
Abstract 
In this paper, we propose a deep reinforcement 
learning algorithm to learn multiple tasks 
concurrently. A new network architecture is 
proposed in the algorithm which reduces the number 
of parameters needed by more than 75% per task 
compared to typical single-task deep reinforcement 
learning algorithms. The proposed algorithm and 
network fuse images with sensor data and were 
tested with up to 12 movement-based control tasks 
on a simulated Pioneer 3AT robot equipped with a 
camera and range sensors. Results show that the 
proposed algorithm and network can learn skills that 
are as good as the skills learned by a comparable 
single-task learning algorithm. Results also show 
that learning performance is consistent even when 
the number of tasks and the number of constraints 
on the tasks increased.  

1 Introduction 
Reinforcement learning [Sutton, 1988; Watkins and Dayan,  
1992] has long been an important topic in the area of robotics 
and intelligent agents. It addresses the problem of how agents 
should learn to take actions to achieve goals in a given 
environment. Classical work used linear function 
approximations to enhance algorithms’ generalization in 
complex and infinite environments [Grounds and Kudenko,  
2008; Konidaris, et al., 2011].  

In recent years, deep learning methods have achieved 
significant progress in several research topics, including 
many vision and linguistic applications. With hundreds of 
thousands of auto-learned parameters and a number of 
different kinds of network architectures such as convolutional 
networks (CNN) [Krizhevsky, et al., 2012] and long-short 
term memory (LSTM) networks [Graves, et al., 2013], deep 
neural networks have shown unprecedented feature 
extraction ability and robust generalization capability.  

Though it was generally believed that non-linear 
approximators such as deep neural networks are hard to train 

in reinforcement learning scenarios, recent advances in 
reinforcement learning have successfully combined deep 
learning to make significant improvements. Well-known 
work includes using deep reinforcement learning agents to 
play Atari games [Mnih, et al., 2015] and Go games [Silver,  
et al., 2016].  

Different from game decision making, robot control 
always involves continuous action spaces [Lillicrap, et al.,  
2016; Mnih, et al., 2016] and many physical factors. The 
problem becomes more challenging when controlling robots 
to achieve high level goals, where robots have to reuse basic 
skills. It is therefore necessary for robots to learn multiple 
skills that can be assembled when faced with, for example, 
hierarchically or intrinsically motivated learning scenarios.  

In this paper, we are going to explore deep reinforcement 
learning in a multi-task continuous control domain. 
Specifically, based on the Deep Deterministic Gradient 
Descent (DDPG) algorithm [Lillicrap, et al., 2016], we 
propose a new algorithm to enable the robot to learn multiple 
skills concurrently. We call this algorithm multi-DDPG.  

In the proposed algorithm, we make use of both sensor data 
and images collected from a camera set on a simulated robot. 
Images are in the first-person view and record what the robot 
can see in front of it. The simulated robot learns multiple 
skills within the same training process.  

In order to reduce the huge amount of parameters we need 
for combining images and sensor data, we propose a new 
network architecture which makes use of multi-layer 
perceptron convolutional (mlpconv) layers [Lin, et al., 2013]. 
With the new network architecture, we reduce the number of 
parameters originally needed for single task learning by 75% 
and avoid parameter overloading when expanding to multiple 
tasks.  

Our simulations were conducted in Gazebo 2 built in a 
ROS Indigo environment. We used a Pioneer 3AT robot 
model and set sensors and a camera on it. The robot is moving 
in an obstacle-free, walled space. We tested both the new 
network architecture and the multi-DDPG algorithm for 12 
movement-based control tasks. The network architecture 
along with the proposed algorithm achieve high performance 
and considerable robustness on all the tasks we tested.  

We organize the rest of the paper as follow. We first 
introduce related work and background in Sections 2 and 3. 
In Section 4, we detail the proposed algorithm and network 
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architecture. Section 5 shows the experiments and results 
whilst Section 6 concludes the paper.  

