
Abstract
In this paper, we propose a deep reinforcement
learning algorithm to learn multiple tasks
concurrently. A new network architecture is
proposed in the algorithm which reduces the number
of parameters needed by more than 75% per task
compared to typical single-task deep reinforcement
learning algorithms. The proposed algorithm and
network fuse images with sensor data and were
tested with up to 12 movement-based control tasks
on a simulated Pioneer 3AT robot equipped with a
camera and range sensors. Results show that the
proposed algorithm and network can learn skills that
are as good as the skills learned by a comparable
single-task learning algorithm. Results also show
that learning performance is consistent even when
the number of tasks and the number of constraints
on the tasks increased.

1 Introduction
Reinforcement learning [Sutton, 1988; Watkins and Dayan,
1992] has long been an important topic in the area of robotics
and intelligent agents. It addresses the problem of how agents
should learn to take actions to achieve goals in a given
environment. Classical work used linear function
approximations to enhance algorithms’ generalization in
complex and infinite environments [Grounds and Kudenko,
2008; Konidaris, et al., 2011].

In recent years, deep learning methods have achieved
significant progress in several research topics, including
many vision and linguistic applications. With hundreds of
thousands of auto-learned parameters and a number of
different kinds of network architectures such as convolutional
networks (CNN) [Krizhevsky, et al., 2012] and long-short
term memory (LSTM) networks [Graves, et al., 2013], deep
neural networks have shown unprecedented feature
extraction ability and robust generalization capability.

Though it was generally believed that non-linear
approximators such as deep neural networks are hard to train

in reinforcement learning scenarios, recent advances in
reinforcement learning have successfully combined deep
learning to make significant improvements. Well-known
work includes using deep reinforcement learning agents to
play Atari games [Mnih, et al., 2015] and Go games [Silver,
et al., 2016].

Different from game decision making, robot control
always involves continuous action spaces [Lillicrap, et al.,
2016; Mnih, et al., 2016] and many physical factors. The
problem becomes more challenging when controlling robots
to achieve high level goals, where robots have to reuse basic
skills. It is therefore necessary for robots to learn multiple
skills that can be assembled when faced with, for example,
hierarchically or intrinsically motivated learning scenarios.

In this paper, we are going to explore deep reinforcement
learning in a multi-task continuous control domain.
Specifically, based on the Deep Deterministic Gradient
Descent (DDPG) algorithm [Lillicrap, et al., 2016], we
propose a new algorithm to enable the robot to learn multiple
skills concurrently. We call this algorithm multi-DDPG.

In the proposed algorithm, we make use of both sensor data
and images collected from a camera set on a simulated robot.
Images are in the first-person view and record what the robot
can see in front of it. The simulated robot learns multiple
skills within the same training process.

In order to reduce the huge amount of parameters we need
for combining images and sensor data, we propose a new
network architecture which makes use of multi-layer
perceptron convolutional (mlpconv) layers [Lin, et al., 2013].
With the new network architecture, we reduce the number of
parameters originally needed for single task learning by 75%
and avoid parameter overloading when expanding to multiple
tasks.

Our simulations were conducted in Gazebo 2 built in a
ROS Indigo environment. We used a Pioneer 3AT robot
model and set sensors and a camera on it. The robot is moving
in an obstacle-free, walled space. We tested both the new
network architecture and the multi-DDPG algorithm for 12
movement-based control tasks. The network architecture
along with the proposed algorithm achieve high performance
and considerable robustness on all the tasks we tested.

We organize the rest of the paper as follow. We first
introduce related work and background in Sections 2 and 3.
In Section 4, we detail the proposed algorithm and network

Multi-Task Deep Reinforcement Learning for Continuous Action Control*

Zhaoyang Yang1,2, Kathryn Merrick1, Hussein Abbass1, Lianwen Jin2

1School of Engineering and Information Technology, University of New South Wales, Australia
2School of Electronic and Information Engineering, South China University of Technology, China

1,2yangzhaoyang6@126.com,1K.Merrick@adfa.edu.au,1h.abbass@adfa.edu.au,2lianwen.jin@gmail.com

* This work was supported by the Australian Research Council
under Grant DP160102037.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3301

architecture. Section 5 shows the experiments and results
whilst Section 6 concludes the paper.

