates the
model providing a random guess. With the qi and pj defined
above, we can get the expected prediction values of Am

i,j as:

E(Am
i,j) =

{
1 w.p. qipj + q̄ip̄j ,

−1 w.p. q̄ipj + qip̄j .
(3)
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Table 1: The accuracy (avg.± std.) of compared methods on syn-
thetic data. The best classification performance is bolded.

Single Modality Final

MV .754±.012 .756±.009 .757±.013 .765±.011 .771±.010 .901±.008
WNH .751±.012 .753±.010 .755±.013 .762±.012 .768±.010 .899±.008
RANC .779±.013 .778±.008 .770±.011 .781±.012 .817±.011 .936±.011
BPE .806±.007 .813±.005 .806±.007 .815±.008 .810±.007 .950±.006
RLF - - - - - .935±.005

PM2Rone .808±.007 .815±.006 .810±.008 .817±.008 .811±.008 .952±.007
PM2R .808±.006 .813±.006 .811±.005 .814±.008 .812±.007 .967±.004

Table 2: The accuracy (avg.± std.) of compared methods on *-Exp.
data. The best classification performance is bolded.

Acc.-Exp. Single Modality Final

MV .835±.017 .843±.017 .827±.014 .822±.009 .835±.012 .856±.013
WNH .816±.018 .861±.017 .821±.015 .813±.007 .832±.013 .875±.014
RANC .899±.001 .811±.000 .894±.002 .894±.000 .894±.000 .894±.001
BPE .816±.015 .840±.015 .797±.008 .816±.011 .813±.011 .827±.012
RLF - - - - - 572.±.016

PM2Rone .817±.015 .840±.014 .797±.008 .816±.011 .819±.011 .827±.012
PM2R .819±.012 .864±.010 .798±.008 .848±.012 .820±.010 .888±.007

Pos.-Exp. Single Modality Final

MV .864±.010 .859±.011 .888±.010 .840±.009 .856±.012 .912±.009
WNH .817±.010 .789±.011 .832±.010 .789±.009 .813±.012 .888±.010
RANC .936±.001 .936±.000 .936±.000 .936±.000 .936±.000 .936±.000
BPE .832±.011 .840±.010 .843±.013 .824±.008 .843±.009 .861±.007
RLF - - - - - .519±.019

PM2Rone .832±.012 .843±.010 .832±.013 .824±.006 .840±.007 .861±.006
PM2R .869±.013 .864±.012 .875±.013 .851±.007 .875±.008 .957±.007

WIKI-Exp. Single Modality Final

MV .904±.011 .922±.013 .896±.012 .885±.011 .875±.009 .941±.007
WNH .803±.011 .843±.012 .856±.012 .816±.011 .795±.009 .918±.007
RANC .872±.001 .872±.000 .872±.000 .872±.002 .872±.000 .872±.002
BPE .795±.010 .827±.011 .835±.009 .829±.007 .801±.009 .825±.007
RLF - - - - - .561±.029

PM2Rone .806±.009 .826±.012 .827±.008 .832±.007 .803±.008 .825±.006
PM2R .913±.008 .915±.010 .875±.011 .894±.009 .878±.010 .975±.006

In synthetic experiments, we can directly generate the pre-
diction values Am

i,j . In practice, we generated the values for
1000 instances with 5 different modalities. The synthetic
label for each instance is sampled i.i.d. from a Bernoulli
distribution with parameter 0.5. Meanwhile, the difficulty
qi is sampled from a Beta distribution with mean 0.75 (for
positive instances) or 0.25 (for negative instances), and the
variance is configured as 0.04. We re-sample the task dif-
ficulty for each modality to make the qi varies between dif-
ferent modalities. Then we construct 70 pre-trained models
whose reliability pj are sampled from a Beta distribution with
mean 0.6 and variance 0.01. Pre-trained models are sampled
only once for all modalities. Finally, the prediction values
of different modalities are calculated based on Eq. 3, and de-
noted as {A1, A2, · · · , AM}. PM2Rone/PM2R are invoked
for the prediction of model reuse, and prediction accuracies
are recorded in Table 1. From the table, it reveals that for both
single modality and final prediction, PM2Rone/PM2R almost
always achieve the best classification performance on mean
accuracy comparing to all other methods.

