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Abstract

Point of Interests (POI) identification using social
media data (e.g. Flickr, Microblog) is one of the
most popular research topics in recent years. How-
ever, there exist large amounts of noises (POI irrel-
evant data) in such crowd-contributed collection-
s. Traditional solutions to this problem is to set a
global density threshold and remove the data point
as noise if its density is lower than the threshold.
However, the density values vary significantly a-
mong POIs. As the result, some POIs with relative-
ly lower density could not be identified. To solve
the problem, we propose a technique based on the
local drastic changes of the data density. First we
define the local maxima of the density function as
the Urban POIs, and the gradient ascent algorithm
is exploited to assign data points into different clus-
ters. To remove noises, we incorporate the Lapla-
cian Zero-Crossing points along the gradient ascent
process as the boundaries of the POI. Points locat-
ed outside the POI region are regarded as noises.
Then the technique is extended into the geographi-
cal and textual joint space so that it can make use of
the heterogeneous features of social media. The ex-
perimental results show the significance of the pro-
posed approach in removing noises.

1 Introduction
Flickr contains more than 8 billions photos from 8.7 million
users; in addition, 3.5 million new photos are uploaded to
Flickr daily where a substantial number of these photos come
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Figure 1: Clustering results on Paris dataset, the POIs in alphabet
order are: (A) Arc De Triomphe, (B) Eiffel Tower, (C)
Louvre Museum, (D) Montparnasse Cemetery

from the mobile devices1. Such massive amounts of pho-
tos with heterogeneous meta-data (geographical and textual
tags) are valuable resources to support various mining tasks
and have resulted in many research problems, such as Point
of Interest (POI) identification [Yang et al., 2014], the POI-
based applications [Crandall et al., 2009], photo tag analysis
[Zhang et al., 2012] and travel pattern recognition [Zheng et
al., 2012].

According to our survey, plenty of travel recommendation
works [Cheng et al., 2013; Ying et al., 2013; Popescu and
Shabou, 2013; Ying et al., 2014] require a predefined POI
database as the input to their recommendation algorithms. It
is no doubt that the quality of the POI database is critical to
the success of their subsequent processes. In this paper, we
propose a robust noise-resistant approach for POI identifica-
tion using geo- and textual-tagged social media data.

In general, the POI database can be automatically con-
structed by performing some clustering algorithms over the
geo-tagged datasets (i.e., Flickr photos). However, the crowd-
contributed data like Flickr often contain large amounts of
noises which may generate pernicious effects to the quality
of the identified POI. A robust algorithm for POI identifica-
tion is definitely desired from POI-based applications.

1.1 Motivations & Contributions
When visiting a city, people may take photos anywhere,
and a large percent of which are POI irrelevant. In this
paper, such POI-irrelevant geo-tagged photos are regarded

1https://en.wikipedia.org/wiki/Flickr
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as noises, because they can cause the identified POIs to
be significantly deviated from the actual ones. To solve
the issue, some techniques are proposed[Ester et al., 1996;
Hinneburg and Keim, 1998; Zhao et al., 2009; Purwar and
Singh, 2016] , where a density threshold is used to filter out
the lower density points as noises. However, such a global
setting cannot handle the noise problem well because of the
various density values among POIs. Figure 1 shows the situ-
ations of the DBScan algorithm[Ester et al., 1996] with two
extreme settings of the density threhold. Figure 1(a) is the
result of a lower filtering threshold where two urban POIs,
(A) Arc De Triomphe and (C) Louvre Museum in the
downtown area are merged together. At the same time, a large
amount of irrelevant data points (geo-tagged photos) are in-
cluded in the result as well. In contrast, if we overly increase
the threshold (Figure 1(b)), then it will partition one POI re-
gion into many small clusters and at the same time some im-
portant POIs (e.g. (D) Montparnasse Cemetery) may
be omitted just because of their relatively lower density. In
this paper, we aim at tackling the problem.

