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Abstract

We address the problem of object co-segmentation
in images. Object co-segmentation aims to segment
common objects in images and has promising ap-
plications in Al agents. We solve it by proposing
a co-occurrence map, which measures how likely
an image region belongs to an object and also ap-
pears in other images. The co-occurrence map of
an image is calculated by combining two parts: ob-
jectness scores of image regions and similarity ev-
idences from object proposals across images. We
introduce a deep-dense conditional random field
framework to infer co-occurrence maps. Both sim-
ilarity metric and objectness measure are learned
end-to-end in one single deep network. We evalu-
ate our method on two datasets and achieve com-
petitive performance.

1 Introduction

We consider the task of object co-segmentation. The goal
is to segment common objects in a set of images. Specifi-
cally, given a set of images, we try to answer two questions:
which objects occur in different images? and where are they
in each image? Object co-segmentation has multiple poten-
tial applications in Al agents, e.g., we input a query word to
any image search engine and it can help summarise a large
amount of returned images by picking out common objects
inside them. Compared to single foreground segmentation,
object co-segmentation can make use of shared information
across images to assist final segmentation, which is also the
most crucial step for co-segmentation.

Object co-segmentation has been widely researched in re-
cent years [Vicente er al., 2011; Rubinstein et al., 2013;
Wang et al., 2013; Zhang et al., 2015; Lee et al., 2015;
Quan et al., 2016; Wu et al., 2016]. These methods are
mainly different in how to include shared information into
image segmentation. For example, [Rubinstein et al., 2013]
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use SIFT Flow to match pixels across images, [Vicente et
al., 2011] match regions, [Zhang et al., 2015] compare ob-
ject proposals, etc. However, sharing information remains to
be a challenge for several reasons. On one hand, low-level
matching is noisy and hard to include high-level similarity
information. On the other hand, robustly measuring similar-
ity between regions is difficult due to possible illumination
changes, viewpoint variations and so on. Another challenge
is the diversity of image sets. Other uncommon objects may
also appear somewhere. Co-segmentation system must ro-
bustly address different scenarios.

In order to overcome these challenges, inspired by [Hayder
et al., 20161, we propose an object co-segmentation system
that learns to share common information for segmentation.
Specifically, given a set of images, we first generate multi-
ple object proposals for each of them and every proposal is
associated with a label to represent if it is a common object
instance or not. All proposals across images are linked in a
deep-dense conditional random field (DDCRF), where unary
potentials measure how likely an object proposal belongs to
a potential cooccurring object and pairwise terms model the
compactness between neighbour proposals under different la-
bel combinations. The DDCREF is an extension of dense CRF
[Krihenbiihl and Koltun, 2012] to deep neural network. In
a word, its unary and pairwise potential are modelled using
deep neural network. By this way, the probability of each
proposal to be common corresponds to the marginal distribu-
tion of each node and can be easily calculated by performing
standard inference on CRF. In addition, we augment DDCRF
with a branch to estimate segmentation masks of proposals.

With the common probabilities and segmentation masks of
all proposals, we develop a cooccurrence map to summer-
ize them for the following segmentation. The coocurrence
map measures how likely an image pixel belongs to poten-
tial common objects and is calculated by accumulating evi-
dences from all proposals. After getting cooccurrence maps
of all images, object co-segmentation is naturally converted
into image foreground segmentation and can be done inde-
pendently for each image.

In summary, our contributions are twofold: 1) a cooc-
currence map is proposed to convert object co-segmentation
into independent image segmentation, on which tons of sys-
tems exist. Every image has a cooccurrence map to encode
its shared information across images, which can be used as
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extra information for foreground segmentation; 2) a deep-
dense conditional random field is introduced to automatically
discover common information between object proposals and
then calculate cooccurrence maps. The entire network is
learned in an end-to-end way. To our best knowledge, our
system is the first to introduce deep neural network to object
co-segmentation. We evaluate our system on two challenging
datasets and achieve competitive performance.

2 Related Work

Image co-segmentation aims to segment multiple images in
an unified way. The topic has attracted a lot of attentions
in recent years because it has proved capable of improving
unsupervised foreground segmentation in case that no priors
exist for inputing images. Following [Yuan et al., 2014], we
roughly categorize co-segmentation into two branches based
on how many common classes are considered: object co-
segmentation and multi-class image co-segmentation.