2 Related Work 
Prior to deep reinforcement learning, most multi-task 
oriented algorithms sought help from transfer learning to 
realize proper control over different tasks. [Lazaric, 2012] is 
a good collection of these methods. Besides, some work 
investigated joint training of multiple value functions 
[Lazaric and Ghavamzadeh, 2010] or policy functions 
[Dimitrakakis and Rothkopf, 2011] over a set of tasks. 
However, the functionalities of these algorithms were limited 
by hand crafted features.  

Although a lot of work has been done to improve deep 
reinforcement learning algorithms over single tasks, there is 
much less work done for multi-task scenarios. Recent papers 
on this topic are [Bangaru, et al., 2016], [Borsa, et al., 2016] 
and [Zhang, et al., 2016]. But different from our work, 
[Bangaru, et al., 2016] mostly focused on exploration and 
generative models. The other two explored learning universal 
abstractions of state-action pairs or feature successors, which 
are similar in nature to transfer learning.  

Some work deals with hierarchical tasks [Krishnamurthy,  
et al., 2016; Kulkarni, et al., 2016] or intrinsically motivated 
agents [Mohamed and Rezende, 2015] using deep 
reinforcement learning. While all agents trained in these 
papers are able to achieve multiple different sub-goals to 
fulfill a final task, they are actually guided by the same 
reward signals. In our method, we use different reward 
functions for each of the tasks to assume minimum cross-
correlation among the tasks.  

Another topic that may share some common points with 
our work is multi-agent learning [Foerster, et al., 2016; 
Tampuu, et al., 2015]. However, all of these works involve 
at least two different agents, while ours aims to train one 
agent for multiple tasks.  

3 Background 
We consider the standard reinforcement learning setup, where 
an agent is interacting with the environment  𝑬 in discrete 
timesteps. At each timestep 𝑡, the agent receives a state 𝑠𝑡𝜖𝑺, 
takes an action 𝑎𝑡𝜖𝑨 according to policy 𝜋: 𝑺 → 𝑨, gets to 
the next state 𝑠𝑡+1  according to a probability distribution 
𝑃: 𝑺 × 𝑨 → 𝑺 and then receives a reward 𝑟𝑡 ∈ 𝑹.  

The goal is to learn a policy  𝜋  that can maximize the 
expected future return 𝑅 = ∑ 𝛾𝑡′−𝑡𝑟𝑡′

𝑇
𝑡′=𝑡 , where 𝛾𝜖(0,1) is 

the discount factor. Note that the policy 𝜋 may be stochastic, 
but in our case, we are considering only deterministic policies.  

The state-action value function is commonly used in many 
reinforcement learning algorithms. It is an estimator of the 
expected future return:  

 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝐸[𝑅𝑡|𝑠𝑡 , 𝑎𝑡] (1) 
Unlike other value-based and policy-based reinforcement 

learning algorithms, algorithms based on the actor-critic 
architecture [Peters, et al., 2005] combine a state-action 
value function (the critic) and policy function (the actor) 
within one framework. This enables the algorithm to learn 

more complex policies for controls in continuous space.  
DDPG [Lillicrap, et al., 2016] is a deep reinforcement 

learning algorithm that deals with continuous control tasks. 
In DDPG, both the critic and the actor are approximated by 
deep neural networks (θ𝑄 , θ𝜋 ). Replay memory and target 
networks (θ𝑄′ , θ𝜋′) have addressed the problem of training 
instability and brought DDPG great success.  

With a single loss function: 
 𝐿(𝜃𝑄) = (𝑄(𝑠𝑡 , 𝑎𝑡|𝜃𝑄) − 𝑦𝑡)2 (2) 

where 
 𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝜋(𝑠𝑡+1|𝜃𝜋′)|𝜃𝑄′) (3) 

DDPG can train a policy by updating the critic with: 
 𝜃𝑄 ← 𝜃𝑄 − 𝜇𝑄 ∙ 𝛻𝜃𝑄𝐿(𝜃𝑄) (4) 

and the actor with: 
 𝜃𝜋 ← 𝜃𝜋 − 𝜇𝜋 ∙ 𝛻𝑎𝑄(𝑠𝑡 , , 𝜋(𝑠𝑡|𝜃𝜋)|𝜃𝑄)

∙ 𝛻𝜃𝜋𝜋(𝑠𝑡|𝜃𝜋) (5) 
where symbol 𝛻  donates gradients and  𝜇𝑄 , 𝜇𝜋  represent 
the learning rate of critic and actor respectively.  