To handle the noise issue, we propose a novel approach
based on the Laplacian Zero-Crossing Technique [Canny,
1986]. It is constructed based on the relative change of the
geographical density. This idea is motivated by an observa-
tion that the density of geo-tagged photos encounters a dras-
tic change when crossing the POI boundaries. The Laplacian
of the density function indicates the speedup of the gradien-
t ascending and it changes from positive to negative when
crossing the boundaries of the POI region (Zero-Crossing of
the Laplacian). We attempt to capture such “changes” auto-
matically in the identification, thus thoroughly overcome the
problem caused by the global density threshold setting.

Flickr photos are not only tagged with geographical loca-
tions, but also texts. The quality of the identified POI can be
further improved if the textual features are taken into accoun-
t. For such a sake, we apply Local Sensitive Hashing (LSH)
algorithm [Charikar, 2002] to transform a term vector into a
hashing value and exploit Hamming Distance [Manku et al.,
2007] to measure the difference between two photos in the
textual space. This technique can benefit our algorithm from
two aspectives: (1) it significantly reduces the computational
cost for the distance evaluation between textual tags (2) with
defined distance metric, it enables to extend Laplacian Zero-
Crossing algorithm into the Geographical × Textual joint s-
pace.

The contributions of this work are summarized as follows:

1. We propose a novel technique, Laplacian Zero-
Crossing Detecting, to remove noisy data (POI irrele-
vant), along the gradient ascent process. The technique
is based on the drastic change of the local density in-
crease, thus can thoroughly overcome the global setting
problem of the density threshold.

2. We extend the proposed techniques into the joint space
crossing both geographical and textual features, which
can further improve the quality of POI identification.

3. Experiments on real datasets collected from Flickr
demonstrate the effectiveness of our algorithm.

1.2 Organization of the Paper
The reminder of this paper is organized as follows. Section 2
and Section 3 respectively introduce the Hill-Climbing algo-
rithm and Laplacian Technology. In Section 4, we describe
how to integrate the textual feature into the framework. We
thoroughly evaluate our proposed techniques on the photo
collections of Flickr in Section 5. We discuss the related work
in Section 6 and summarize our work in Section 7.

2 POI Identification Using Gradient Ascent
Algorithm

Intuitively, a location is attractive if visitors take more photos
around it. In other words, the location with the highest density
of geo-tagged photos among its neighbors is probably a POI.
Formally, given a set of geo-tagged photos x1, . . . , xN in the
2-dimensional Euclidean space R2, the density function of a
location x can be estimated through a Kernel K as follows
[Cheng, 1995]:

Tg(x) =

N∑
i=1

K(
xi − x
g

) (1)

where g is the geographical bandwidth parameter (e.g. 100
meters). In this paper, Gaussian Kernel G is exploited for its
excellent features (i.e. simple and infinite differentiable, easy
gradient estimation). By replacing K by G in Equation 1, the
normalized gradient of Tg can be computed as:

OlnTg(x) =
OTg(x)
Tg(x)

=
2

g2
(

N∑
i=1

G(
xi − x
g

)xi

N∑
i=1

G(
xi − x
g

)

− x) (2)

Instead of OTg(x), we use OlnTg(x) in this work, for its fast
converging speed and easy estimation [Comaniciu and Meer,
2002].

In our scenario, the city POIs are located at places x with
O lnTg(x) = 0. To look for all POIs in a city, we start the
gradient ascent algorithm with any photo x0, then iteratively
conduct the following Hill-Climbing Algorithm:

xj+1 = xj + αOlnTg(x
j), j = 0, 1, 2...m (3)

where α is a parameter for controlling the size of the move-
ment, xj is the jth state of the gradient ascent movement
starting from x0, and xj will converge to xm with Tg(x

j)
monotonically increasing until O lnTg(x

m) = 0. Hence, the
xm is a stationary point and is called the location of a POI,
while the sequence of successive states xj , j = 0, ...,m is
called the trajectory of x.

