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Abstract
Change detection and analysis (CDA) is an
important research topic in the joint interpretation
of spatial-temporal remote sensing images. The
core of CDA is to effectively represent the
difference and measure the difference degree be-
tween bi-temporal images. In this paper, we
propose a novel difference representation learning
network (DRLnet) and an effective optimization
framework without any supervision. Difference
measurement, difference representation learning
and unsupervised clustering are combined as a
single model, i.e., DRLnet, which is driven
to learn clustering-friendly and discriminative
difference representations (DRs) for different types
of changes. Further, DRLnet is extended into a
recurrent learning framework to update and reuse
limited training samples and prevent the semantic
gaps caused by the saltation in the number of
change types from over-clustering stage to the
desired one. Experimental results identify the
effectiveness of the proposed framework.

1 Introduction
As remote sensing technology develops, there are more
and more on-orbit satellites, which bring a large size of
remote sensing data with high time-, spatial- and spectral
resolutions [Chi et al., 2016; Marchetti et al., 2016]. It is
demanding to process these increasing remote sensing data,
and CDA is one of the most important applications in joint
interpretation of remote sensing data, which aims not only to
detect changes but also distinguish different types of changes.
To better achieve this, it is necessary to learn more powerful
and discriminative DRs from spatial-temporal images.

Recently, deep learning has achieved tremendous success
in many vision and speech tasks such as image classification
[Hinton and Salakhutdinov, 2006] and recognition [He et al.,
2016; Krizhevsky et al., 2012], video understanding [Shao et
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al., 2016], image captioning [You et al., 2016] and natural
language processing [Conneau et al., 2016] etc. The success
of deep learning lies in the core that deep neural networks
(DNN) has powerful ability in learning good representation
from data in their raw form [Jiang et al., 2016]. For remote
sensing images, it is also necessary to learn abstract represen-
tation for promoting joint interpretation of spatial-temporal
images. However, unlike natural images, it is so lack of
labeled data in the field of remote sensing that it is very
hard to train a reliable model with certain scalability [Zhang
et al., 2016a; 2016b]. Therefore, for practical purposes, it
is demanding to develop unsupervised framework for joint
interpretation of remote sensing data.

Clustering is one of the most popular unsupervised tech-
niques often used to explore the hidden patterns and group
similar structures [Shi and Malik, 2000; Hong et al., 2016;
Dash et al., 2016]. However, it is very limited to perform
clustering on the raw data. Deep learning outperforms others
in learning good representation, but it is depended too much
on supervised information during its training, while cluster-
ing may provide some reliable supervision information for
training DNN in an unsupervised way [Wang et al., 2016].
Therefore, it is natural and promising to combine DNN and
clustering for representation learning and special tasks, espe-
cially in the field of remote sensing where it is extremely lack
of labeled data. Recently, clustering has been successfully
integrated into the framework of deep learning, such as Deep
Clustering Network (DCN) [Yang et al., 2016a], Deep Em-
bedding Clustering (DEC) [Xie et al., 2016], and Variational
Deep Embedding (VaDE) [Jiang et al., 2016] etc.

To effectively represent difference and measure difference
degree, in this paper, a novel DRLnet and a recurrent learning
framework are proposed. DRLnet firstly maps bi-temporal
images into a suitable feature space to extract key information
and suppress noise. Then, after automatic feature selection by
the merging layer, the subsequent layers can learn more ab-
stract DRs. By applying network forward passing and cluster-
ing, we can obtain the corresponding classification errors and
clustering errors, which is used to tune network parameters in
back propagation. As stated above, difference measurement,
difference representation learning and unsupervised cluster-
ing are combined as a single model, i.e., DRLnet, which is
driven to learn clustering-friendly and discriminative DRs for
different types of changes. To strengthen its adaptability and
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Figure 1: Illustration on the proposed deep difference representation learning network and a recurrent learning framework.

stability, DRLnet can be extended into a recurrent framework
by gradually decreasing the number of change types. In the
recurrent framework, training samples would be updated and
reused to learn more powerful model for CDA.