4.2 Gender Classification
In the real-world gender classification task, one of the
most widely used multi-modal datasets is used, i.e., CAS-
PEAL [Gao et al., 2008] is constructed by Chinese Academy
of Sciences (CAS). The CAS-PEAL is with large-scale face
images from different sources of variations, specifically, the
variations include poses, expressions, accessories, etc. The
whole dataset contains 99,594 images from 1040 individu-
als (595 males and 445 females). The CAS-PEAL is nat-
urally divided into 4 subsets with different variations, i.e.,
personal poses (denoted as Pos.) set containing 1038 in-
stances with different poses/modalities, expressions (denoted
as Exp.) set containing 376 instances with different expres-
sions/modalities, accessories (denoted as Acc.) set includ-
ing 434 instances with different accessories/modalities. For
each subset in Pos., there are 9 different shooting slopes, i.e.,
there are 9 cameras spaced equally in a horizontal semicir-
cular shelf to simultaneously capture images across different
angles in one shot. Besides, each subset also contains two
group of visual directions, i.e., all people are asked to look up
and down to capture 18 images in another two shots, there-
fore, we can divide the Pos. set into 21 modalities. We also
divide Exp. set into 5 modalities, and similarly, 6 modali-
ties for Acc. set (photoed with 3 different glasses or with 3
different caps). More detailed descriptions on subsets catego-
rization can be found in [Gao et al., 2008].

40 pre-trained models are generated on Pos. set, i.e., we ex-
tract traditional BOW features, Fisher vectors features, LBP
features, HOG features from Pos., then train 12 random for-
est models with different number of trees, 24 support vector
models with different kernel methods or costs using these fea-
tures respectively, besides, 4 deep models are also included,
which are trained with the raw features. Note that we can
treat the pre-trained models as a bundle of black-boxes in
whole from the “learnware market” side, while from the as-
pect of users’ side, all 40 models are pre-trained and un-
modifiable. Users of learnware models can only input raw
pictures from source datasets, e.g., Exp. set, consequently
the black-boxes of pre-trained models will output the predic-
tion values, and eventually the final predictions are obtained
with PM2Rone/PM2R together with compared methods. For
facilitating the notations, this setting is denoted as Pos.-Exp,
we also have investigations of Pos.-Acc. and Acc.-Exp..

To demonstrate the generalization ability of PM2Rone
/PM2R. We conduct more experiments with external data
sources. We utilize the WIKI [Rothe et al., 2015] dataset,
which is also a face dataset with the same input size, for mod-
els pre-training, and predict with Pos., Exp., Acc. sets sepa-
rately. WIKI is one of the largest datasets of face images pub-
licly available with gender and age labels. It contains 62,328
profiled images from pages of people from Wikipedia with
their profiles date of birth, name, gender and all images as-
sociated with that person. Therefore, we also have following
settings as WIKI-Pos., WIKI-Exp. and WIKI-Acc..

From Table 2 to Table 4, it can be observed that although
the models on single modality don’t provide satisfactory per-
formance in partial subsets due to the dis-matching of users
side tasks, PM2R can almost always achieve the best per-
formance on the final precision, except for Acc.-Exp. set.
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Table 3: The accuracy (avg.± std.) of compared methods on WIKI-Pos. data. The best classification performance is bolded.

WIKI-Pos. Partial Single Modality Final

MV .841±.010 .805±.009 .908±.016 .799±.009 .822±.009 .857±.006 .855±.017 .825±.007 .846±.005 .798±.014 .884±.010 .813±.012 .920±.006
WNH .820±.009 .802±.011 .876±.014 .777±.008 .783±.008 .810±.006 .819±.015 .815±.005 .811±.004 .777±.010 .812±.009 .814±.015 .951±.004
RANC .916±.007 .964±.012 .994±.012 .969±.010 .947±.014 .945±.006 .981±.011 .964±.014 .964±.007 .921±.013 .989±.012 .947±.003 .953±.012
BPE .838±.010 .806±.014 .908±.017 .822±.005 .817±.012 .832±.011 .847±.017 .828±.015 .842±.008 .805±.014 .845±.010 .807±.015 .911±.008
RLF - - - - - - - - - - - - .633±.025

PM2Rone .837±.010 .806±.007 .902±.015 .821±.009 .819±.013 .836±.013 .846±.011 .826±.014 .842±.003 .821±.011 .853±.017 .807±.010 .919±.012
PM2R .947±.005 .865±.017 .921±.004 .883±.013 .862±.010 .900±.011 .916±.011 .894±.014 .885±.011 .867±.013 .890±.011 .881±.003 .971±.008

Table 4: The accuracy (avg.± std.) of compared methods on *-Acc.
data. The best classification performance is bolded.