The mlpconv layer [Lin, et al., 2013] is a relatively new 
network architecture. Traditional convolutional layers that 
simply activate rendered feature maps with: 

 𝑓𝑖,𝑗,𝑘 = 𝐹(𝜔𝑘
𝑇𝑥𝑖,𝑗 + 𝑏𝑘) (6) 

Where 𝐹 is the activation function. But for mlpconv layers, 
before activating, feature maps are linearly recombined 
across different map channels, as a result: 

 𝑓𝑖,𝑗,𝑘
1 = 𝐹(𝜔𝑘

𝑛𝑇𝑥𝑖,𝑗 + 𝑏𝑘𝑛
) (7) 

Where 𝑛 indicates the number of perceptrons in the layer. 
This reorganization of information across channels is 
proposed to add to the representative of the feature maps.  

In the proposed multi-DDPG algorithm, we keep some of 
the basic concepts of DDPG, then make use of the mlpconv 
layers to achieve a network architecture with fewer 
parameters and finally extend it to multi-task scenarios.  

4 Multi-DDPG 
In this paper, we propose a new algorithm, which we call 
multi-DDPG to handle multiple continuous control tasks. We 
propose a new network architecture which makes use of 
mlpconv layers to significantly reduce the number of 
parameters needed and combine images and sensor data as 
input. Compared to DDPG, the proposed algorithm contains 
only one critic but multiple actors. While each actor learns a 
different control task, all actors are trained concurrently 
within the same training process. Figure 1  gives an overview 
of the algorithm.  

4.1 Combining Sensors and Camera Data 
We combine two kinds of data collected from the 
environment. The first kind of data is images collected from 
the camera. The camera is mounted at the front of the robot 
and functions like its eyes. The images collected by the 
camera are in the first-person view that represents what the 
robot can see in front of it.  

While images can enable the agent to learn high level 
representations by providing the agent with vivid and rich 
information about the environment, we find that information
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from raw sensors is more straightforward and sometimes can 
help the agent to learn more efficiently. For example, while 
raw sensors can directly send the agent distance information, 
this information is very implicit and hard to infer from images.  

This inspired us to introduce sensor data as the second kind 
of data in our algorithm. Specifically, we feed the image data 
at the beginning of the networks and extract it with the 
convolutional layers. Sensor data are included right after the 
last convolutional layer and concatenated with the image 
features to go through the remaining layers of the network 
(See the two concatenated vectors in the middle of Figure 1). 

4.2 Using mlpconv Layers 
Combining images and sensor data will introduce additional 
parameters in the network. For our network, which has 
relatively small fully connected layers, most of the new 
parameters will be introduced when all feature maps of the 
last convolutional layer are flattened to form a long vector to 
connect to the next fully connected layer.  

These new parameters become even more significant when 
we have multiple actors. A single duplication of the actor 
network for a new task will add at least 400,000 new 
parameters to the whole agent system. This huge number of 
parameters is not only tricky to train, but also redundant to 
some extent. So it is important to find ways to reduce the 
parameters in the network.  

[Lin, et al., 2013] proposed a new network layer for image 
classification problems. The proposed network layer in that 
paper is called the mlpconv layer. In addition to the traditional 
convolutional layer, two perceptron layers are added to 
reconstruct the feature maps rendered by that layer. This 
reconstruction of the feature maps can merge information 
across different channels and enable the network to learn 
more abstract features. With the help of this reconstruction, 
the network achieves excellent classification performance by 
simply implementing an average pooling layer on the last 
mlpconv layer.  

In our algorithm, we follow this structure to extract image 
features. The basic idea is that compared to other image 
processing problems, such as object detection and 
recognition, the information the robot needs to infer from 

images is less complex, especially when we have the help of 
sensor data. Thus we do not need pixel level information in 
the feature maps. Instead, by implementing mlpconv layers 
with global average pooling, we can obtain a shorter feature 
vector with more refined information about the environment. 
At the same time, we suggest that short feature vectors of 
images are beneficial for the network to infer information 
from sensor data, while long vectors of flattened feature maps 
can easily drown the short vector of sensor data.  