According to the Capture Theorem, the trajectory is attract-
ed by a local maximum if the xm is close enough to it, the tra-
jectory will eventually converge to a local maximum which
serves as the urban POI. Thereby, Hill-Climbing approach
normally terminates if the shift distance is smaller than a pre-
defined threshold δg or the number of iterations exceeds the
corresponding constraint. Photos (or points) of converging to
the same local maximum are assigned into the same POI.
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Figure 2: Trajectories to Eiffel Tower and Musée du quai
Branly respectively: (a) Geographical Density Tg(x) (b) The
Magnitude of Geographical Shift Vector ||O lnTg(x)|| (c) Geo-
graphical Laplacian O2 lnTg(x)

As discussed in the Introduction Section, the POIs may
include a large percent of noise photos, which significantly
bias the identified results. To remove the noises, works [Ester
et al., 1996][Hinneburg and Keim, 1998] set a threshold fg ,
such that all photos with Tg(x) < fg are discarded as noises.
This technique is extensively employed in the Hill-Climbing
approach[Cheng, 1995; Comaniciu and Meer, 2002; Crandall
et al., 2009]. However, it is difficult to set a right value for fg
as discussed in the Introduction Section. In next subsection,
we propose a method for adaptively detecting noises based on
the change of the local density.

3 Laplacian Technique for Noise Reduction
To understand the principles of our proposed technique intu-
tively, in Figure 2 we plot the values of Tg(xj), ||OlnTg(xj)||
via the shift movement iteration xj (x-axis ) for two trajec-
tories which converge to POI Eiffel Tower and Musée
du quai Branly, respectively.

As shown in Figure 2 (a), the density of Eiffel Tower
is much larger than that of Musée du quai Branly. If a
global density threshold is used to remove the noise photos as
in [Ester et al., 1996; Hinneburg and Keim, 1998], it is proba-
bly that the less popular POI (Musée du quai Branly)
will be missed since its density (e.g. 500) is under the filter-
ing threshold fg (e.g. 2000). Generally speaking, landmarks
located in downtown areas often have a much larger densi-
ty value than those ones located in the marginal areas. To
solve the problem, we propose to adaptively filter the nois-
es according to the intensive change of the density along the
trajectories in the Hill-Climbing process.

In a Hill-Climbing process, the magnitude of OlnTg(xj)
indicates the increase rate of Tg(x) at the j-th step. Nor-
mally, Tg(xj) is monotonically increasing until xj converges
to the POI. It is intuitive that the gradient ascent movement
will encounter a steepest ascent when passing the boundary
of the POI. We define the Influence Region IR(xm) of a
urban POI xm as an area within which the xm and its neigh-
bor photos share similar densities. Thereby during the Hill-
Climbing process Tg(xj) changes steadily if it locates inside
the IR(xm), while it changes drastically when it is shifting

into the region. We attempt to capture such changes as the
critical points to separate noise and non-noise photos.

According to our observation, two types of trajectories are
distinguished: (1) The trajectory converges to a POI steadily.
(2) The trajectory passes one or more drastic changes in terms
of the density increase and finally reaches a POI.

In the former situation, the Hill-Climbing is a steady pro-
cess because the photo and its whole trajectory is located in-
side the “region” of the POI. While in the latter case, the rapid
intensive change of Tg(xj) could be interpreted as the bound-
ary of the POI. As shown in Figure 2, each intensive change
(e.g. xc1, xc2 and xc3) is probably a boundary towards POI
and separates (classify) the significant and relatively less sig-
nificant photos in terms of the geographical density. In other
words, the boundary-crossing can be utilized to automatically
distinguish the POI relevant photos from noisy ones.

Determining such kind of boundaries is a problem that aim-
s to find the critical point xc which locates in the boundary
between sparse area (i.e., steady change of Tg(xj)) and dense
area (i.e., intensive change of Tg(xj)) in a trajectory. For the
first type of trajectories, there is no critical point because of
the steady climbing process, which means it is unnecessary to
perform the noise filtering. Regarding the second type, only
part of the trajectory is included in the influence region while
the critical point services as the separation between POI rele-
vant photos and noisy ones.