Object Co-segmentation. Object co-segmentation aims
to segment common objects in multiple images. Most ob-
ject co-segmentation systems assume that only one single ob-
ject cooccurs in an input image set. To this end, the popu-
lar attempt is to construct saliency maps [Rubinstein et al.,
2013; Jerripothula et al., 2016], objectness maps [Vicente et
al., 2011] and other feature maps [Mukherjee et al., 2011;
Vicente et al., 2011; Wang et al., 2013; Dai et al., 2013]
to distinguish foreground objects. Then segmentation masks
are propagated across images based on the assumption that
matched regions should have similar masks. Images are con-
nected at pixel level [Rubinstein er al., 20131, region level
[Rubio et al., 2012; Faktor and Irani, 2013; Lee et al., 2015],
object proposal level [Zhang et al., 2015] and even feature-
space level [Wang er al., 2013] . Then the problem can be
naturally converted into a two-label optimization problem and
can be easily solved. Although much better performance is
obtained compared to baselines, there still exist a lot of chal-
lenges. The key limitation is that manually designed features
can not be robust to complex scenarios. [Wang et al., 2013]
propose function mapping to link regions but still need a care-
fully designed features. Recently, [Zhang et al., 2015] first
propose to combine Restricted Boltzmann Machines [Ben-
gio, 2009] and Convolutional Neural Network to embed ob-
ject proposals into a high-dimensional space so that regions
can be robustly matched in the space. However, their co-
saliency model is still pre-defined instead of automatic learn-
ing. [Quan er al., 2016] adopt a manifold ranking algorithm
to optimize their constructed superpixel graph. Their method
aims to reduce the common strict assumption that cooccur-
ring regions are objects. Similarly, low-level linking is not
robust to practical internet images.

Multi-class Object Co-segmentation. Multi-class seg-
mentation systems [Joulin ef al., 2012; Kim and Xing, 2012;
Ma and Latecki, 2013; Tsai et al., 2016] remove the assump-
tion that one single common object appear in images and aims
to segment all common classes. For example, [Kim and Xing,
2012] propose multi-object co-segmentation to segment mul-
tiple objects from background using a combinatorial auction
optimization framework. [Wu et al., 2016] add human loca-

tions as extra priors to segment common foreground objects
around a person. [Joulin ef al., 2012; Ma and Latecki, 2013;
Tsai et al., 2016] even extend it to multi-class image co-
segmentation without differentiating objects and background.
They iteratively perform discriminative clustering over over-
segmented image regions and then multiple class are dis-
tinguished from each other. [Yuan er al., 2014] introduce
a topic-level random-walk framework to give high votes to
cooccurring regions. However, the majority of them still con-
struct across-image relations using predefined features.

3 Our Model

We address the problem of object co-segmentation. To sim-
plify the task and make “common” more clear, we assume
that there is one single common object in a given image set.
That means other objects will not appear or appear much less.
Our system first generates object proposals for every image
and our goal is to make use of them to generate the cooccur-
rence map of each image. Deep-dense conditional random
field is adopted to encode shared information across images.

3.1 Deep-dense Conditional Random Field
Given a set of n images {I1, I3, ..., I}, we first generate a
pool of object proposals O = {oi,0i,..., 0;1 02, , 0g.
for all images, where g represents the number of proposals in
each image. To simplify the denotation, we omit the image
superior n and rewrites O = {01,02,...,0¢}. G is the to-
tal number of object proposals. Each object proposal o; has
two variables ¢; € {0,1} and m;. ¢; represents if o; is a
common object. ¢; = 0 means that the proposal belongs to
background or an uncommon object. The segmentation mask
m; 1s to show pixel locations of potential objects in 0;. A
deep-dense conditional random field is adopted to model the
joint distribution P(C,M|O) of C = {cj,c¢a,...,cc} and
M = {my,ma,...,mqg} given O. Formally,

1 G
P(C,M|O) Z(O)QXP( - Z o(ci,milo;)

G G
- zzwci,cj,mi,mﬂohoj))

i >

(D

where ¢(-) and v(-) represent the unary term and pairwise
potential, respectively.

