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Abstract

Modeling associations between items in a dataset is
a problem that is frequently encountered in data and
knowledge mining research. Most previous studies
have simply applied a predefined fixed pattern for
extracting the substructure of each item pair and
then analyzed the associations between these sub-
structures. Using such fixed patterns may not, how-
ever, capture the significant association. We, there-
fore, propose the novel machine learning task of ex-
tracting a strongly associated substructure pair (co-
substructure) from each input item pair. We call this
task dependent co-substructure extraction (DCSE),
and formalize it as a dependence maximization prob-
lem. Then, we discuss critical issues with this task:
the data sparsity problem and a huge search space.
To address the data sparsity problem, we adopt the
Hilbert—Schmidt independence criterion as an ob-
jective function. To improve search efficiency, we
adopt the Metropolis—Hastings algorithm. We re-
port the results of empirical evaluations, in which
the proposed method is applied for acquiring and
predicting narrative event pairs, an active task in the
field of natural language processing.

1 Introduction

Modeling associations between items in a dataset is a general
problem commonly addressed in a broad range of data or
knowledge mining research. For example, the valuable natural
language processing tasks of extracting narrative event pairs
(e.g., (X commit a crime, X be arrested)) as components of
script knowledge [Chambers and Jurafsky, 2008] and learning
selectional preference of predicates (e.g., food is preferred as
an object of ear) [Resnik, 1997] model associations between
event pairs and predicate-argument pairs, respectively.

The common approach for modeling associations usually in-
volves three steps; we use the approach proposed by Chambers
and Jurafsky (C&J) as an example. In the first step, associated
pairs of items are collected from a dataset as positive sam-
ples; in the C&J method, these are sentence pairs that include
co-referent people or objects from a text corpus (e.g., the sen-
tence pair “Tom; killed Nancy.” and “The police arrested Tom;
immediately.” is collected because of the co-referent “Tom;”
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Figure 1: Example of the input and output of Dependent Co-
Substructure Extraction (DCSE) for acquiring narrative event pairs.

in both the sentences). In the second step, the abstract repre-
sentation (substructure) is extracted from each item pair; the
C&J method utilizes head predicates coupled with argument
slots (e.g., (X kill, arrest X)). In the third step, the associa-
tion between the extracted substructure pairs is modeled; the
C&J method utilizes pointwise mutual information (PMI) to
measure the association. In this way, (X kill, arrest X) (for
example) might be chosen as a narrative event pair because the
calculated PMI value is large; in contrast, event pairs with low
PMI values such as (X kill, X graduate) would be discarded.
We believe the second step mentioned above can be im-
proved because, in most previous studies, people simply ap-
plied intuitively defined and fixed patterns for extracting sub-
structures, without much optimization for the third step. For
example, the C&J method uses a simple syntactic pattern,
namely one predicate with a co-referent argument slot, such
as X kill. With such a fixed pattern, however, the intended as-
sociations between item pairs may not be best captured. Fig. 1
shows an example of this, where we assume that we are min-
ing narrative event pairs from the set D of sentence pairs. If
we were to use the syntactic pattern of the C&J’s method, we
would obtain event pairs such as (X have, X full) and (X have,
X sad). However, the event representation X have is clearly
too abstract to capture the full associations with the distinct
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events X full and X sad. Ideally, we want to acquire event pairs
such as (X have dinner, X full) and (X have trouble, X sad) as
illustrated by the set Z in Fig. 1. Therefore, ideally, we should
be able to flexibly choose substructures of arbitrary size that
are the most appropriate to capture the associations.

This issue motivates us to consider a new machine learn-
ing task, which we call dependent co-substructure extrac-
tion (DCSE). In this task, a pair of strongly associated sub-
structures (x;, y;) are extracted for each input item pair (s;,
t;), as illustrated in Fig. 1. We consider selecting an appro-
priate level of knowledge abstraction to mine based on the
association strength. In Fig. 1, for example, we want to in-
clude dinner in the substructure of the first pair but not at
restaurant, using no predefined pattern.

In this paper, we first formalize the task of DCSE as a
dependence maximization problem; then, we discuss two
critical issues with the task: the data sparsity problem and
the huge search space (Sec. 2). We propose adopting the
Hilbert—Schmidt independence criterion (HSIC) as an objec-
tive function to cope with the data sparsity problem (Sec. 3)
and the Metropolis-Hastings (MH) algorithm to boost search
efficiency (Sec. 4). Finally, we demonstrate the superiority
of the proposed method via experiments in two scenarios,
namely knowledge acquisition and predicting narrative event
pairs (Sec. 5).