2 Related Work
2.1 Unsupervised Clustering
Clustering aims to group the data with similar structures into
the same categories. Though many clustering methods have
been proposed, such as K-means, spectral clustering [Nie et
al., 2011], Gaussian mixture model (GMM) clustering [Bier-
nacki et al., 2000] and agglomerative clustering [Gowda and
Krishna, 1978] etc., unsupervised clustering still remains
a fundamental challenge in the field of machine learning.
In most of clustering methods, the similarity measures are
limited in discovering the local patterns in data space, and
thus it is hard to capture hidden and hierarchical dependen-
cies in latent spaces [Dilokthanakul et al., 2016], while deep
models can be used to encode rich latent structures hidden in
raw data for improving the performance of clustering.

2.2 Deep Learning for Clustering
Recent works have demonstrated that optimizing representa-
tion learning and clustering jointly can greatly improve the
performance of both. DCN [Yang et al., 2016a] combines
learning good representation and clustering as a single mod-
el and optimize them jointly to find a ’K-means-friendly’
space. DEC [Xie et al., 2016] was proposed to simulta-
neously learn representation and cluster assignments using
DNN, and it works by iteratively optimizing a KL diver-
gence based on clustering objective with a self-training target
distribution. VaDE [Jiang et al., 2016] embeds the proba-
bilistic clustering problems into a Variational Auto-Encoder

(VAE) framework, and models the data generative procedure
by combining a Gaussian Mixture Model (GMM) and DNN.
Additionally, Yang et al. proposed a recurrent framework
for joint unsupervised learning of deep representation and
image clusters, where successive operations in clustering are
unfolded as steps in a recurrent process, stacked on the top
of representations output by a Convolutional Neural Network
(CNN) [Yang et al., 2016b].

3 DRLnet Formulation
As depicted in Fig. 1, we present a novel DRLnet and a
recurrent learning framework, where DRLnet is established
to learn clustering-friendly and discriminative DRs for distin-
guishing different types of changes. In DRLnet, unsupervised
clustering and DNN are combined as a single model for learn-
ing clustering-friendly DRs without any supervision. And it
starts to run with over-clustering pseudo labels, and achieves
the desired number of change types by gradually decreasing
the number of clusters with a recurrent way.

3.1 Loss Function of DRLnet
K-means is one of the most famous unsupervised technolo-
gies that explore the latent pattern hidden in data and group
the data with similar pattern into the same categories. How-
ever, in most cases, the data distribution is not friendly to
K-means clustering. Recently, DNN has show its powerful
ability in representation learning, but it often needs super-
vised fine-tuning to greatly improve the performance on spe-
cific tasks. Inspired by this, we try to combine K-means and
DNN as a single model called DRLnet for difference repre-
sentation learning in CDA task. With over-clustering pseudo
labels, DRLnet is driven to learn more abstract DRs friend-
ly to desired number of clusters. The over-clustering pseudo

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3414



labels may be not very reliable, but they are enough credible
to avoid acquiring a trivial solution for DRLnet.

By combining DNN-based classification and K-means
clustering as a single model, DRLnet can be formulated as
the following loss function:

L(X ; θ) = 1

n

n∑
i=1

∥∥f(x1
i ,x

2
i ; θ)− s0i

∥∥2
2

+ α · 1
n

n∑
i=1

λi
∥∥d(x1

i ,x
2
i ; θ)−Msi

∥∥2
2

s.t. λi, sj,i ∈ {0, 1}, 1
T si = 1, ∀i, j.

(1)

where n denotes the total number of training samples set
X ∈ Rd×n, and α controls the balance between classification
accuracy and clustering performance. x1

i ∈ Rd×1 and
x2
i ∈ Rd×1 is one pair of bi-temporal patches extracted from

image-pair I1 and I2, respectively, and let xi = [x1
i ,x

2
i ]. f(·)

is a deep network classifier, d(·) is a difference representa-
tion extractor, and both of them share a part of parameters,
and θ collects all network parameters such as weights and
biases. M ∈ Rd×K is the collection of centroid with desired
clusters, s0i ∈ RK0×1 is the initial pseudo labels acquired
by unsupervised over-clustering, while si ∈ RK×1 is the de-
sired assignment with respect to M, where K0 is the number
of clusters in over-clustering, and K is the desired number of
change types.