Unary Potential. ¢(c;, m;|o;) models how likely the ob-
ject proposal o; is a common object and has the segmentation
mask m;. Following the Bayes rule, ¢(c;, m;|o;) can be fur-
ther decomposed into

d(ci,milo;) = d(cilo;) + d(msles, 0;) 2

However, it is impossible to measure the common character-
istic by one single object proposal. Instead, we use objectness
v; as its proxy, which measures the likelihood of o; as an ob-
ject. Finally, the final unary potential ¢(c;, m;|o;) is further
simplified into ¢(v;|0;) + ¢ (m;|o;) because m; can be mainly
determined by appearance.

Pairwise Potential. To simply formulation, we ignore the
influence of masks in pairwise potential. This is reasonable
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because a segmentation mask is highly related to appear-
ance [Pinheiro et al., 2015] and does not rely much on pre-
dictions from others. Assume that we have extracted feature
f; for any o;, then the pairwise potential is reformulated as

= plei, ¢)k(fi, £5)
3)

where p measures the compatibility between labels. We use

P(ci, e, mi, mjlog, 05) = P(cq, cjlog, 05)

the typical Potts model y(c;,¢;) = [ei # ¢;]. k(-,-) is a
Gaussion kernel
1
Ii(fl,fj) :exp(— §||fl—fj”2) (4)

Deep Network to Represent Potentials. We use deep convo-
lutional neural network to model unary potentials and extract
high-level features of object proposals . VGG16 [Simonyan
and Zisserman, 2014] is adopted as our backbone network but
the final two fully connected (fc) layers are removed. We add
three branches above the final pooling layer (pool5) to repre-
sent ¢(c;), ¢(m;) and f; respectively. The first two branches
share fc layers (fc6 and fc7) at the beginning and then di-
vide into two ways to encode ¢(c;) and f; respectively with
each following a fc layer. m; is estimated in another branch
by following one convolution layer and two fully connected
layers. In order to make outputs having fixed dimension, a
v X v(v = 40) mask is used. In testing stage, the mask will
be resized into its original size. In addition, we replace pool5
with ROI pooling [Ren er al., 2015] to share computations of
object proposals in the same image. The detailed architecture
is shown in Fig. 1.

3.2 Generate Cooccurrence Maps

For each image I, we use object proposals inside it to gener-
ate its cooccurrence map R. The element of R represents how
confident its corresponding pixel appears in most of other im-
ages. In order to generate these maps, we first maximize
P(C,M|O) and get MAP estimates for object proposals.
Note that P(C, M|O) can be further decomposed after our
simplification for both unary and pairwise potentials

Cz|01 Zi/f CI)C]|0170] ))

7>

P(C,M|0) o<exp<z
Hexp
(%)

Therefore, M can be inferred independently for each object
proposal by only performing forward pass. In term of C,
the mean field variational inference [Krihenbiihl and Koltun,
2013] is adopted to get MAP estimates. Specifically, P(C|O)
is approximated by Q(C) = [], qi(c¢;). The marginal distri-
bution q;(¢;) of each o; can be calculated in an iterative way

ZZ#J CZ7C_7 q; C])) (6)

J#i <

d(milo;))

qi(c;) x exp

The iteration proceeds until convergence or the iteration step
exceeds a threshold. Although the update can be boosted by
high-dimensional filtering techniques, we use the standard
convolution operator because convolution is fast enough on
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current GPUs. By this way, we get q;(c;) for any object pro-
posal to encode its probability to appear in other images.

With the marginal distributions and mask predictions of all
object proposals inside an image I, it’s cooccurrence map is
calculated by max pooling over them

R(z,y) = max q(¢; = 1)m,(Z,7) (7

i,(z,y)€i
where (Z,7) corresponds to the relative coordinate of (z,y)
in o;.

Object Co-segmentation. Given cooccurrence maps of all
images, object co-segmentation can be converted into sim-
ple foreground segmentation for separate images. We adopt
dense CRF in [Krihenbiihl and Koltun, 2012] as the fore-
ground segmentation method. Specifically, given an image,
we use its cooccurrence map as the single unary term and a
bilateral filter as pairwise potential. By this way, we obtain
object segmentations for all images.

4 End-to-end Training

In this section, we will learn the parameters of our deep neu-
ral network to make estimated segmentation masks consistent
with groundtruth, embedding features capable of comparing
proposals with Euclidean metric and finally inferred objects
common in training dataset.

4.1 Gradients Computation

Specifically, given the groundtruth labels (¢é;, mi;)of any o,
we define the loss function as the summation of two parts

L =LM,M)+L(C,C) (8)

where M and C correspond to groundtruth mask labels and
common objects labels of all proposals, respectively.