2 DCSE as Dependence Maximization

First, we formalize our dependence maximization problem.
For each given pair of items, find a strongly associated pair of
substructures based on the dependence maximization principle
as follows.

Dependent co-substructure extraction (DCSE).

Given: A set D = {(s;,t;)}; of item pairs, where
s; € Sand t; € T are raw items and each item
pair (s;, t;) represents a specific relation of interest
(e.g., co-reference and co-occurrence). S and T
are sets containing all the raw data {s} and {t},
respectively.

Find: A set Z = {(x;,y;)}}Y; of substructure pairs
(co-substructures) that maximizes the dependence
(given below), where x; < s;, y; < t; for each ¢
and ‘x < s’ denotes that x is a substructure of s.
To estimate the dependence, we assume that each
solution Z as N independent samples drawn from
some joint distribution:

Z = {(xi,yi)}iLy ~ Pxv. M
Then, we estimate the dependence between X and
Y by the distance between the joint density Pxy
and the product of marginals Px Py .

There are several possible ways of measuring the distance
between Pxy and Px Py; one straightforward way is to
employ mutual information (MI) as a dependence measure.
MI has been utilized various knowledge mining and ma-
chine learning studies to measure association strength and
dependence [Church and Hanks, 1990; Maes et al., 1997;
Turney, 2002; Torkkola, 2003; Peng er al., 2005]. Using MI,
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the dependence of Z = {(x;,y;)}Y, is computed by

MI(Z) = x,y) log 2Y) 2
(2) zx:zy:p( Y)log e 2)
= KL[Pxy || Px Py], 3)
where KL[-||-] denotes the Kullback—Liebler divergence be-
tween two distributions.
Adopting MI in DCSE dose, however, poses two critical
problems:

Data sparsity Our search space includes substructure pairs
of arbitrary size. In the case of Fig. 1, for example, we may
consider a specific substructure such as “She has big dinner”
as a candidate substructure. Thus, we encounter a data spar-
sity problem if the probability distribution of substructures is
naively estimated by counting occurrences in the data.

Huge search space The search space of DCSE can be pro-
hibitively large. The optimal co-substructure for a given input
item pair depends on the co-substructure choices for other item
pairs, making searching difficult. In other words, one cannot
reach the global optimal simply by locally choosing seemingly
good co-substructures. There is, therefore, a need to devise an
approximation method to improve search efficiency.

We propose a solution to these problems in the subsequent
two sections.

3 Objective Function: HSIC

To cope with the data sparsity problem, we propose adopting
the Hilbert—Schmidt independence criterion (HSIC) [Gretton
et al., 2005], instead of MI, as the objective function. HSIC is
a kernel-based dependence measure involving low computa-
tional cost that has been used in a range of machine learning
tasks such as feature selection [Song er al., 2012], dimen-
sionality reduction [Fukumizu et al., 2009], and unsupervised
object matching [Quadrianto et al., 2009].

Intuitively, HSIC can be seen as a smoothed version of
MI, where the candidate substructure counts are somehow
smoothed using similarities between substructures. Consider
the example in Fig. 1 again. Using HSIC, the (semantic) simi-
larity between the substructures “have dinner” and “eat” can
be considered when estimating the dependence of Z, which
smoothens the counts of those substructures.

Let X and Y be random variables with ranges X and
Y respectively (i.e. X constitutes all candidate substruc-
tures {x: x < s,s € S}, and similarly for ))) and Z =
{(xi,y:)}}¥, € X x Y be aseries of N independent observa-
tions drawn from the joint distribution Pxy . The HSIC value!
of Z, which estimates the degree of dependence between X
and Y, is

HSIC(Z;k,¢) = %tf(KHLH) = %tr(KL). 4

In this equation,
e k: X xAX - Rand/l: )Y x Y — R are positive definite
kernels that serve as similarity functions over substructures,

"Precisely, HSIC measures the dependence between two random
variables, X and Y. Eq. 4 gives an empirical estimator of HSIC.
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o K = (k(x4,%x;)) € RY>*N and L = ({(y;,y;)) € RV*N
are Gram matrices, which serve as the similarity matrices
given by kernel functions k and [, and

« K = HKH ¢ RY*N and L = HLH € RV*N are
centered Gram matrices, where H = ((6;; — +)) € RV*YV.
To elaborate on the intuition that the HSIC is a smoothed

version of M1, let us first consider a smoothed version of PMI.