In Eq. (1), λi determines whether to execute K-means
clustering on the difference representation of sample xi or
not, and it can be computed by the following Eq. (2). This
equation means that if the difference between the feature pair
(h1
i , h2

i ) is larger than a threshold estimated by GGKI [Bazi
et al., 2005], the corresponding sample xi is taken as changed
sample, otherwise, it is treated as unchanged sample.λi =

1

2

(
1 + sgn(

∥∥h1
i − h2

i

∥∥2
2
− τ)

)
τ = GGKI(H1;H2)

(2)

where h1
i and h2

i are the corresponding features of patches x1
i

and x2
i learned by the feature extracting network, while H1 =

[h1
i , } and H2 = {h2

i |i = 1, 2, ..., n}, τ is the automatic
threshold estimated by GGKI [Bazi et al., 2005].

DRLnet is driven to learn K-means-friendly DRs from bi-
temporal patches for better distinguishing different types of
changes. By doing DNN-based classification and K-means
clustering on the learned DRs, we can obtain classification
and clustering errors, both of which are used to tune the net-
work parameters of DRLnet by using back propagation. After
training, all testing samples are fed into DRLnet and the cor-
responding DRs can be obtained, and then the desired CDA
map can be generated by carrying out K-means on DRs.

3.2 An Recurrent Learning Framework
From the over-clustering pseudo labels to the desired number
of change types, there may exists huge semantic gaps between
them, which may be hard to bridge by a single saltation in
number of clusters from over-clustering stage to the desired
one. On the other hand, enough training samples is necessary

for establishing a reliable deep network with certain capacity.
Therefore, in this section, an recurrent framework is proposed
to solve these two problems mentioned above. Instead of only
one single saltation, the recurrent framework can achieve the
desired number of change types by gradually decreasing the
number of clusters from over-clustering stage to the desired
one. In this procedure, the training samples are also updated
and reused as the number of clusters decreases.

Suppose that the recurrent framework achieves the desired
number of change types KT from over-clustering classes K0

through T timesteps, then the total loss function of the re-
current framework over all timesteps t from 1 to T can be
formulated as:

Lsum(X ; θ) =
T∑
t=1

Lt(X ; θ) (3)

For convenience, the f(x1
i ,x

2
i ; θ) and d(x1

i ,x
2
i ; θ) in Eq.

(1) are written as f(xi) and d(xi), respectively. And the loss
function at timestep t can be formulated as:

Lt(X ; θ) = 1

n

n∑
i=1

∥∥f(xi)− st−1
i

∥∥2
2

+ α
1

n

n∑
i=1

λti
∥∥d(xi)−Mtsti

∥∥2
2

s.t. λti, s
t
j,i ∈ {0, 1}, 1

T sti = 1, ∀i, j.

(4)

where all variables share the similar meanings as in Eq. (1),
and sti ∈ RKt×1 represents the label of sample xi at timestep
t, Mt ∈ Rd×Kt is the collection of centroids at timestep t,
here Kt is the desired number of change types at timestep t.
It’s worth noting that the superscript t on each variable means
the current timestep t, where t = {1, 2, ..., T}.

Algorithm 1 Alternating Optimization for DRLnet

Input: n pairs of bi-temporal patch pairs (x1
i , x2

i ), where i ∈
[1, n], known {st−1

i } and {λti}, initialized Mt and {sti}.
Output: Parameters θ of DRLnet at timestep t.

1: for iter = 1 : Iteration do
2: Update parameters θ by Eq. (7);
3: Update assignments {sti} by Eq. (8);
4: Update centroids {mt

k} by Eq. (9);
5: end for
6: return DRLnet parameters θ at timestep t.