In our algorithm, we replace the first and third (also the last) 
convolutional layers of the networks with a mlpconv layer 
(see left part of Figure 1). The first mlpconv layer contains 
32 kernels. The second one contains 64 kernels and is 
followed by a global average pooling layer to transfer feature 
maps into a vector. This vector is then concatenated with 
sensor data to be fed into the remaining fully connected layers. 

By doing so, we significantly reduce the number of 
parameters we need for a single task from 430,000 to around 
110,000. Figure 2  gives a comparison of the number of 
parameters introduced in the two networks. We can also see 
in the figure how the network is going to reduce the number 
as the number of tasks increases. 

4.3 Sharing Parameters 
As discussed above, the output feature vector of the last 
mlpconv layer will contain information at a comparable level 
of abstraction to raw sensor data, therefore we can treat it in 

Figure 1: An overview of multi-DDPG architecture. The trapeziums in the picture represent fully connected layers, the green ones (in the 
middle) for actors and red one (on the right) for critic. The square-dotted lines indicates that there is back-propagation between two layers, 
while dashed lines do not involve back-propagation. 
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the same way we treat sensor data. This enables us to share 
the parameters of the convolutional layers amongst all 
networks naturally (see the inputs of fully connected layers 
shown in Figure 1 , note that the multi-perceptron parts of the 
last mlpconv layer are not shared).   

In addition to parameter sharing, we only update the 
convolutional layers when we are training the critic. Actor 
update only involve their unshared layers, although the image 
part of their inputs has to be processed by the convolutional 
layers before reaching the fully connected layers.   

4.4 Training Multiple Actors 
Based on the proposed light-weight network architecture and 
parameter sharing scheme discussed above, we extend the 
algorithm from single task to multi-task learning. To achieve 
this, instead of a single actor in the actor-critic architecture, 
we use multiple actors with each actor responsible for one 
task (see the multiple actors in the middle of Figure 1). These 
actors are learned from the same inputs and within the same 
training process.  

While we extend the single actor to multiple actors, we do 
not add any new critics in our algorithm. This means that the 
single critic in the system must be able to guide all actors to 
update properly. Therefore, instead of a single output state-
action value, our critic has to output multiple state-action 
values, one for each actor. Correspondingly, we will assess 
executed actions according to all rewarding criterions we 
have for different tasks to form a vector of rewards, regardless 
of which actor produced that action. Then instead of the 
original loss function in (2) and (3), we will have: 

 𝐿(𝜃𝑄) = ∑(𝑄𝑔(𝑠𝑡 , 𝑎𝑡|𝜃𝑄) − 𝑦𝑔,𝑡)2

𝐺

𝑔=1

 (8) 

where 𝑔  is identity number of the task and 𝐺  the total 
number of tasks we have. The supervising signal becomes:  

 𝑦𝑔,𝑡 = 𝑟𝑔,𝑡 + 𝛾𝑄𝑔(𝑠𝑡+1, 𝜋(𝑠𝑡+1|𝜃𝜋′
)|𝜃𝑄′

) (9) 
Note that only one actor will be activated to choose actions 

in each timestep. During exploration, actors will be activated 
iteratively. We do not distinguish actions produced by 
different actors and all transitions will be stored in the same 
replay memory.  

Also note that as we do not distinguish actions produced 
by different actors, we can simply iteratively choose a target 
actor to calculate 𝑦𝑔,𝑡 for all input data in a training iteration. 
This is benefited by the fact that critic training and actors’ 
training are not synchronous. It turns out that the critic will 
not be trained to be task specific and it will always be able to 
infer state-action values of all tasks we have for any input 
(𝑠𝑡 , 𝑎𝑡) pairs, whichever actors produced the 𝑎𝑡.  