We define pointwise HSIC (PHSIC): X x Y — R with given

Z, as follows:

N
PHSIC(x,y; 2 Z X, X5 {X, } E(Yayi;{}’n})’ &)
i=1

where {x,} denotes {x1,...,xn}. The function

f(-, {xn}): X x X — Ris defined by

N
- 1
k(x,x'; {xn}) := k(x,x") — N k(x,x;)
. v ©
/
N i:Zlk(XiaX + ﬁ;;k(xi,xﬂ,

which gives the similarity between x and x’ centered in future
space; namely, if addition is defined on X, k(x,x’; {x,})
equals to k(x — X,,x" — X,). The PHSIC value of x and
y is essentially increased by the presence of other samples
(xi,y:) that are similar to (x,y), i.e., x; ~ x and y; ~ y;
this enables smoothing across similar items. Moreover, HSIC
corresponds to the summation of PHSIC values, paralleling the
relationship between MI and PMI (i.e., M1 is the summation
of PMI values.) This is the sense in which HSIC can be seen
as a smoothed version of MI. The relationship between MI
and HSIC is summarized in Table 1.

This smoothing is a strong advantage of the HSIC. In knowl-
edge mining and natural language processing, a wide range
of methods can be used for estimating similarities between
words, phrases, and their arbitrary substructures, from clas-
sical thesaurus-based methods to modern embedding-based
ones. Using such a similarity function, one can consider, for
example, the co-occurrence (eat, full) when estimating the
association strength of, for example, (have dinner, full). B
solving the HSIC maximization problem, strongly associated
co-substructures of arbitrary size can be extracted while cop-
ing with the data sparsity problem.

4 Search: Based on Metropolis—Hastings

In order to find a near-optimal Z in a huge search space, we
adopt an approach based on Metropolis—Hastings (MH) sam-
pling [Chib and Greenberg, 1995]. We consider the probability
distribution
where ( is the inverse of a temperature parameter. The larger
an HSIC value is, the higher Z’s probability. By sampling
Z on the distribution given by Eq. 7 while changing Z step
by step, Z is expected to converge to its optimal value with
a substantially lower computational cost than that with a full
search (Fig. 2).

The details of the sampling procedure are as follows.
1. Let Z = {(x;,yi)}}, be the current sample.
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Figure 2: Overview of Metropolis—Hastings sampling.

z"

2. Draw a new candidate Z’ by changing only one sub-
structure. Specifically, first, draw x; or y; from Z =
{(xs,y:)}Y, from a uniform distribution: Vi, p(x;|Z) =
p(yi|Z) = 5%. Then, propose an x| for a given x; us-
ing a proposal distribution ¢(x}|x;) (a specific example of
q(x}|x;) is given in Sec. 5.1). Thus, the proposed distribu-
tion for drawing a new candidate 2’ = {..., (x},y),...}
foragiven Z = {...,(x;,¥i), ...} by changing only x; is

1
q(2'|12) = q(xi|x:i)p(xi|2) = W(I(Xﬂxi)- (®)
3. Accept Z’ with the probability min(1,r), where,

_ P25k 0 8) a(Z]|2)) ©)
Pp(Zk L5 q(ZZ) ,
_ exp(B(HSIC(Z:k, 0)—HSIC(Z:k, 0))) LX) 40,

a(x'x)’
4. Repeat Steps 2-3.

Because the HSIC is a kernel-based measure, its high com-
putational cost may be a concern. In reality, we only need to
compute Gram matrices with O(N?2) computational cost only
for the first iteration. For each iteration of MH sampling, it
is sufficient to update only one row of the Gram matrix with
O(N) computational cost. In addition, computing the HSIC
takes only O(Nx?) time via rank » incomplete Cholesky de-
composition [Gretton et al., 2005] (Lemma 2).

5 Experiments

We evaluated the performance of the proposed method in two

scenarios.