2 Related Work
Prior to deep reinforcement learning, most multi-task
oriented algorithms sought help from transfer learning to
realize proper control over different tasks. [Lazaric, 2012] is
a good collection of these methods. Besides, some work
investigated joint training of multiple value functions
[Lazaric and Ghavamzadeh, 2010] or policy functions
[Dimitrakakis and Rothkopf, 2011] over a set of tasks.
However, the functionalities of these algorithms were limited
by hand crafted features.

Although a lot of work has been done to improve deep
reinforcement learning algorithms over single tasks, there is
much less work done for multi-task scenarios. Recent papers
on this topic are [Bangaru, et al., 2016], [Borsa, et al., 2016]
and [Zhang, et al., 2016]. But different from our work,
[Bangaru, et al., 2016] mostly focused on exploration and
generative models. The other two explored learning universal
abstractions of state-action pairs or feature successors, which
are similar in nature to transfer learning.

Some work deals with hierarchical tasks [Krishnamurthy,
et al., 2016; Kulkarni, et al., 2016] or intrinsically motivated
agents [Mohamed and Rezende, 2015] using deep
reinforcement learning. While all agents trained in these
papers are able to achieve multiple different sub-goals to
fulfill a final task, they are actually guided by the same
reward signals. In our method, we use different reward
functions for each of the tasks to assume minimum cross-
correlation among the tasks.

Another topic that may share some common points with
our work is multi-agent learning [Foerster, et al., 2016;
Tampuu, et al., 2015]. However, all of these works involve
at least two different agents, while ours aims to train one
agent for multiple tasks.

3 Background
We consider the standard reinforcement learning setup, where
an agent is interacting with the environment 𝑬 in discrete
timesteps. At each timestep 𝑡, the agent receives a state 𝑠𝑡𝜖𝑺,
takes an action 𝑎𝑡𝜖𝑨 according to policy 𝜋: 𝑺 → 𝑨, gets to
the next state 𝑠𝑡+1 according to a probability distribution
𝑃: 𝑺 × 𝑨 → 𝑺 and then receives a reward 𝑟𝑡 ∈ 𝑹.

The goal is to learn a policy 𝜋 that can maximize the
expected future return 𝑅 = ∑ 𝛾𝑡′−𝑡𝑟𝑡′

𝑇
𝑡′=𝑡 , where 𝛾𝜖(0,1) is

the discount factor. Note that the policy 𝜋 may be stochastic,
but in our case, we are considering only deterministic policies.

The state-action value function is commonly used in many
reinforcement learning algorithms. It is an estimator of the
expected future return:

 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝐸[𝑅𝑡|𝑠𝑡 , 𝑎𝑡] (1)
Unlike other value-based and policy-based reinforcement

learning algorithms, algorithms based on the actor-critic
architecture [Peters, et al., 2005] combine a state-action
value function (the critic) and policy function (the actor)
within one framework. This enables the algorithm to learn

more complex policies for controls in continuous space.
DDPG [Lillicrap, et al., 2016] is a deep reinforcement

learning algorithm that deals with continuous control tasks.
In DDPG, both the critic and the actor are approximated by
deep neural networks (θ𝑄 , θ𝜋). Replay memory and target
networks (θ𝑄′ , θ𝜋′) have addressed the problem of training
instability and brought DDPG great success.

With a single loss function:
 𝐿(𝜃𝑄) = (𝑄(𝑠𝑡 , 𝑎𝑡|𝜃𝑄) − 𝑦𝑡)2 (2)

where
 𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝜋(𝑠𝑡+1|𝜃𝜋′)|𝜃𝑄′) (3)

DDPG can train a policy by updating the critic with:
 𝜃𝑄 ← 𝜃𝑄 − 𝜇𝑄 ∙ 𝛻𝜃𝑄𝐿(𝜃𝑄) (4)

and the actor with:
 𝜃𝜋 ← 𝜃𝜋 − 𝜇𝜋 ∙ 𝛻𝑎𝑄(𝑠𝑡 , , 𝜋(𝑠𝑡|𝜃𝜋)|𝜃𝑄)

∙ 𝛻𝜃𝜋𝜋(𝑠𝑡|𝜃𝜋) (5)
where symbol 𝛻 donates gradients and 𝜇𝑄 , 𝜇𝜋 represent
the learning rate of critic and actor respectively.