3.1 Zero-Crossing Detecting of Laplacian
To detect such critical point(s) in a trajectory, we propose
to exploit the Laplacian Zero-Crossing of the logarithm-
normalized density function lnTg(x). This idea is motivated
by the edge detection problem in image processing [Canny,
1986]. Formally, the Laplacian operator of lnTg(x) is de-
fined as:

O2 lnTg(x) =
4

g2

∑N
i=1G(

xi−x
g )(xi − x)2

Tg(x)

− (
2

g2
+ ||O lnTg(x)||2)

(4)

Therefore, the Laplacian operator of lnTg(x) can be easily
computed by reusing the value of Tg(x) and ||O lnTg(x)||.
To apply the operator to the boundary detecting in the Hill-
Climbing algorithm, we compare the sign of O2 lnTg(x

j)
with that of O2 lnTg(x

j+1). The gradient movement is said
to cross the boundaries of a POI if we have:

(O2 lnTg(x
j) ≥ 0) ∧ (O2 lnTg(x

j+1) < 0) (5)

In case that two or more points, say xj1 , xj2 , ..., xjK , satis-
fy the Laplacian Zero-Crossing along the Hill-Climbing tra-
jectory, we define the boundary point as the one xjk which
makes the value of ||O2 lnTg(x

jk)− O2 lnTg(x
jk+1)|| (am-

plitude) maximum.
In Figure 2 (b) and (c), we plot the value of ||O lnTg(x)||

and that of O2 lnTg(x) via the Hill-Climbing shift, respec-
tively. Point xc1 , xc2 , and xc3 are detected as the Laplacian
zero-crossing points of O2 lnTg(x), which corresponds to the
local maximum points of ||O lnTg(x)||, respectively.
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Algorithm 1 Detection Influence Region By Laplacian
Input: POI set P with trajectories.
Output: POI set P ∗ with pruned trajectories

1: for each POI p in P do
2: for each trajectory t of p do
3: compute normalized Laplacian O2 lnTg(x)

′ by Equa-
tion 4

4: compute the zero-crossing points of normalized Lapla-
cian by Equation 5

5: if there exists one or more zero-crossing points then
6: find the zero-crossing point with maximum ampli-

tude xcmax

7: prune the trajectory t from xcmax to the end as t∗

and add t∗ as trajectory of p
8: else
9: add t as trajectory of p without pruning

Algorithm 1 demonstrates how to find the Influence Re-
gion by the Laplacian. The normalized Laplacian is comput-
ed (line 3), according to which the zero-crossing points are
detected. In Line 4 the critical point with maximum ampli-
tude is retained as the boundary point since it indicates the
most drastic change in density increment. An example is giv-
en in Figure 2 (c), the trajectory to Eiffel Tower has two
critical points xc2 and xc3 , and the xc2 with maximum ampli-
tude is selected to tune the trajectory (Line 6).

4 Extending the Techniques into the Joint
Space

Besides the geographical feature, Flickr photos are tagged
with rich texts too. Recently, works [Bui et al., 2015;
Vu and Shin, 2015] attempt to identify POI boundaries us-
ing texts, in which the POI boundaries are determined by
the drastic change of the text similarity between the detecting
point and the POI center. However, both works require that
the POI database, including the POI center (exact location)
and its textual description (extracted from Wikipedia), should
be available in advance. In this work, we extend the proposed
Laplacian Zero-Crossing technique to the joint space of geo-
graphical and textual dimensions. This idea is motivated by
the observation that the photos (or other geo-textual-tagged
social media like Tweeter) are often described using similar
texts within the same region of a POI. These two features to-
gether can further improve the quality of the identified POIs.