¢ Knowledge acquisition extracts a set of abstract represen-
tation pairs, Z = {(x,y)}, from a corpus. We feed an
input D = {(s,t)} to a DCSE method, and then verify if
the output Z is reasonable and interpretable. In order to
examine the behavior of the proposed method, we perform
knowledge acquisition on a synthetic dataset in Sec. 5.2.

¢ Prediction constructs a model from Z, and computes the
relevance of a new pair (s, t) based on the relevance of the
substructure pairs (x,y). In other words, the determination
of whether a new pair (s, t) has a relationship is based on
the score of its abstract representation (x,y). We report the
results of experiments on real corpora in Sec. 5.3.

5.1 Experimental Settings

Data Representation
We adopted dependency trees for the input representations of
input s; and t; and their rooted subtrees as those for output
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Table 1: Relationship between MI and HSIC. “¥” denotes exclusive or. When the equation indicated by the “+” sign is satisfied, the
PMI/PHSIC value increases. When the equation indicated by the “— sign is satisfied, the PMI/PHSIC value decreases. I[cond] = 1 if the

condition is true and 0 otherwise. Note that the elements of the centered Gram matrix K can be expressed as KZ] = lf(xl7 Xj;{Xn}) and

HSIC(Z) = 5 Y0, KijLij.

consistency of (x,y) with (x;,y:) € Z

consistency of (x,y) with Z

estimate of dependency

+ X=X; NYy=Yi

MI PMI(x,y; Z)

- x=x;Yy=y;

=log

N3 Ix=xi Ny=yil

> lx=xi] >, Ily=yi]

MI(Z)= % >, PMI(xi,y4)

| kG xi {xa DAy, yis {yn}) >

HSIC ~ PHSIC(x,y; 2) =3, k(x, xi; {xn })(y, yi; {yn}) | HSIC(Z) == >, PHSIC(x:,y:)
—| kG xis {xa Dy, yis {yn}) <O "
substructures x; and y; (Fig. 1). [ q(x'|x) - ) - | - ) - \
X0 X 2 )2/3 X P X
Kernel Function { K ({\
HSIC requires two positive definite kernels, k and ¢ (Eq. 4), M)

that compute the similarity between two subtrees of depen-
dency trees. We employed the cosine similarity? between
vector representations, which has several desirable properties:
(i) it is the most standard function used to measure similarity
between phrases using word vectors; (ii) it has no hyperparam-
eter; and (iii) its computation cost is low.

Let x;, x; € & be rooted subtrees.
kernel function k&,

k(xi, %) = co8(Viree(Xi), Viree (X)), (11)
and another kernel function ¢ analogously. The vector Vi ee(X)
is the average of the word vectors for the word set {w} consti-
tuting the subtree x:

Viree(X) = average({v(w): w € x, w € V'}).

We then defined a

12)

Here, v(-) denotes 300-dimensional pre-trained word vectors?,
and V represents a vocabulary set*.

If the product kernel k(-,-) x £(-,-) is characteristic on
X x Y, HSIC(X,Y,k,¢) = 0 if and only if “X and Y are
independenct” [Muandet et al., 2016]. Therefore, when we
test independence using HSIC, the kernels should be charac-
teristic (e.g., Gaussian kernel and Laplacian kernel). However,
in this study, we are more interested in the case of depen-
dence (the HSIC value is large), rather than independence
(the HSIC value is small). Therefore, the HSIC can be suf-
ficiently estimated by only considering low-order moments
of the probability distribution; this little negative effect even
when using characteristic kernels. In fact, replacing the cosine
kernel with the Gaussian kernel had almost no impact in our
experiments (with the same setup otherwise).

Proposal Distribution

MH sampling uses a proposal distribution g(x’|x) that sug-
gests a next candidate x’ < s given the current candidate
x = s (Eq. 8) and similarly uses ¢(y’|y) for y’. For a given
x < s, let M (x) be the set of subtrees of s that are obtained
by stretching or shrinking only one edge of x. The experi-
ments used ¢(x’|x) that yielded 1/|M (x)| if x’ € M (x) and
0 otherwise (Fig. 3).

2 cos(+,-): RY x RY — Ris a positive definite kernel which satisfies
the application condition of HSIC.
3https://code.google.com/archive/p/wordZvec/

4Stop words in http://www.ranks.nl/stopwords/ are excluded.

Figure 3: Proposal distribution g(x’|x) used in experiments.