In order to define £(M, M) elegantly, we assume that
groundtruth m; € {—1,1}**" with 1 corresponding to ob-

ject and -1 background. Then £(M, M) is defined as
. 14+¢
LM = TS i, ) log (e i)

i (z,y)

)
where the multiplying factor means only segmentation masks
of common objects are considered. w(zx,y) is the weight of
the (x, y)-th pixel to balance foreground and background

it = ) =1

Note that minimizing £(M, M) will increase estimated
scores for object pixels but reduce them for background. The
gradients of all parameters can be calculated easily by back-
propagation.

In terms of L’(C, C), we use the standard cross-entropy,
namely, £(C,C) = >-; —log(gi(¢;). However, the compu-
tation of gradients is not trivial due to the pairwise potential.
We derive mean-field gradients with respect to network pa-
rameters w as following

9L(C,C)  9L(C,C)a¢T  0L(C,C)
w  9¢  Ow of

1
2XE(C,4)HT(C1‘1):1]] (10)

2% (o ay I, d)=—1]

ofT
w Y
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Figure 1: The architecture of DDCREF. The pipeline is based on VGG network. The forward pass goes three ways to model different

components of DDCRF.

where f = (f1,f1,... f5)T and ¢ = (7, 07,...,¢5)7T.

Note that % and % can be easily calculated by back-
AL(C,C) AL(C,C)
06 and —57—".

propagation. Now we derive

We rewrite £(C, C) as L(q) for brevity, where q is a con-
catenated vector (qf,q7,...,qL)T of marginal probabili-
ties. Similarly, let ® = K ® p where K is a kernel matrix
[kijlavawith k;; = k(f;,f;). Following [Kridhenbiihl and
Koltun, 2013], we can compute them iteratively

Lq) & (WT
=2 =N"p 12
96 hz_l (12)

H
£8(f(':) => > (- £,)Ki;ub(") (13)

h=1 j

where h = {1,2,..., H} represents the iteration step and
q;-‘ corresponds to the marginal probabilities in the h step of
inference. Simultaneously,

b = AU (7 L(q)) (14)

b = AMp*t) =12 ... H-—1 (15
where AU is a block diagonal matrix with each block

Agh) = qgh)qgh)T — diag(q®). Therefore, both two mean-
field gradients can be iteratively refined until convergence.

Then backpropagation is performed to update parameters of

all layers. The iteration is very fast on GPU because % can

be computed as convolution as shown in Equation 13.

4.2 Training Strategy

The entire network is fine-tuned on a pretrained model for
ImageNet classification except new layers. We randomly ini-
tialize all new layers by drawing weights from a zero-mean
Gaussian distribution with the standard deviation 0.01. In or-
der to share computations among object proposals, we follow
the same sampling strategy as [Ren et al., 2015], namely, 2
images are sampled per iteration and 64 object proposals per
image. Therefore, positives and negatives account for half
respectively in each mini-batch with 128 proposals totally.
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In order to make optimization faster and converge to a
good optima, a two-stage training is adopted to train the net-
work. Firstly, we learn parameters without including pairwise
term. In this case, the training reduces to classify propos-
als and regress masks similar as in [Pinheiro er al., 2015].
Then we finetune the network by adding pairwise term with
customized mini-batches, where a proposal is considered as
positive if its overlap with any groundtruth is larger than a
threshold (we fixed it 0.7) and its object class is common.
In contrast, negatives are composed of a mixture of propos-
als with maximal overlaps between [0.1,0.5] and those be-
longing to other uncommon classes. Uncommon objects are
enforced to have less than num /6 examples so that posi-
tives are saliently common. Instead of selecting background
regions, we use proposals with the limited overlap range as
negatives to make training robust and fast. It has the same
effect as hard mining. The two-stage training strategy is nec-
essary because training deep-dense CRF needs stable unary
estimation. Direct optimization will mostly cause divergence
in our early experiments.