The mlpconv layer [Lin, et al., 2013] is a relatively new
network architecture. Traditional convolutional layers that
simply activate rendered feature maps with:

 𝑓𝑖,𝑗,𝑘 = 𝐹(𝜔𝑘
𝑇𝑥𝑖,𝑗 + 𝑏𝑘) (6)

Where 𝐹 is the activation function. But for mlpconv layers,
before activating, feature maps are linearly recombined
across different map channels, as a result:

 𝑓𝑖,𝑗,𝑘
1 = 𝐹(𝜔𝑘

𝑛𝑇𝑥𝑖,𝑗 + 𝑏𝑘𝑛
) (7)

Where 𝑛 indicates the number of perceptrons in the layer.
This reorganization of information across channels is
proposed to add to the representative of the feature maps.

In the proposed multi-DDPG algorithm, we keep some of
the basic concepts of DDPG, then make use of the mlpconv
layers to achieve a network architecture with fewer
parameters and finally extend it to multi-task scenarios.

4 Multi-DDPG
In this paper, we propose a new algorithm, which we call
multi-DDPG to handle multiple continuous control tasks. We
propose a new network architecture which makes use of
mlpconv layers to significantly reduce the number of
parameters needed and combine images and sensor data as
input. Compared to DDPG, the proposed algorithm contains
only one critic but multiple actors. While each actor learns a
different control task, all actors are trained concurrently
within the same training process. Figure 1 gives an overview
of the algorithm.

4.1 Combining Sensors and Camera Data
We combine two kinds of data collected from the
environment. The first kind of data is images collected from
the camera. The camera is mounted at the front of the robot
and functions like its eyes. The images collected by the
camera are in the first-person view that represents what the
robot can see in front of it.

While images can enable the agent to learn high level
representations by providing the agent with vivid and rich
information about the environment, we find that information

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3302

from raw sensors is more straightforward and sometimes can
help the agent to learn more efficiently. For example, while
raw sensors can directly send the agent distance information,
this information is very implicit and hard to infer from images.

This inspired us to introduce sensor data as the second kind
of data in our algorithm. Specifically, we feed the image data
at the beginning of the networks and extract it with the
convolutional layers. Sensor data are included right after the
last convolutional layer and concatenated with the image
features to go through the remaining layers of the network
(See the two concatenated vectors in the middle of Figure 1).

4.2 Using mlpconv Layers
Combining images and sensor data will introduce additional
parameters in the network. For our network, which has
relatively small fully connected layers, most of the new
parameters will be introduced when all feature maps of the
last convolutional layer are flattened to form a long vector to
connect to the next fully connected layer.

These new parameters become even more significant when
we have multiple actors. A single duplication of the actor
network for a new task will add at least 400,000 new
parameters to the whole agent system. This huge number of
parameters is not only tricky to train, but also redundant to
some extent. So it is important to find ways to reduce the
parameters in the network.

[Lin, et al., 2013] proposed a new network layer for image
classification problems. The proposed network layer in that
paper is called the mlpconv layer. In addition to the traditional
convolutional layer, two perceptron layers are added to
reconstruct the feature maps rendered by that layer. This
reconstruction of the feature maps can merge information
across different channels and enable the network to learn
more abstract features. With the help of this reconstruction,
the network achieves excellent classification performance by
simply implementing an average pooling layer on the last
mlpconv layer.

In our algorithm, we follow this structure to extract image
features. The basic idea is that compared to other image
processing problems, such as object detection and
recognition, the information the robot needs to infer from

images is less complex, especially when we have the help of
sensor data. Thus we do not need pixel level information in
the feature maps. Instead, by implementing mlpconv layers
with global average pooling, we can obtain a shorter feature
vector with more refined information about the environment.
At the same time, we suggest that short feature vectors of
images are beneficial for the network to infer information
from sensor data, while long vectors of flattened feature maps
can easily drown the short vector of sensor data.

In our algorithm, we replace the first and third (also the last)
convolutional layers of the networks with a mlpconv layer
(see left part of Figure 1). The first mlpconv layer contains
32 kernels. The second one contains 64 kernels and is
followed by a global average pooling layer to transfer feature
maps into a vector. This vector is then concatenated with
sensor data to be fed into the remaining fully connected layers.

By doing so, we significantly reduce the number of
parameters we need for a single task from 430,000 to around
110,000. Figure 2 gives a comparison of the number of
parameters introduced in the two networks. We can also see
in the figure how the network is going to reduce the number
as the number of tasks increases.