3.3 Optimization
The loss of the recurrent framework is formulated as Eq. (3),
which needs to be minimized to achieve the desired solution.
As mentioned in Section 3.2, the training samples would be
updated at each timestep t. And the minimization of the loss
at each timestep t is dependent on the final stage acquired at
timestep (t−1). Therefore, the minimization of the total loss
in Eq. (3) can be achieved by minimizing the loss function in
Eq. (4) at each timestep t from 1 to T .
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: Datasets used in our experiments and CDA results of DRLnet on these four datasets. From top to bottom, they are Xi’an-1, Xi’an-2,
Xi’an-3 and Xi’an-4 datasets, respectively. (a) Images acquired at time t1. (b) Images acquired at time t2. (c) 25 classes of changes. (d) 15
classes of changes. (e) 8 classes of changes. (f) 5 classes of changes (3 classes for Xi’an-2 dataset). (g) Final change intensity (CI) maps. (h)
Ground truth maps.

Algorithm 2 An Recurrent Learning Framework for CDA

Input: n pairs of bi-temporal patches (x1i , x2i ), where i ∈
[1, n], and DRLnet. C = {K0,K1, ...,Kt, ...,KT }, 1 ≤
t ≤ T , andKt−1 > Kt, whereKt denotes the number of
change types at timestep t, andKT is the targeted number
of change types.

Output: Parameters θ of DRLnet and CDA map.
1: Obtain the initial pseudo labels {s0i } of each sample by

over-clustering the stacked raw data into K0 classes: at
the very beginning, all samples are taken as changed
ones.

2: Pre-train DRLnet with over-clustering labels {s0i }.
3: for t = 1 : T do
4: Compute {λti} through Eq. (2) by applying GGKI on

the learned DRs.
5: Initialize centers Mt and assignments {sti} at timestep

t: Assign unchanged samples with the same labels and
compute the centroid of their corresponding DRs, and
group the DRs of changed samples into Kt classes to
initialize (1 +Kt) centers and n assignments {sti}ni=1;

6: Fine-tune DRLnet to learn K-means-friendly DRs at
timestep t via Algorithm 1 with known {st−1

i } and
{λti}, initialized Mt and {sti};

7: Update {sti}: Assign unchanged samples with the
same labels, and group the DRs of changed samples
into Kt classes with K-means clustering;

8: t← t+ 1;
9: end for

10: return DRLnet and CDA map.

For each timestep t, we desire to minimize the loss function
shown in Eq. (4), where three groups of parameters need to
be solved, i.e., (θ, {sti}, Mt), where {sti} is short for {sti}ni=1.

For convenience, we let

Lti =
∥∥f(xi)− st−1

i

∥∥2
2
+ αλti

∥∥d(xi)−Mtsti
∥∥2
2

(5)

Having the DRs learned at timestep (t− 1), we assign un-
changed samples with the same label and group the DRs of
changed samples into Kt classes using K-means, initializing
the centroids Mt and the corresponding assignments {sti},
where Kt is the desired number of change types at timestep
t.

For fixed (Mt, {sti}), the network parameters θ can be up-
dated by:

θ ← θ − η∇θLti (6)

∇θLti =
∂f(xi)

∂θ

(
f(xi)− st−1

i

)
+ αλti

∂d(xi)

∂θ

(
d(xi)−Mtsti

) (7)

where η is the learning rate set in advance, and the partial
derivatives ∂f(xi)

∂θ and ∂d(xi)
∂θ can be computed by using back

propagation algorithm.
For fixed (θ, Mt), the assignments {sti} can be updated by

Eq. (8) shown as follows:

stj,i ←

 1, j = argmin
k=1,...,Kt

‖d(xi)−mt
k‖2

0, otherwise.
(8)
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where stj,i is the j-th element of the assignment sti.
When fixing (θ, {sti}), the update of the centroid matrix

Mt can be easily done as follows:

mt
k ←mt

k − (1/cik)(m
t
k − d(xi))stk,i

s.t. k = 1, 2, ...,Kt.
(9)

where Kt is the number of desired change types at timestep
t, cik is the count of number of times this algorithm as-
sign a sample to the cluster k before handling the next in-
coming sample xi, and the gradient step size 1/cik controls
the learning rate of the current centroid mt

k. The alternat-
ing optimization procedure of DRLnet at each timesept t is
summarized in Algorithm 2.