5.2 Knowledge Acquisition from Synthetic Data

In order to verify that the proposed method yields reasonable
and interpretable paired abstract representations, we prepared
a small synthetic dataset constituting 12 pairs of sentences.

Results

Fig. 4 shows the experimental results. The upper half shows
the input D and the lower half shows the output Z obtained
via the proposed method. For example, the method ab-
stracted the first input (s1,t1) = (They had breakfast at the
eatery., They are full now.) to (x1,y1) = (had breakfast,
Jull) (number 1 in the figure). The heat maps in Fig. 4 repre-
sent centered Gram matrices. For example, the bottom-left
heat map shows the similarity matrix K for {x1,...,xn};
the element at (1,9) represents the value of k(x1,x9) =

k(had breakfast, had trouble).

Discussion

The proposed method successfully found the common sub-
structures in the inputs. For example, the method recognized
the co-substructure (have breakfast, full) in the first block be-
cause it was common to many inputs. By contrast, the method
pruned rare words that were unimportant for modeling associ-
ation. For example, the method removed “at my house” in sy
from the first block.

In addition, the proposed method works flexibly on surface
variations by considering word similarity. Although the words
“dinner” (in s4) and “lunch” (in s;) appeared only once in
the corpus, the method found an appropriate common co-
substructure by recognizing that they are similar to “breakfast”.
The method ultimately recognized three clusters in the input
data— eat meals, be full), (eat meals with friends, feel happy),
and (have trouble, cry) i
four pairs, respectively. We can also confirm this behavior by
observing the K value (the bottom-left heat map in Fig. 4):
the events in the first block and those in the second block in
K are strongly similar, respectively (the squares surrounded
by red lines in Fig. 4).

Furthermore, we can observe that “(with) friends” remained
in the abstract representation in the second block. We infer that
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S .

1. They had breakfast at the eaterly .

2. 1 had breakfast at the ten o’clock .

3. We had special breakfast .

4. 1 have had dinner at my house .

5. She had breakfast with her friends .

6. They had breakfast with their friends at the refectory .
7. He had lunch with his friends at eleven .

8. I had breakfast with my friends at my uncle ’s house .
9. He had trouble with his homework .

10. I had trouble associating with others .

11. She has trouble understanding a book when she reads .
@ |12. I “ve been had trouble with my bowels since last night .

1. 5.

Xi 1. 5.

9. 5. 9.

1 tz 1. 1 —
1. They are full now . [
I 2.1'm full already . I
3. We are full and tired of eating .
4.1 am full from dinner .
5. She felt very happy .
6. They felt happy .
7. He felt happy seeing his friends . 0
8. I feel really happy .
9. He cried in despair .
10. I howl in fright .
11. She cries continuously .
12. T cry with pain .

|
|
|
-1
9. yi

0

1. had breakfast
2. had breakfast
3. had breakfast

4. had dinner

5. had breakfast friends

6. had breakfast friends

7. had lunch friends

8. had breakfast friends uncle house

9. had trouble
10. had trouble
11. has trouble
12. had trouble

10. howl
11. cries
12. cry

. 5 9. _
1 1. full !
2. full
3. full
4. full
5. felt happy
6. felt happy
0 7. felt happy 0
8. feel happy III

9. cried despair
I I
-1

i,

Figure 4: Results obtained via the knowledge acquisition task. The upper and lower halves respectively show the input D and the output Z.

The heat maps represent centered Gram matrices.

this is because removing the expression from the second block
would result in merging of the first and second blocks on the
X side, whereas the information in the first (full) and second
(felt happy) blocks on the ) side was totally different. This
merger would have been an undesirable behavior, decreasing
the ability to predict t from s. The proposed method prevented
this behavior by observing the Gram matrices of X and ); the
red and blue frames in Fig. 4 suggest that the first and second
blocks are not merged.

5.3 Prediction on Real Corpora

In order to demonstrate the effectiveness of the proposed
method on a real dataset and task, we conducted an exper-
iment on pairwise classification of narrative event pairs. We
first learned an association model with positive paired data
gathered from corpora and then measured the model’s predic-
tion performance on a test dataset.

Dataset

Table 2 provides the data statistics for the performed prediction

task. We used the following two corpora:

* The Gigaword Corpus® [Graff and Cieri, 2003]: a large
collection of English newswire text data that has been used
in several previous studies [Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009; Granroth-Wilding and Clark,
2016]. We used 17,781 documents published in the year
2000 from the New York Times (NYT) portion.