4.3 Sharing Parameters
As discussed above, the output feature vector of the last
mlpconv layer will contain information at a comparable level
of abstraction to raw sensor data, therefore we can treat it in

Figure 1: An overview of multi-DDPG architecture. The trapeziums in the picture represent fully connected layers, the green ones (in the
middle) for actors and red one (on the right) for critic. The square-dotted lines indicates that there is back-propagation between two layers,
while dashed lines do not involve back-propagation.

0.22 0.44 0.77 1.10 1.430.86

2.58

5.16

7.74

10.32

0

2

4

6

8

10

1 Task 3 Tasks 6 Tasks 9 Tasks 12 Tasks

Pa
ra

m
et

er
s (

m
ill

io
n)

Number of Tasks

Multi-DDPG

DDPG

Figure 2: A comparison of the number of parameters in the agent.
The proposed network significantly reduces the number.

Sensor
Data

Images

Actions

Rewards

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3303

the same way we treat sensor data. This enables us to share
the parameters of the convolutional layers amongst all
networks naturally (see the inputs of fully connected layers
shown in Figure 1 , note that the multi-perceptron parts of the
last mlpconv layer are not shared).

In addition to parameter sharing, we only update the
convolutional layers when we are training the critic. Actor
update only involve their unshared layers, although the image
part of their inputs has to be processed by the convolutional
layers before reaching the fully connected layers.

4.4 Training Multiple Actors
Based on the proposed light-weight network architecture and
parameter sharing scheme discussed above, we extend the
algorithm from single task to multi-task learning. To achieve
this, instead of a single actor in the actor-critic architecture,
we use multiple actors with each actor responsible for one
task (see the multiple actors in the middle of Figure 1). These
actors are learned from the same inputs and within the same
training process.

While we extend the single actor to multiple actors, we do
not add any new critics in our algorithm. This means that the
single critic in the system must be able to guide all actors to
update properly. Therefore, instead of a single output state-
action value, our critic has to output multiple state-action
values, one for each actor. Correspondingly, we will assess
executed actions according to all rewarding criterions we
have for different tasks to form a vector of rewards, regardless
of which actor produced that action. Then instead of the
original loss function in (2) and (3), we will have:

 𝐿(𝜃𝑄) = ∑(𝑄𝑔(𝑠𝑡 , 𝑎𝑡|𝜃𝑄) − 𝑦𝑔,𝑡)2

𝐺

𝑔=1

 (8)

where 𝑔 is identity number of the task and 𝐺 the total
number of tasks we have. The supervising signal becomes:

 𝑦𝑔,𝑡 = 𝑟𝑔,𝑡 + 𝛾𝑄𝑔(𝑠𝑡+1, 𝜋(𝑠𝑡+1|𝜃𝜋′
)|𝜃𝑄′

) (9)
Note that only one actor will be activated to choose actions

in each timestep. During exploration, actors will be activated
iteratively. We do not distinguish actions produced by
different actors and all transitions will be stored in the same
replay memory.

Also note that as we do not distinguish actions produced
by different actors, we can simply iteratively choose a target
actor to calculate 𝑦𝑔,𝑡 for all input data in a training iteration.
This is benefited by the fact that critic training and actors’
training are not synchronous. It turns out that the critic will
not be trained to be task specific and it will always be able to
infer state-action values of all tasks we have for any input
(𝑠𝑡 , 𝑎𝑡) pairs, whichever actors produced the 𝑎𝑡.

After the critic is updated, we update all actors one after
another. For each actor update, the updating gradient is:

 𝛻𝜃𝜋𝑔 = 𝜇𝜋𝑔
∙ 𝛻𝑎𝑄𝑔(𝑠𝑡 , 𝜋𝑔(𝑠𝑡|𝜃𝜋𝑔)|𝜃𝑄)

∙ 𝛻𝜃𝜋𝑔 𝜋𝑔(𝑠𝑡|𝜃𝜋𝑔)
(10)

See that action gradient 𝛻𝑎𝑄𝑔 is task specific and for each
actor, it is the gradient with respect to the corresponding state-
action value output of the critic.