S Experiments and Discussion

We train DDCRF network on PASCAL VOC 2012 dataset
[Everingham et al., ] and test the performance on the widely
used benchmark iCoseg [Batra et al., 2010] and one more
challenging Internet dataset [Rubinstein et al., 2013].
Datasets. We learn parameters on PASCAL VOC 2012
dataset, in which 11540 images have groundtruth detec-
tion boxes and 2913 images have segmentation masks.
The iCoseg dataset is an object co-segmentation benchmark
widely used to evaluate co-segmentation systems, which con-
tains a total of 643 images for 38 object classes. All images
are segmented well at pixel level. In contrast, Internet dataset
is proposed to evaluate co-segmentation methods on natural
images. It contains 3 classes (airplane, car and house) with
each class having thousands of downloaded internet images.
Compared to iCoseg, images in Internet are mixed with other
uncommon objects and multiple background images.
Training Details. We adopt selective search [van de Sande
et al., 2011] to generate multiple object proposals in train-
ing images. Then mini-batches are sampled from the com-
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Figure 2: Segmentation results on iCoseg. Three images (from top
to bottom) of three classes (from left to right) are given. The color
difference between segmentation masks and original images is for
showing saliently.

bination of ground truth bounding boxes and these potentials
in the same way as Sec. 4.2. Since there are relatively less
images for segmentation masks, joint training will cause se-
vere overfitting. Therefore, we first finetune the network on
images with annotated boxes without considering segmen-
tation masks. The training follows two-stage learning strat-
egy as shown in Sec. 4.2 with the initial learning rate 0.001.
Stochastic Gradient Descent (SGD) is used as optimizer and
the learning rate decreases to 0.0001 after 80K iterations. Af-
ter finishing the first two-stage training, we add the segmenta-
tion branch. In order to prevent overfitting, we fix parameters
of the first four convolutional layers and give different learn-
ing rates for remaining layers. Specifically, the learning rates
of layers in segmentation branch start with 0.001 and others
keep training with 0.0001. Additionally, we add dropout lay-
ers for all three branches. In the segmentation branch, fc8 is
trained with the dropout rate 0.5. Two dropout layers with
dropout rate 0.8 are followed after fc6 and fc7, respectively.
Evaluation Metrics. Two standard metrics are used: Pre-
cision P and Jaccard index J. P represents the percentage of
correctly labeled pixels including both foreground and back-
ground, while J focuses on the overlap (Intersection of Union)
between estimated object segmentation and foreground.

5.1 Evaluation on ICoseg

iCoseg consists of 38 classes and we evaluate for each class
independently. Firstly, selective search [van de Sande et al.,
2011] is used to generate a lot of object proposals. Every pro-
posal is forwarded into our network to get its feature f and
unary score ¢. All proposals are then connected into a dense
CRF. Iterative inference is performed to get their marginal
probabilities and then further cooccurrence maps. Finally,
segmentation masks are obtained separately for each image.
We show some segmented examples in Fig. 2. We can see our
systems generate promising segmentations for listed classes,
which indicates our system is effective to co-segment com-
mon objects in this dataset.

Comparison with Existing Systems. Qualitatively, we re-
port both P and J metric in Table. 1. Several comparisons with
recent object co-segmentation systems are also included. Be-
sides, we report the performance on sub-iCoseg dataset (Ta-
ble. 2) to make more comparisons because they only report
their performance in this split. sub-iCoseg has 122 images
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Table 1: Comparison with existing systems and ablation study on
the entire iCoseg

Method P J
[Vicente et al., 2011] 854 -
[Joulin et al., 2012] 86.3 -
[Rubio et al., 2012] 83.5 -
[Faktor and Irani, 2013] 92.8 0.73
[Lee et al., 2015] 90.5 -
[Quan et al., 2016] 93.3 0.76
[Jerripothula et al., 2016] 934 0.77
baseline 88.6 0.78
w/o seg 91.5 0.74
Ours(full) 94.4 0.82

Table 2: Comparison with existing systems on sub-iCoseg

Method P J

[Rubinstein et al., 2013] 89.6 0.68
[Quan et al., 2016] 94.8 0.82
Ours (full) 96.0 0.86

of 16 classes selected from iCoseg. We get the state-of-the-
art performance on both datasets with respect to both metrics
. This indicates our deep system can encode shared infor-
mation effectively and transfer them into segmentation suc-
cessfully. We analyse that main reasons are twofold: 1) the
deep network can learn robust similarity metric compared to
other existing systems, which will help co-segmentation a lot
with dense CRF; 2) segmentation masks are learned to rec-
tify object proposals so that each object proposal has accurate
segmentation mask compared to regard original segments in
proposals as final masks.