In the joint space of G× S (G: the geographical space; S:
the textual space), let x = (x:g, x:s) denote the point in the
space. Similar to works[Comaniciu and Meer, 2002; Yilmaz,
2007], we define the Multi-Variate Kernel in the joint space
as:

Gg,s(xi − x) = Gg(
xi:g − x:g

g
)Gs(

xi:s − x:s
s

) (6)

where g and s are the bandwidth parameters in the two spaces
respectively, xi = (xi:g, xi:s) and x = (x:g, x:s) are the joint
vectors of the geographical and textual features.

A joint vector x = (x:g, x:s) is of length 2 + d, where
the first two dimensions consist of the latitude and longitude
of the geo-tagged photos and the last d dimensions repre-
sent the total number of terms in the vocabulary. The x:s

records the TF · IDF 2 values of the tags in x. So, the
textual feature of a photo is represented as a d-dimensional
vector of terms. The distance of two text vectors xi:s − x:s
is defined as the Hamming Distance. Before computing the
Hamming Distance, it is necessary to convert the text vec-
tor into a Local Sensitive Hash (LSH) [Charikar, 2002;
Manku et al., 2007] string: a binary hashing value of length
l (l � d). Hamming Distance between the hashing values
gives the approximative textual difference between the re-
spective vectors (photos). LSH technique is adopted for sev-
eral reasons: (1) the cost to textual distance computation is
reduced: only l bits comparison; (2) LSH considers the sig-
nificance (weight) of the textual tag as well; and (3) the time
of neighborhood search in textual space can be further re-
duced if the corresponding indexing technology is employed.

With the Multi-Variant Kernel (c.f. Equation 6), the density
function in the joint space is defined as:

Tg,s(x) =
N∑
i=1

Gg,s(xi − x) (7)

With the Equation 7, we correspondingly have the normal-
ized gradient in the joint space as:

O lnTg,s(x) = (Oxg
lnTg,s(x),Oxs

lnTg,s(x)) (8)
where Oxg lnTg,s(x) is derived as:

2

g2
(

N∑
i=1

Gg(
xi:g − x:g

g
)Gs(

xi:s − x:s
s

)xi:g

N∑
i=1

Gg(
xi:g − xg

g
)Gs(

xi:s − x:s
s

)

− x:g) (9)

and Oxs
lnTg,s(x) is derived as:

2

s2
(

N∑
i=1

Gg(
xi:g − x:g

g
)Gs(

xi:s − x:s
s

)xs:i

N∑
i=1

Gg(
xi:g − xg

g
)Gs(

xi:s − x:s
s

)

− x:s) (10)

The Laplacian of the joint density function can be easily
computed as:

O2 lnTg,s(x) = O2
xg

lnTg,s(x) + O2
xs

lnTg,s(x) (11)

With the equations above, we can re-write the Hill-
Climbing and Laplacian Zero-Crossing algorithms in the
joint space. Geo-tagged photos are assigned into the same
POI cluster if both of their geographical and textual features
converge consistently. In Figure 3, we plot the density Lapla-
cian of the Trajectory to Eiffel Tower in the Joint Space.
Besides, in Figure 3 (b), the Top 6 TF ·IDF tags of Eiffel
Tower are listed: if the feature from the textual space is tak-
en into account, we will probably select xc3 as the critical
point of the trajectory since it reflects the density change in
the joint space. Further, as we will show in our experiments,
the Laplacian Zero-Crossing technique is more robust resis-
tant to the noises.

2TF and IDF follow the standard definitions as in information
retrieval. TF denotes the frequency of a term in a document. IDF
denotes the Inverse Document Frequency of the term.
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Figure 3: Trajectory to Eiffel Tower in the Geographical ×
Textual Joint Space: (a) Joint Laplacian O2 lnTg,s(x) (b) Top 6
Textual Tags in terms of the TF · IDF value

Table 1: Photos collections and MBRs dataset

City No. photos
No. points

Latitude and
Longitude

No.
MBRs

Paris 796,427
216,300

[
48.815 48.903
2.223 2.474

]
989

New
York

1,067,964
274,428

[
40.499 40.931
−74.258 −73.713

]
492

Rome 343,917
96,738

[
41.790 41.989
12.368 12.624

]
254

5 Evaluation
In this section, we extensively evaluate our proposed tech-
niques using three photo datasets collected from Flickr. We
use the Flickr API3 to collect the photos (including geograph-
ical locations, textual tags, and taken time) of a city. Specifi-
cally, we use the name of a city as the search query and keep
only relevant photos (i.e., the geo-location is inside of the
boundary of city) in our collection. The statistic of our dataset
collections is listed in Table 1. We select three representative
cities: New York, Paris and Rome. It should be noticed that
the number of photos is much more than the number of points,
because several photos might be taken at a single point.