Algorithm 1 Multi-DDPG
Input: maximum training episode E𝑚𝑎𝑥, maximum steps in each
episode S𝑚𝑎𝑥, mini-batch size M, replay memory P.
Initialization: randomly initialize networks weights 𝜃𝑄 ,
𝜃1

𝜋 , … … , 𝜃𝐺
𝜋 and target networks weights 𝜃𝑄′ ← 𝜃𝑄 , 𝜃𝑔

𝜋′
← 𝜃𝑔

𝜋.
while episode < E𝑚𝑎𝑥
 Initialize random noise N for exploration
 Iteratively select activated actor
 Get initial state 𝑠1
 while step <S𝑚𝑎𝑥 and episode not terminated
 Select action 𝑎𝑡 using selected actor and add N
 Execute 𝑎𝑡 and get reward 𝑟𝑡 and next state 𝑠𝑡+1
 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in P
 Randomly sample a batch of M transitions from P
 Update 𝜃𝑄 according to (8) and (9)
 Update 𝜃𝑄′
 for g < G
 Update 𝜃𝑔

𝜋 according to (10)
 Update 𝜃𝑔

𝜋′
 end for
 end
end

Finally, we update target networks according to the soft
updating rule. Then by the end of training, we will get a single
critic that outputs state-action values for all tasks we have and
multiple actors each producing actions to achieve a different
task. We summarize the algorithm in Algorithm 1.

5 Experiments
We conducted two sets of experiments to test and analyse the
proposed algorithm. We first conducted one set of
experiments to test the new network architecture we proposed
in the algorithm. In this set of experiments, we tested our
network against the original network in [Lillicrap, et al.,
2016] with 12 movement-based control tasks. These 12 tasks
are highly constrained movement controls of the robot,
including going forward and backward at high and low speed,
moving forward-left and forward-right slowly and quickly,
and reversing-left and reversing-right slowly and quickly.
These movement patterns are shown in Figure 3 . Note that
all experiments in this set are single task based.

In the second set of experiments, we analysed both the
robustness and performance of the proposed multi-DDPG
algorithm with different numbers of tasks. As the number of
tasks increases, the tasks become more constrained, which
means the robot must fulfil more conditions to receive
positive rewards. We tested it in 3-task and 6-task scenarios,
and then finally in a 12-task scenario with the same 12 tasks
we have in the first set of experiments to give a comparison.

The experiments were conducted in a simulation with
Gazebo 2 under a ROS Indigo environment. We used the
robot model of Pioneer3AT and added a laser and camera on
it. While the laser can provide diverse information, we only
collected distance information from four angles (front, back,
left, right). The robot is spawned in an obstacle-free walled
space, in which it should move.

For all the experiments, the agent was given reward of

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3304

value 1 for achieving a task. On the contrary, the agent was
penalized a value -0.5 if the robot made dangerous
movements such as crashing into walls or turning over.
Otherwise, the reward was 0.

During training, exploration was governed by an Ornstein-
Uhlenbeck process [Uhlenbeck and Ornstein, 1930] to
randomize and balance exploration. When testing the
performance, this exploration was no longer permitted. For
all experiments, we trained the model 3 times and tested it
intermediately. Each model is trained for 5,000 episodes
which contain approximately 60,000 training iterations.
Adam [Kingma and Ba, 2015] is used to train the network,
with initial learning rates 0.001 and 0.0001 for the critic and
actor respectively. We set the discount factor to be 0.9 and
train our networks in TensorFlow [Abadi, et al., 2016].

5.1 Testing the Proposed Network Architecture
We show the results of the 12 tasks tested in the first set of
experiments in Figure 4 . We can see from these three graphs
that our proposed network achieved comparable performance
against the network proposed for DDPG. While both
networks showed stability through each training process, they
also showed robustness with low standard deviations.
Moreover, both networks were able to collect high average
rewards per action which indicates that they were both acting
as expected during testing.

We can see that the average rewards per action may be a
little lower when high speed is required for that task. This is
mainly caused by the acceleration at the beginning of the
testing. We show how the robot trained with our network was
acting by drawing out its movement trajectories of the 12
tasks in Figure 3 . We can see that the robot was moving as
expected. Although the trajectories of those turning tasks are
not in perfect circles, they are good enough to collect rewards.

Note that our network is achieving these performances

with far fewer parameters compared to the network in DDPG.
A comparison of the number of parameters introduced is in
Figure 2 .

5.2 Testing Multi-Task Performance
We first tried the proposed multi-DDPG algorithm to learn 3
tasks and 6 tasks concurrently. These tasks are less
constrained controls of the robot compared to the 12 tasks
above (such as simply moving straight without direction and
speed restrictions). The results of these two early trials show
that our algorithm can deliver robust multi-task training of
these less constrained tasks, in which actors started to act
according to their corresponding reward signals in early stage
of the training.