 Andrew Lang Fairy Tale Corpus®: a small collection of
children’s stories that has been used in a previous study [Jans
et al., 2012]. We used all 437 stories in this experiment.
Applying Stanford CoreNLP Version 3.7.0 [Manning et al.,

2014] to raw text from the corpora, we extracted sentence pairs

5https ://catalog.ldc.upenn.edu/1dc2003t05/
6http: //www.mythfolklore.net/andrewlang/

Table 2: Data statistics for the prediction task.

Corpus Collection  #All #Training #Test(pos) #Test(neg)
Gigaword | regular 16,748 10,000 500 500
Fairy Tale | 2-skip 1,673 1,000 100 100

sharing co-referring arguments. When handling the Gigaword
and the Fairy Tale corpora, used regular bigrams and 2-skip
bigrams, respectively [Jans et al., 2012].
Next, we filtered the sentence pairs using the following
conditions:
¢ 4 < the number of tokens in a sentence < 30;
* the POS tag of the root node of the dependency tree is in the
set {VB, VBD, VBG, VBN, VBP, VBZ};
* the word at the root node of the dependency tree is not in
the set {be, am, are, is, was, were, 'm, ’re, ’s}; and
* the position of all protagonists seen from the predicate verb
are in the set {nsubj, dobj}.
We collected all sentences satisfying the above conditions into
a set of positive sentence pairs D@1
Finally, we randomly chose positive sentence pairs from

this set to construct the training set and the test set D"
(without overlap). We obtained pseudo-negative sentence pairs

DY — {(s/,/)} for the test st by randomly extracting s’
and t’ from positive sentence pairs D@ = {(s, t)}.

Performance Measure: AUC

We used the area under the receiver operating characteristic
curve (AUC-ROC or AUC) to evaluate the performance of
the different scoring functions. This task is a pairwise binary
classification problem and is essentially a version of the con-
ventional “cloze test” for narrative event chains. In binary
classification/ranking problems, AUC-ROC is generally used
as an evaluation metric, and it is a stable and robust measure
even when the ratio of positive and negative examples in the
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test set is skewed, unlike the area under the precision-recall
curve (AUC-PR) [Fawcett, 2006].

Given a set of positive examples Dp = {(s, t)} and a set of
negative examples Dy = {(s/, t’) }, the AUC can be computed
using any scoring function f: & x 7 — R as,

> If(s,t) > f(s',t)], (13)
s,t)€Dp (s’,t')EDN
where I[cond] = 1 if the condition is true and 0 otherwise.

1
|Dp||Dx| (

Experimental Procedure

Here, we explain the generic procedure for computing AUCs

for both the proposed and baseline methods.

Training Trainamodel g: X x Y — R.

1. Abstraction: generate abstract event pairs Z for a given
training set D(train)

2. Training: construct an association model g between ab-
stract representations from Z.

Test Compute the score f(s,t) for each (s, t) in the test set.

1. Abstraction: convert the given pair (s,t) to an abstract
representation (x,y) using the method in question.

2. Scoring: compute the score g(x,y) and regard it as the
score for the original representation f(s, t).

Baseline Method 1 (C&J’08)
The first baseline method is one proposed by [Chambers and
Jurafsky, 2008]. To abstract raw sentences, the heads of predi-
cate verbs and positions of protagonists are focused on (Sec. 1).
The model g(x,y) uses PMI under Z:

N-cxy)
Zy/ C(Xv yl) Zx’ C(X/’ y) ’

where ¢(x, y) denotes the frequency of (x,y) in Z.

Baseline Method 2 (Jans et al.’12)

The second baseline method is proposed by [Jans et al., 2012].
In this method, the abstract representations are identical to
those of C&J’08. The model ¢g(x,y) computes the logarithm
of a conditional probability under Z:

PMI(x,y; Z)=log

(14)

g(x,y) =logp(y|x; Z) = log ZC(X"Y) (15)

y’ C(X7 y/)
Baseline Method 3 (C&J’08 + PHSIC)
We also consider a kernelized version of C&J’08 using PHSIC,
which intuitively is smoothed PMI. We define the following
kernel function between verb dependency tuples (v, d):

k((vi,d1),(v2,d2))= {Cols(V(Ul)N(UQ)) Ef)l.lw:.)dg)

Proposed Method (DCSE + PHSIC)

The proposed method uses DCSE, realized using the HSIC

and MH for abstraction (Sec. 3 and Sec. 4), and the PHSIC for

the model. Note that DCSE is performed for each instance in

the test set.