4 Experiments
4.1 Datasets and Measurements
Four bi-temporal remote sensing datasets are used in our ex-
periments to assess the effectiveness of the proposed frame-
work. All of them are cut from two large-format remote sens-
ing images, which are acquired by GF-1 satellite at August
19th, 2013 and August 29th, 2015, respectively. Each of them
is composed of four bands, i.e., red, green, blue and near-
infrared bands, and of the same spatial resolution 2m. Addi-
tionally, each pair of them has been radiometrically corrected
and co-registered to make them as more comparable as pos-
sible. The overall detection accuracy (ACC) and Kappa co-
efficient are selected to quantitatively evaluate the proposed
framework.

4.2 Experimental Setup
The proposed DRLnet is implemented based on deeplearn-
toolbox [Palm, 2012]. We apply learning rate as 0.005 with a
momentum 0.5 to all layers of DRLnet, and the sparsity of ac-
tivation on each layer is set as 0.05. During its training, DRL-
net takes the batch size of 10 and we set α = 0.1. In our exper-
iments, SLIC is applied to segment bi-temporal images inde-
pendently, and then these two superpixel segmentation maps
are merged to make them share the same but finer segmen-
tation. That’s, superpixel is taken as the basic analysis unit,
which not only reduces the complexity of problem, but also
integrates the spatial information. Fixed-size square windows
centered at the center of each superpixel are used to represent
them. Larger window size w would weaken their represen-
tation power on the corresponding superpixels, therefore, we
set w = 3.

4.3 Performance of DRLnet on CDA
Fig. 2 shows the datasets used in our experiments and the
corresponding CDA maps produced by the proposed DRLnet.
As shown in Fig. 2(c), at the very beginning, all samples are
taken as changed ones, and DRLnet starts to be trained with
over-clustering pseudo labels. After training, the learned bi-
temporal feature representations can be compared to highlight
changes, and then unchanged samples will be assigned with
the same labels while changed samples will be grouped into
less classes to achieve the targeted number of change types.
As it goes, clustering-friendly and discriminative DRs can

(a) (b) (c) (d)

Figure 3: Distribution of the DRs learned by DRLnet on the Xi’an-1
dataset. The bottom row shows the corresponding CDA maps. (a)
25 types of changes. (b) 15 types of changes. (c) 8 types of changes.
(d) 5 types of changes.

(a) (b) (c) (d)
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Figure 4: Comparison with baseline methods over Xi’an-1 dataset:
The first row shows the change intensity (CI) maps, while the sec-
ond row shows the corresponding CDA maps. (a) Raw+KM. (b)
SAE+KM. (c) DRLnet1. (d) DRLnet2.

be learned by DRLnet, which is beneficial to clustering for
identifying different types of changes. The intermediate CDA
maps also demonstrate that, as the number of change type de-
creases, the real changes are detected correctly and different
types of changes can be distinguished better.

Fig. 3 visualizes the distribution of the DRs learned by
DRLnet on the Xi’an-1 dataset. At the very beginning, it
is not easy to group DRs learned by DRLnet with over-
clustering, see Fig. 3(a). However, as the training goes with
less number of change types, better DRs can be learned, and
unchanged points and different types of changes can be easily
grouped, as shown in Fig. 3(d). Clearly, these experimental
results demonstrate the effectiveness of the proposed frame-
work.