Finally, we tested multi-DDPG with the 12 highly
constrained control tasks scenario. The results are also shown
in Figure 4 . We can see that the performances of multiple
actors trained by multi-DDPG are comparable to actors
trained by single task scheme. The narrow shadow areas and
mild vibrations in the graphs demonstrate the robustness of
the algorithm and the stability of the performances of trained
actors.

Note that the increased number of tasks and their
constraints do not increase the number of episodes needed to
stabilize training. This may be owing to the parameter and
replay memory sharing amongst all tasks, which helps the
agent to avoid dangerous actions and increase the chance of
collecting rewards during exploration. The high average
rewards collected in every action across all individual tasks
further prove the effectiveness of the algorithm.

These results suggest that the proposed multi-DDPG
algorithm can not only train high performance actors but also
remain robust either when the number of tasks or the
constraints of tasks increase. Its light-weight architecture as
well as parameter sharing strategy also make it flexible

Figure 3: A collection of movements of the 12 highly constrained control tasks. At most 15 action steps are shown in each picture. The red
nodes are the location of the robot, and black arrows in between are its movement trajectories. In each picture, yellow triangle indicates the
initial orientation of the robot, while bold blue arrow shows the overall moving direction of the robot.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3305

enough to be expanded to handle more actors and tasks.

6 Conclusion
In this paper, based on the DDPG algorithm proposed in
[Lillicrap, et al., 2016], we present a multi-task training deep
reinforcement learning algorithm called multi-DDPG which
combines images and sensor data as its input. In order to
reduce the number of parameters needed to extract image
features and learn multiple actors, we also introduce a new
network architecture which takes advantage of mlpconv
layers [Lin, et al., 2013].

We conducted two sets of experiments using a Pioneer 3AT
mobile robot in Gazebo 2 under a ROS Indigo Environment.
Our first set of experiments show our new network achieves
comparable performance to DDPG with only 25% of the
parameters introduced. The second set of experiments
demonstrates the robustness of our proposed algorithm
against the increasing numbers of tasks and tasks' constraints.

Also it shows that the algorithm achieves stable multi-task
training without any decrease in the performance of each
individual task.

However, we should note that while the algorithm achieves
multi-task training, it cannot be used to choose which task it
should do under given conditions. This means the algorithm
does not consider how to use these learned skills to fulfil
other goals. Nevertheless, the skills learned by our algorithm
are accurate enough to be reused for high level goals. Our
future work will focus on how to embed hierarchical and
intrinsically motivated learning into the algorithm’s
framework to properly choose these learned tasks to achieve
other high level goals.

References
[Abadi, et al., 2016] Martín Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems.

Figure 4: The performances of 12 highly constrained control tasks obtained from different experiments. The lines in the graphs show the
average performances, while the corresponding shadow areas show standard deviations.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3306

arXiv preprint arXiv:1603.04467, 2016.
[Bangaru, et al., 2016] Sai Praveen Bangaru, JS Suhas and
Balaraman Ravindran. Exploration for Multi-task
Reinforcement Learning with Deep Generative Models. In
Neural Information Processing Systems Deep Reinforcement
Learning Workshop, 2016.
[Borsa, et al., 2016] Diana Borsa, Thore Graepel and John
Shawe-Taylor. Learning Shared Representations in Multi-
task Reinforcement Learning. arXiv preprint
arXiv:1603.02041 2016.
[Dimitrakakis and Rothkopf, 2011] Christos Dimitrakakis
and Constantin A. Rothkopf. Bayesian Multitask Inverse
Reinforcement Learning. In European Workshop on
Reinforcement Learning, pp.273-284, 2011.
[Foerster, et al., 2016] Jakob N. Foerster, Yannis M. Assael,
Nando de Freitas and Shimon Whiteson. Learning to
Communicate with Deep Multi-Agent Reinforcement
Learning. In Advances in Neural Information Processing
Systems, pp.2137-2145, 2016.
[Graves, et al., 2013] Alex Graves, Abdel-rahman Mohamed
and Geoffrey Hinton. Speech Recognition with Deep
Recurrent Neural Networks. In Proceedings of International
Conference on Acoustics, Speech and Signal Processing,
pp.6645-6649. IEEE, 2013.
[Grounds and Kudenko, 2008] Matthew Grounds and Daniel
Kudenko. Parallel reinforcement learning with linear
function approximation. In Adaptive Agents and Multi-Agent
Systems III. Adaptation and Multi-Agent Learning, pp.60-74.
Springer, Berlin, Heidelberg, 2008.
[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Lei
Ba. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations, 2015.
[Konidaris, et al., 2011] George Konidaris, Sarah Osentoski
and Philip Thomas. Value Function Approximation in
Reinforcement Learning using the Fourier Basis. In
Proceedings of Proc. AAAI Conference on Artificial
Intelligence, pp.380-385. AAAI, 2011.
[Krishnamurthy, et al., 2016] Ramnandan Krishnamurthy,
Aravind Lakshminarayanan, Peeyush Kumar and Balaraman
Ravindran. Hierarchical Reinforcement Learning using
Spatio-Temporal Abstractions and Deep Neural Networks. In
International Conference on Machine Learning Abstraction
in Reinforcement Learning Workshop, 2016.
[Krizhevsky, et al., 2012] Alex Krizhevsky, Ilya Sutskever
and Geoffrey E. Hinton. ImageNet Classification with Deep
Convolutional Neural Network. In Proceedings of Advances
in Neural Information Processing Systems, pp.1097-1105.
MIT Press, 2012.
[Kulkarni, et al., 2016] Tejas D. Kulkarni, Karthik R.
Narasimhan, Ardavan Saeedi and Joshua B. Tenenbaum.
Hierarchical Deep Reinforcement Learning Integrating
Temporal Abstraction and Intrinsic Motivation. In
Proceedings of Advances in Neural Information Processing
Systems, pp.3675-3683. 2016.