Ablation Study. We also did ablation study to show the
contribution of each component in our full system. Firstly,
we remove pairwise potential in DDCREF as our baseline. The
baseline reduces to simple image segmentation problem with-
out sharing information among images. In w/o seg, we do not
estimate segmentation masks but use accompanying masks
of object proposals to calculate cooccurrence maps instead.
Dropping each of these components will hurt the final perfor-
mance. In particular, sharing information among images can
help final segmentation of each image, which is consistent
with the observations of prior works.

In summary, all scaffoldings of our system are necessary
and our full system gives promising performance on iCoseg.

5.2 Evaluation on Internet

Internet images are collected by downloading returned im-
ages after querying by key words of three classes, i.e., car,
horse and airplane. We use its widely used subset for eval-
uation, in which each class has 100 images. Similarly, for
each class, we generate their object proposals using selec-
tive search, then all proposals are connected using dense CRF
based on their unary potentials, segmentation masks and em-
bedding features. In Fig. 3, we give some results produced
by our full system. Despite large intra-class variations, our
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Figure 3: Sampled images and corresponding segmentations of our full system on Internet dataset. For each class, four images are listed.
Uncommon objects and background regions are filtered. For saliency, different colors are used for segmented masks. White segmentations
mean that these images are background without any common object instances in them. Our full system is robust to different scenarios, e.g.,
different viewpoints, intra-class variations, background images and uncommon foreground objects.

Table 3: Comparison with state-of-the-art methods and ablation
study

Airplane Car Horse

Method P ] P ] P ]

[Rubinstein et al., 20131 88.0 0.56[85.4 0.64[82.8 0.52
[Quan et al., 2016]|91.0 0.56|88.5 0.67|89.3 0.58
[Jerripothula ef al., 2016] | 90.5 0.61 |88.0 0.71|88.3 0.61
baseline | 89.8 0.59 |88.4 0.64|88.2 0.57

w/o seg | 88.2 0.56|88.0 0.61|87.8 0.55

Ours | 92.6 0.66|90.4 0.72(90.2 0.65

system can obtain good segmentations indicating the learned
neural network can help object co-segmentation in images.

Comparison with Existing Systems. Similarly, we com-
pare with several existing methods on both metrics and re-
sults are reported in Table. 3. Our full system outperforms
all other methods on all three methods, which indicates our
method can effectively discover shared information by ro-
bustly comparing object proposals. It is worthy noting that
the performance increase by a larger margin on Internet com-
pared to iCoseg. The main reason is that each of the classes
in Internet has more images and intra-class variations are rel-
atively bigger than iCoseg. Furthermore, there exist several
noisy examples including background images and other un-
common objects. Therefore, existing low level systems will
be influenced a lot by linking ambiguous regions. Our system
has learned robust similarity metric between object proposals
and thus robust to complex scenarios.

Ablation Study. In order to evaluate the impact of each
component on Internet dataset, we also report the perfor-
mance of baseline and w/o seg in Table. 3. The performance
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is consistent with those on iCoseg, indicating every compo-
nent is crucial to our system.

6 Discussion and Limitations

Although the proposed method gets promising results on both
datasets, there still are some inherent disadvantages. Firstly,
our system relies on selective search to generate proposals. If
an image is complex enough and no object proposals cover
object instances, our system will fail. In this case, the re-
gion proposal network can be used as an alternative in future
to reduce failures. Secondly, the estimation of segmentation
masks is still not accurate enough for complex objects with
large occlusion or slim structures. The main reason is that
training images with segmentation groundtruth in PASCAL is
not enough to generalize very well. Furthermore, the image
segmentation method dense-CRF that we used also performs
badly for these objects, which will magnify negative effects.
Our future work lies on training DDCREF on larger datasets to
further improve segmentation quality.

7 Conclusion

In this paper, we propose deep-dense conditional random
fields for object co-segmentation in images. A cooccurrence
map is introduced to summarise shared information after per-
forming inference for constructed DDCRF. Based on cooc-
currence maps, object co-segmentation is converted into sin-
gle foreground segmentation, where several excellent systems
exist. Our system is trained in an end-to-end way with a two-
stage training strategy. We evaluate DDCRF on the bench-
mark iCoseg and a challenging Internet dataset. Competitive
performance on both datasets indicates that our method is ef-
fective for object co-segmentation.
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