In order to evaluate the identified Influence Region (IR),
we use the POI information extracted from OpenStreetMap4

as the ground truth: the POIs are retrieved if labeled with
“tourism”5. For each POI in the ground truth, we use its Min-
imum Bounding Rectangle (MBR) as the actual region. The
number of MBRs is shown in fourth column of the Table 1.

The objective of evalution is to measure the similarity be-
tween identified Influence Region (IR) and the ground truth
MBR. To achieve it, it is necessary to define metrics: (1) F1

score: P = TP
TP+FP , R = TP

TP+FN , F1 = P∗R∗2
P+R where P

and R denotes the precision and recall respectively. (2) Nor-
malized Mutual Information (NMI): NMI(MBR, IR) =

3http://www.flickr.com/services/api/
4www.openstreetmap.org
5visited on 2016/11/01

I(MBR;IR)
[H(MBR)+H(IR)]/2 , where I is the mutual information and
H is the entropy. Readers may refer to [Manning et al., 2008]
for the detail of the metrics. For both metrics, a higher value
indicates the better identification quality.

In this paper, several baseline approaches are evaluated in
our experiments (G : geographical space, S : textual space):

1. DBScan[Ester et al., 1996] is evaluated as well since
it is widely used in geographic based mining tasks[Ester
et al., 1996; Zheng et al., 2009; 2012; Ying et al., 2014;
Purwar and Singh, 2016].

2. HC refers to the Mean Shift approach[Cheng, 1995;
Hinneburg and Keim, 1998; Crandall et al., 2009; Zhao
et al., 2009]. HCg (Equation 2) andHCg,s (Equation 8)
refer to the Mean Shift in theG space and theG×S joint
space respectively.

3. Laplacian refers to our proposed noise resistent frame-
work. It is feature independent where Laplaciang and
Laplaciang,s denote its applications to the G space and
the G× S joint space respectively.

For all approaches, we select five different values for the
geographical setting: 10, 30, 50, 80, 100 (g in meter). For the
G×S joint space based approachesHCg,s andLaplaciang,s,
since we adopt Local Sensitive Hash (LSH) to accelerate the
textual distance computation, the length of Hash value (l) is
set to 128, while the textual bandwidth (s in Hamming Dis-
tance) varies among 30, 50, 60, 80, 100. The global thresh-
old (for min phts in DBScan and fg in HC) are set to 50
through our preliminary experiment.

In our implementation, R*tree is used as the index and
costs O(logN) for each geographical range query where
N is the number of points, thus the complexity of DB-
Scan is O(NlogN). The complexity of Hill-Climbing is
O(NMlogN) whereM is the number of average steps (shift-
s) for a point to coverage. The complexity of our approach is
O(NMlogN + NM), it incurs an additional cost of NM
because of the zero-crossing detection in each trajectory.

First, we evaluate the approaches in the geographical s-
pace. By varying the geographical parameter g, the perfor-
mances of the approaches in terms of F1 on three Urban
datasets are shown as in Figure 4. Laplaciang is better than
HCg in all settings because it can automatically find the cen-
tral area of the POI while the less significant points are la-
beled as noises. Compared to HCg , our Laplaciang gains
12% improvement on average in terms of F1 over the three
data collections. In NMI comparison, Laplaciang outper-
formsHCg andDBScan in all settings. On average, 3% im-
provement can be achieved if Laplacian Technique is applied
to HCg . The detail of NMI comparison is not listed because
of the space limitation. The experiments on the geographical
space demonstrate that the proposed Laplacian Technique is
an effective approach against noises.