After the critic is updated, we update all actors one after 
another. For each actor update, the updating gradient is: 

 𝛻𝜃𝜋𝑔 = 𝜇𝜋𝑔
∙ 𝛻𝑎𝑄𝑔(𝑠𝑡 , 𝜋𝑔(𝑠𝑡|𝜃𝜋𝑔)|𝜃𝑄)

∙ 𝛻𝜃𝜋𝑔 𝜋𝑔(𝑠𝑡|𝜃𝜋𝑔) 
(10) 

See that action gradient 𝛻𝑎𝑄𝑔  is task specific and for each 
actor, it is the gradient with respect to the corresponding state-
action value output of the critic.  

Algorithm 1   Multi-DDPG 
Input: maximum training episode E𝑚𝑎𝑥, maximum steps in each 
episode S𝑚𝑎𝑥, mini-batch size M, replay memory P.  
Initialization: randomly initialize networks weights  𝜃𝑄 , 
𝜃1

𝜋 , … … , 𝜃𝐺
𝜋 and target networks weights 𝜃𝑄′ ← 𝜃𝑄 , 𝜃𝑔

𝜋′
← 𝜃𝑔

𝜋.  
while episode < E𝑚𝑎𝑥 
    Initialize random noise N for exploration 
    Iteratively select activated actor 
    Get initial state 𝑠1 
    while step <S𝑚𝑎𝑥 and episode not terminated 
        Select action 𝑎𝑡 using selected actor and add N 
        Execute 𝑎𝑡 and get reward 𝑟𝑡 and next state 𝑠𝑡+1 
        Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in P 
        Randomly sample a batch of M transitions from P 
        Update 𝜃𝑄 according to (8) and (9) 
        Update 𝜃𝑄′ 
        for g < G 
           Update 𝜃𝑔

𝜋 according to (10) 
           Update 𝜃𝑔

𝜋′ 
        end for 
    end 
end 

Finally, we update target networks according to the soft 
updating rule. Then by the end of training, we will get a single 
critic that outputs state-action values for all tasks we have and 
multiple actors each producing actions to achieve a different 
task. We summarize the algorithm in Algorithm 1.  

5 Experiments 
We conducted two sets of experiments to test and analyse the 
proposed algorithm. We first conducted one set of 
experiments to test the new network architecture we proposed 
in the algorithm. In this set of experiments, we tested our 
network against the original network in [Lillicrap, et al.,  
2016] with 12 movement-based control tasks. These 12 tasks 
are highly constrained movement controls of the robot, 
including going forward and backward at high and low speed, 
moving forward-left and forward-right slowly and quickly, 
and reversing-left and reversing-right slowly and quickly. 
These movement patterns are shown in Figure 3 . Note that 
all experiments in this set are single task based.  

In the second set of experiments, we analysed both the 
robustness and performance of the proposed multi-DDPG 
algorithm with different numbers of tasks. As the number of 
tasks increases, the tasks become more constrained, which 
means the robot must fulfil more conditions to receive 
positive rewards. We tested it in 3-task and 6-task scenarios, 
and then finally in a 12-task scenario with the same 12 tasks 
we have in the first set of experiments to give a comparison.  

The experiments were conducted in a simulation with 
Gazebo 2 under a ROS Indigo environment. We used the 
robot model of Pioneer3AT and added a laser and camera on 
it. While the laser can provide diverse information, we only 
collected distance information from four angles (front, back, 
left, right). The robot is spawned in an obstacle-free walled 
space, in which it should move.  

For all the experiments, the agent was given reward of 
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value 1 for achieving a task. On the contrary, the agent was 
penalized a value -0.5 if the robot made dangerous 
movements such as crashing into walls or turning over. 
Otherwise, the reward was 0.  

During training, exploration was governed by an Ornstein-
Uhlenbeck process [Uhlenbeck and Ornstein, 1930] to 
randomize and balance exploration. When testing the 
performance, this exploration was no longer permitted. For 
all experiments, we trained the model 3 times and tested it 
intermediately. Each model is trained for 5,000 episodes 
which contain approximately 60,000 training iterations. 
Adam [Kingma and Ba, 2015] is used to train the network, 
with initial learning rates 0.001 and 0.0001 for the critic and 
actor respectively. We set the discount factor to be 0.9 and 
train our networks in TensorFlow [Abadi, et al., 2016].   