Training

1. Given the training set D) perform DCSE by maximiz-
ing the HSIC and generating abstract event pairs Z (Sec. 2).
We ran the MH sampler with 3 = 108 to draw 7 x 10° and
2 x 10° samples, respectively, for the Gigaword corpus the
Fairy Tale corpora.

. (16)
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Figure 5: ROC curves on the prediction task.

Table 3: AUC values for the prediction task. The best result in each
column is shown in bold.

Method Abstraction Model Gigaword Fairy Tale
C&J’08 Fixed (C&J) PMI 0.553 0.596
Jans et al.’12 Fixed (C&J) Conditional 0.556 0.576
C&J’08 + PHSIC Fixed (C&J) PHSIC 0.518 0.518
Proposed DCSE PHSIC 0.633 0.646

2. The model is PHSIC under Z (Eq. 5).

Test

1. Taking {(s,t)} U Z as the input, perform DCSE with a
fixed Z to obtain (x,y) such thatx < s,y < t.
2. f(s,t) is defined by ¢g(x,y) = PHSIC(x,y; Z).

Results and Discussion

Fig. 5 shows the ROC curves obtained for each method. The
x- and y-axes denote the false positive rate and true positive
rate, respectively. The area under the curve corresponds to
the AUC. Table 3 summarizes the AUC values of the different
methods for each dataset.

The experimental results show that the proposed method
outperforms all the existing methods when applied to both
the datasets. Moreover, its prediction performance was bet-
ter than those of the baseline methods over the entire ROC
curve (Fig. 5). These results indicate that changing from a
fixed abstract representation (C&J) to DCSE resulted in con-
siderable performance improvement in the prediction task.

A comparison between C&J and C&J+PHSIC highlights
that there is no advantage of integrating PHSIC with the fixed
abstract representation. The experimental results imply that
simply applying PHSIC to a fixed abstract representation
does not improve predictive performance (C&J’08 + PMI
> C&J’08 + PHSIC). These facts also support the effective-
ness of determining an abstract representation optimized for
each instance (DCSE).

The experimental results for real corpora also show that
the proposed method can capture significant association from
original sentences more accurately than the existing methods.
For instance, from the sentence pair (Hasegawa had a team-
high 10 wins last season., He pitched in with nine saves while
Troy Percival was hurt and had an ERA of 3.57 in a team-
leading 66 appearances.) our method extracted (had wins
last season, pitched nine saves), while the existing methods
extracted the abstract representation (X have, X pitch), which
cannot readily interpreted.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

6 Conclusion

In this paper, we have addressed the problem of determin-
ing abstract representations when modeling the associations
between items in a dataset. We have proposed a new ma-
chine learning task called dependent co-substructure extrac-
tion (DCSE) that extracts strongly dependent substructure
pairs from associated pairs. The proposed method incorpo-
rates HSIC (Sec. 3) and MH sampling (Sec. 4) in order to
cope with the challenges of data sparsity and huge search
space, respectively. Our experimental results demonstrate the
effectiveness of the new task and the proposed method in
two scenarios, namely knowledge acquisition and predicting
narrative event pairs (Sec. 5).

While we obtained favorable experimental results by using
a simple cosine kernel, the proposed method can utilize arbi-
trary kernel functions such as the RBF kernel, tree kernels, and
graph kernels on arbitrary data structures such as sequences,
graphs, and vectors. An intriguing direction for future work
would be to adopt other data structures and kernel functions so
that semantic similarities can be captured more precisely. Ap-
plying our method to various knowledge mining tasks would
also be interesting.

Even with the relatively low computational cost of kernel-
based measures, HSIC still faces a scalability problem. Al-
though we conducted experiments on a dataset consisting of
10,000 pairs, we would like to train a better model on a larger
dataset with, for example, more than a million pairs. An
important task for future work, therefore, is to improve the
scalability of proposed method. Promising approaches toward
this aim include using various methods for approximating
Gram matrices, such as using random Fourier features.
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