Pos.-Acc. Single Modality Final

MV .818±.019 .843±.010 .845±.013 .811±.007 .799±.018 .899±.014
WNH .774±.019 .811±.010 .822±.013 .779±.007 .758±.018 .898±.014
RANC .763±.010 .847±.019 .951±.014 .868±.013 .696±.009 .868±.011
BPE .809±.010 .827±.020 .831±.016 .797±.006 .783±.014 .870±.012
RLF - - - - - .638±.025

PM2Rone .809±.008 .827±.015 .831±.018 .797±.007 .786±.011 .873±.010
PM2R .818±.012 .864±.017 .854±.017 .813±.004 .827±.015 .926±.010

WIKI-Acc. Single Modality Final

MV .815±.011 .822±.016 .841±.009 .809±.012 .813±.017 .884±.011
WNH .786±.011 .807±.016 .813±.010 .772±.013 .802±.018 .907±.012
RANC .722±.020 .778±.019 .822±.024 .823±.023 .847±.012 .945±.018
BPE .795±.011 .818±.013 .831±.011 .786±.013 .809±.010 .866±.008
RLF - - - - - .631±.025

PM2Rone .795±.008 .818±.015 .832±.018 .786±.007 .809±.011 .866±.010
PM2R .816±.015 .830±.011 .844±.008 .824±.013 .823±.012 .947±.014

This phenomenon clearly reveals the effectiveness of consid-
ering modal consistency in model reuse. Without considering
the modal consistency explicitly, PM2Rone becomes inferior.
The performance of RANC is superior on single modality
in most case, however, the final prediction performance of
RANC is not as well as PM2R. This may be simply because
RANC is a multi-modal learning method and do not solve the
problem of striding over the gap between the source (original
models) and target (users side) domains.

4.3 Influences of Number of Models for Reuse
In order to explore the influence on the number of pre-trained
models, more experiments are conducted. In this section, the
number of modality in each investigation is fixed, while the
number of pre-trained models varies in {5, 10, · · · , 40}. The
average errors and standard deviations are recorded in Fig. 2.
Due to the page limits, we only list 4 datasets for verification,
i.e., Pos.-Acc., Pos.-Exp., WIKI-Acc. and WIKI-Exp.. From
these figures, it clearly shows that PM2R achieves the best
performance when the number of models is larger than 15.
However, without explicitly considering in the modal con-
sistency, the performance of PM2Rone is inferior to PM2R.
Besides, we can also find that PM2R achieves a stable per-
formance fast, and the errors of our model reuse strategies
decrease faster than compared methods, as the number of pre-
trained models increases. It is notable that with the number
of models increasing, the error would not decrease without
limits, especially for PM2Rone, the error may increase after
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Figure 2: Influences of number of models on gender tasks

the number of models is over a threshold. This may indicate
it is wise to select a proper number of models rather than all
feasible models in learnware repositories.

5 Conclusion

Model Reuse has attracted many attentions in machine learn-
ing communities recently. Multi-Model Reuse (MMR) prob-
lem is one of the challenge issues in Learnware. Aiming at
the problem of the final prediction acquisition from multiple
prediction values in MMR, we follow the learnware principle
and propose a multi-model reuse method under multi-modal
scenario: PM2R. Different from multi-classifiers ensemble,
there are only pre-trained models rather than the whole train-
ing sets provided in this setting. The difficulty of MMR lies
lacking the evaluation on reliability for pre-trained models,
PM2R solves this by utilizing the potential consistency on
different modalities. Experiments on synthetic and real-world
datasets validate the effectiveness of PM2R under this realis-
tic setting. It is interesting to expand PM2R style approaches
to multi-class scenario and provide theoretical analysis on
both generalization abilities and convergence.
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