5.1 Testing the Proposed Network Architecture 
We show the results of the 12 tasks tested in the first set of 
experiments in Figure 4 . We can see from these three graphs 
that our proposed network achieved comparable performance 
against the network proposed for DDPG. While both 
networks showed stability through each training process, they 
also showed robustness with low standard deviations. 
Moreover, both networks were able to collect high average 
rewards per action which indicates that they were both acting 
as expected during testing.  

We can see that the average rewards per action may be a 
little lower when high speed is required for that task. This is 
mainly caused by the acceleration at the beginning of the 
testing. We show how the robot trained with our network was 
acting by drawing out its movement trajectories of the 12 
tasks in Figure 3 . We can see that the robot was moving as 
expected. Although the trajectories of those turning tasks are 
not in perfect circles, they are good enough to collect rewards.  

Note that our network is achieving these performances 

with far fewer parameters compared to the network in DDPG. 
A comparison of the number of parameters introduced is in 
Figure 2 .  

5.2 Testing Multi-Task Performance 
We first tried the proposed multi-DDPG algorithm to learn 3 
tasks and 6 tasks concurrently. These tasks are less 
constrained controls of the robot compared to the 12 tasks 
above (such as simply moving straight without direction and 
speed restrictions). The results of these two early trials show 
that our algorithm can deliver robust multi-task training of 
these less constrained tasks, in which actors started to act 
according to their corresponding reward signals in early stage 
of the training.  

Finally, we tested multi-DDPG with the 12 highly 
constrained control tasks scenario. The results are also shown 
in Figure 4 . We can see that the performances of multiple 
actors trained by multi-DDPG are comparable to actors 
trained by single task scheme. The narrow shadow areas and 
mild vibrations in the graphs demonstrate the robustness of 
the algorithm and the stability of the performances of trained 
actors.  

Note that the increased number of tasks and their 
constraints do not increase the number of episodes needed to 
stabilize training. This may be owing to the parameter and 
replay memory sharing amongst all tasks, which helps the 
agent to avoid dangerous actions and increase the chance of 
collecting rewards during exploration. The high average 
rewards collected in every action across all individual tasks 
further prove the effectiveness of the algorithm.  

These results suggest that the proposed multi-DDPG 
algorithm can not only train high performance actors but also 
remain robust either when the number of tasks or the 
constraints of tasks increase. Its light-weight architecture as 
well as parameter sharing strategy also make it flexible 

Figure 3: A collection of movements of the 12 highly constrained control tasks. At most 15 action steps are shown in each picture. The red 
nodes are the location of the robot, and black arrows in between are its movement trajectories. In each picture, yellow triangle indicates the 
initial orientation of the robot, while bold blue arrow shows the overall moving direction of the robot. 
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enough to be expanded to handle more actors and tasks.    

6 Conclusion 
In this paper, based on the DDPG algorithm proposed in 
[Lillicrap, et al., 2016], we present a multi-task training deep 
reinforcement learning algorithm called multi-DDPG which 
combines images and sensor data as its input. In order to 
reduce the number of parameters needed to extract image 
features and learn multiple actors, we also introduce a new 
network architecture which takes advantage of mlpconv 
layers [Lin, et al., 2013]. 

We conducted two sets of experiments using a Pioneer 3AT 
mobile robot in Gazebo 2 under a ROS Indigo Environment. 
Our first set of experiments show our new network achieves 
comparable performance to DDPG with only 25% of the 
parameters introduced. The second set of experiments 
demonstrates the robustness of our proposed algorithm 
against the increasing numbers of tasks and tasks' constraints. 

Also it shows that the algorithm achieves stable multi-task 
training without any decrease in the performance of each 
individual task. 

However, we should note that while the algorithm achieves 
multi-task training, it cannot be used to choose which task it 
should do under given conditions. This means the algorithm 
does not consider how to use these learned skills to fulfil 
other goals. Nevertheless, the skills learned by our algorithm 
are accurate enough to be reused for high level goals. Our 
future work will focus on how to embed hierarchical and 
intrinsically motivated learning into the algorithm’s 
framework to properly choose these learned tasks to achieve 
other high level goals. 
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