4.4 Comparison and Analysis
The proposed DRLnet is compared with a variety of baseline
methods listed as follows:

• GGKI followed by K-means (Raw+KM): The classic
change intensity map analysis method followed by ap-
plying KM to distinguish different types of changes.
• Stacked Autoencoder followed by GGKI and K-

means (SAE+KM): This is a three-stage approach, SAE
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Table 1: Quantitative Comparison with Baseline Methods

Datasets Xi’an-1 Xi’an-2 Xi’an-3 Xi’an-4
Evaluation Criteria ACC(%) Kappa ACC(%) Kappa ACC(%) Kappa ACC(%) Kappa

Raw+KM 88.12% 0.6785 90.89% 0.7912 84.54% 0.6464 72.78% 0.4840
SAE+KM 85.82% 0.6092 93.58% 0.8549 86.45% 0.6675 66.44% 0.3906
DRLnet1 87.83% 0.6483 94.90% 0.8855 89.17% 0.7377 71.28% 0.4874
DRLnet2 98.81% 0.9693 97.10% 0.9323 93.36% 0.8427 96.54% 0.9387

is used for feature learning, and then these features are
compared to highlight changes. Finally, the changes are
grouped into different clusters using KM.

• DRLnet with fine-tuning only the top layers after the
merging layer (DRLnet1).

• DRLnet with fine-tuning across all layers of it
(DRLnet2, the proposed approach).

(a) (b) (c) (d)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Comparison with baseline methods over Xi’an-4 dataset:
The first row shows the change intensity (CI) maps, while the sec-
ond row shows the corresponding CDA maps. (a) Raw+KM. (b)
SAE+KM. (c) DRLnet1. (d) DRLnet2.

Fig. 4 and Fig. 5 present the visual comparison between
DRLnet and baseline methods on the Xi’an-1 and Xi’an-4
datasets. Compared with the baseline methods, DRLnet2
highlights most of changes happened in Xi’an-1 and Xi’an-4
datasets, meanwhile it successfully distinguish different types
of changes with high precision. As specified by the red square
and yellow ellipse in Fig. 6, DRLnet2 enhances the CI of
changed points and suppresses that of unchanged ones, which
leads to the CDA map with less noise. In Fig. 5, DRLnet2
perfectly highlights the changed region specified by the pur-
ple square while other baseline methods fail. Interestingly, as
specified by the red ellipse in Fig. 5, DRLnet2 successfully
suppresses unchanged region which is wrongly highlighted as
changed one by other baseline methods.

Table 1 summarizes the quantitative comparison with base-
line methods, and it clearly shows that DRLnet2 achieves
the best performance with a significant advantage over the
baseline methods both in ACC and Kappa. The success
of DRLnet2 lies in fact that it combines learning DRs and
clustering as a single model with a weighted parameter for
detecting the changes and optimizing them in an end-to-end
way. It starts to run with a reliable over-clustering, and

achieves the targeted CDA goal in a recurrent fashion without
any supervised information.

(a) (b) (c)

Figure 6: Clustering performance on the DRs learned by different
layers of DRLnet over the Xi’an-1 dataset. (a) Top 3-th layer. (b)
Top 2-th layer. (c) Top 1-th layer.

4.5 Clustering Performance on the Learned DRs
Fig. 6 shows the clustering performance on the DRs learned
by different layers of DRLnet over the Xi’an-1 and Xi’an-4
datasets. From this figure, it is easy to find that deeper DRs
has much better clustering performance. The reason lies in
the fact that deeper layer has the ability to capture more
abstract difference information from bi-temporal images.
Compared with the ground truth maps, the clustering maps
also show that deeper layer captures more accurate difference
objects, while unchanged points may be grouped into differ-
ent clusters because they are different ground objects in fact.

5 Conclusion
In this paper, we have presented a novel DRLnet and an
recurrent learning framework for CDA in spatial-temporal
remote sensing data. In DRLnet, difference measurement,
difference representation learning and unsupervised cluster-
ing are combine as a single model, which can be driven to
learn clustering-friendly and discriminative DRs for different
types of changes without any supervision. And a recurrent
learning framework is proposed to update limited training
data and reuse them by gradually decreasing the number of
change types from over-clustering stage to the desired one.
Experimental studies demonstrate the effectiveness of the
proposed DRLnet and the corresponding recurrent learning
framework.
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