[Lazaric, 2012] Alessandro Lazaric. Transfer in
Reinforcement Learning: a Framework and a Survey. In
Reinforcement Learning, Berlin, Heidelberg, 2012.
[Lazaric and Ghavamzadeh, 2010] Alessandro Lazaric and
Mohammad Ghavamzadeh. Bayesian Multi-Task
Reinforcement Learning. In Proceedings of International
Conference on Machine Learning, pp.599-606. ACM, 2010.
[Lillicrap, et al., 2016] Timothy P. Lillicrap, Jonathan J. Hunt,
Alexander Pritzel, Nicolas Heess, et al. Continuous Control
with Deep Reinforcement Learning. In Proceedings of
International Conference on Learning Representations. 2016.
[Lin, et al., 2013] Min Lin, Qiang Chen and Shuicheng Yan.
Network in Network. arXiv preprint arXiv:1312.4400, 2013.
[Mnih, et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, et al. Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings
of International Conference on Machine Learning. ACM,
2016.
[Mnih, et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, et al. Human-level Control
through Deep reinforcement Learning. Nature,
518(7540):529-533. 2015.
[Mohamed and Rezende, 2015] Shakir Mohamed and Danilo
J. Rezende. Variational Information Maximisation for
Intrinsically Motivated Reinforcement Learning. In
Proceedings of Advances in Neural Information Processing
Systems, pp.2125-2133. MIT Press, 2015.
[Peters, et al., 2005] Jan Peters, Sethu Vijayakumar and
Stefan Schaal. Natural Actor-Critic. In Proceedings of
European Conference on Machine Learning, pp.280-291.
2005.
[Silver, et al., 2016] David Silver, Aja Huang, Chris J.
Maddison, Arthur Guez, et al. Mastering the Game of Go
with Deep Neural Networks and TreeSearch. Nature,
529(7587):484-489. 2016.
[Sutton, 1988] Richard S. Sutton. Learning to Predict by the
Methods of Temporal Differences. Machine Learning,
3(1):9-44. 1988.
[Tampuu, et al., 2015] Ardi Tampuu, Tambet Matiisen,
Dorian Kodelja, Ilya Kuzovkin, et al. Multiagent
Cooperation and Competition with Deep Reinforcement
Learning. arXiv preprint arXiv:1511.08779, 2015.
[Uhlenbeck and Ornstein, 1930] George E Uhlenbeck and
Leonard S Ornstein. On the Theory of the Brownian Motion.
Physical Review, 36(5):823. 1930.
[Watkins and Dayan, 1992] Christopher J.C.H. Watkins and
Peter Dayan. Q-Learning. Machine Learning, 8(3):279-292.
1992.
[Zhang, et al., 2016] Jingwei Zhang, Jost Tobias
Springenberg, Joschka Boedecker and Wolfram Burgard.
Deep Reinforcement Learning with Successor Features for
Navigation across Similar Environments. arXiv:1612.05533,
2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3307