Second, for HCg and DBScan we fix the geographical
parameter g to the setting which leads to the best F1: e.g.
Paris g = 50meters, New York g = 80meters, Rome g =
30 meters, and further evaluate the performance by varying
the value of s (textual bandwidth). In the G × S joint space,
in terms of the metric F1 (Figure 5), our approach improves
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(a) F1 on Paris Dataset (b) F1 on New York Dataset (c) F1 on Rome Dataset

Figure 4: F1 Evaluation By Varying Geographical Bandwidth g

(a) F1 on Paris Dataset (b) F1 on New York Dataset (c) F1 on Rome Dataset

Figure 5: F1 Evaluation By Varying Textual Bandwidth s

Table 2: Performance of Laplaciang,s Over HCg,s

g(meter) Paris New York Rome
F1 NMI F1 NMI F1 NMI

30 11.05% 2.99% 3.52% 1.57% 9.88% 1.29%
50 6.65% 1.98% 8.01% 1.82% 12.75% 1.99%
80 10.00% 2.65% 18.03% 2.80% 25.44% 1.98%
100 8.95% 2.21% 22.25% 2.26% 27.49% 2.60%

the identification quality in almost every setting. According
to the range setting of textual bandwidth (s), a small value
of s would lead to small POI regions. The corresponding
improvement made by our algorithm is limited. However, if
we set the textual bandwidth s large enough (larger than 50),
the performance of our proposed approach is outstanding.

As a summary, Table 2 shows the Performance of Join-
t Laplaciang,s over HCg,s. For each setting of g, we com-
pute the relative improvement over HCg,s by varing textual
bandwidth s. It is obvious that our approach works much bet-
ter if multi-features are used.

6 Related Works
Based on location-aware photos, the works [Kennedy and
Naaman, 2008] identify the POIs by information in the ge-
ographical space. Yang et al. [Yang et al., 2011; 2014]
propose to integrate multiple information into the identi-
fication process. The authors in [Crandall et al., 2009;
Kurashima et al., 2010] detect the landmarks (POI) by Mean
Shift[Cheng, 1995]. Zheng et al. in [Zheng et al., 2009] use
a density-based approach to find POI hierarchy. In [Zheng et
al., 2012], the authors attempt to detect the user travel pat-
terns by making use of geographical (DBScan [Ester et al.,

1996] based), temporal and textual features. The authors in
[Bui et al., 2015][Vu and Shin, 2015] propose different algo-
rithms to identify the POI boundaries while the POI location
information is required as the input.

Zheng and Xie [Zheng and Xie, 2011] construct a frame-
work to recommend personalized traveling sequences by col-
laborative filtering (CF)-based model. Ying et al. [Ying et
al., 2014] design a system to recommend POIs in a “random-
walk” manner. Liu et al. [Liu et al., 2013a] solve the same
problem by learning the geo-influence of the users’ behaviors
while [Liu et al., 2013b] focus on the POI category infor-
mation. Coincidentally, the authors in [Cheng et al., 2013]
and [Yuan et al., 2013] respectively study the successive and
time-aware recommendation. Based on the Web Knowledge,
Adam et al. [Rae et al., 2012] design a POI information rec-
ognization framework. Ying et al. [Ying et al., 2013] propose
a framework to extract users’ traveling patterns. The works
mentioned above require a geo- and text-ware POI database
which can be automatically constructed by our algorithm.

7 Conclusion

In this paper, we propose a novel noise resistent framework
for discovering Urban POIs based on textual-tagged foot-
prints. We provided a technique to identify the POI influ-
ence region by Laplacian. Besides we also demonstrated how
to integrate the geographical and textual information of the
photos into the discovering process. Finally, extensive ex-
periments are conducted to verify our claims and discussions.
We believe that our techniques are particularly useful in mod-
ern travel recommendation works.
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