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Abstract
Linear discriminant analysis (LDA) is a widely
used supervised dimensionality reduction technique.
Even though the LDA method has many real-world
applications, it has some limitations such as the
single-modal problem that each class follows a nor-
mal distribution. To solve this problem, we propose
a method called multimodal linear discriminant anal-
ysis (MLDA). By generalizing the between-class
and within-class scatter matrices, the MLDA model
can allow each data point to have its own class mean
which is called the instance-specific class mean.
Then in each class, data points which share the same
or similar instance-specific class means are consid-
ered to form one cluster or modal. In order to learn
the instance-specific class means, we use the ratio
of the proposed generalized between-class scatter
measure over the proposed generalized within-class
scatter measure, which encourages the class sepa-
rability, as a criterion. The observation that each
class will have a limited number of clusters inspires
us to use a structural sparse regularizor to control
the number of unique instance-specific class means
in each class. Experiments on both synthetic and
real-world datasets demonstrate the effectiveness of
the proposed MLDA method.

1 Introduction
In the LDA model, each class is modeled by a Gaussian dis-
tribution, which is not capable of handling the multimodal
structure contained in the data. The mixture discriminant
analysis (MDA) [Hastie and Tibshirani, 1996] is one of the
earliest multimodal extensions of the LDA model and it us-
es a Gaussian mixture model to describe the data in a class
with the number of Gaussian components pre-defined and
shared among different classes. Different from the MDA mod-
el, the LLDA method proposed in [Kim and Kittler, 2005]
first groups the whole dataset by using the Gaussian mix-
ture model or k-means clustering algorithm and then learns a
LDA model on each cluster. The subclass discriminant anal-
ysis (SDA) method proposed in [Zhu and Martínez, 2006]
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aims at learning the number of clusters in each class based
on the leave-one-out-test criterion or a stability criterion pro-
posed in [Martínez and Zhu, 2005]. The local Fisher dis-
criminant analysis (LFDA) proposed in [Sugiyama, 2006;
Sugiyama, 2007], which have similar ideas to nonpara-
metric discriminant analysis [Kuo and Landgrebe, 2004;
Li et al., 2009], conquers the multimodal problem by incorpo-
rating the local structure into the definitions of the within-class
and between-class scatter matrices. One by-product of those
multimodal LDA models is that the dimension of the em-
bedding space is no longer limited to at most the number of
classes minus 1 since the rank of the between-class scatter
matrix becomes larger by exploiting the multimodal structure.

All the existing multimodal extensions of the LDA model
have some limitations. For example, the MDA and LLDA
models require that the number of components should be pre-
defined, which is not an easy model selection problem. The
assumptions of the SDA method that different classes have
the same number of clusters and that clusters in each class
have comparable numbers of data points seem a bit restricted.
Moreover, the SDA method consists of two stages with the
first stage learning the cluster structure while the second one
learns the transformation, leading to a suboptimal learner. For
the LFDA method, it is not easy to infer the cluster structure
from data.

In this paper, we propose a method called multimodal linear
discriminant analysis (MLDA) to alleviate those limitations
in existing multimodal extensions of the LDA model. The
MLDA model generalizes the definitions of the between-class
and within-class scatter matrices by introducing the instance-
specific class means. That is, different from the traditional
LDA model which has only one class mean for each class, in
the MLDA method each data point has its own class mean
and data points, which share the same or similar class means,
in each class are considered to belong to a cluster or modal.
We reveal that the conventional scatter matrices are special
cases of the generalized ones. Since the instance-specific class
means are unknown for real-world problems, we utilize the ra-
tio of the proposed generalized between-class scatter measure
over the proposed generalized within-class scatter measure
as an objective function to learn them. Usually each class
has a limited number of clusters, implying that the number
of unique instance-specific class means in each class is not
very large, and this observation inspires us to use a structurally
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sparse regularizer (i.e., the `1,p norm) to enforce some pairs of
instance-specific class means to be identical and in the mean-
while to control the number of unique instance-specific class
means in each class. One advantage to use the structurally
sparse regularizer is that we need not to specify the number of
clusters and not to impose constraints on the cluster structure.
We devise a proximal average method based on the GIST al-
gorithm [Gong et al., 2013] to solve the resulting objective
function with each subproblem having an analytical solution.
Experiments on both synthetic and real-world datasets demon-
strate the effectiveness of our proposed method.

2 The MLDA Model
In this section, we first review the conventional LDA model
and then present the generalized scatter matrices, which set
the stage for the introduction of the proposed MLDA model,
as well as their properties.

2.1 LDA Revisited

The LDA model is a supervised dimensionality reduction
method. Suppose that a training dataset consists of n pairs of
training samples {xi, yi}ni=1 where xi ∈ RD denotes the ith
data point and its class label is denoted by yi ∈ {1, . . . , c},
making the learning problem a multi-class classification prob-
lem with the number of classes being c. Let ni denote the
number of data points in the ith class and so n =

∑c
i=1 ni.

Moreover, we define the overall mean m̄ as the mean of all
data points, i.e., m̄ = 1

n

∑n
i=1 xi, and the class mean for the

ith class as m̄i =
1
ni

∑
yj=i

xj . Then the between-class and
within-class scatter matrices are defined as

Qb =
1

n

c∑
i=1

ni(m̄i − m̄)(m̄i − m̄)T , (1)

Qw =
1

n

n∑
i=1

(xi − m̄yi)(xi − m̄yi)
T . (2)

Then the LDA model seeks the optimal transformation matrix
W? by solving the following problem

max
W∈RD×d

tr
((

WT (Qw + αID)W
)−1

WTQbW
)
, (3)

where d is the dimension of the reduced space, Ia denotes an
a × a identity matrix, the superscript −1 denotes the matrix
inverse, and α is a regularization parameter to guarantee the
non-singularity.

2.2 Generalized Scatter Matrices

According to problem (3) and the definition of the within-
class scatter matrix in Eq. (2), the LDA model enforces data
points in one class to be close to the class mean, making it
applicable to single-modal data. However, the data used in
many applications exhibit multimodal structure, leading to
unsatisfactory performance by using the LDA model. Here we
propose the generalized within-class and between-class scatter

matrices as

Sb =
1

2n2

n∑
i=1

n∑
j=1

δ(yi 6= yj)(mi −mj)(mi −mj)
T (4)

Sw =
1

n

n∑
i=1

(xi −mi)(xi −mi)
T , (5)

where δ(z) returns 1 when z holds and otherwise 0, and mi

represents the instance-specific class mean for xi. Suppose
that the ith class has li unique instance-specific class means,
i.e., the set {mj |yj = i} having li elements {mi

k} for k =
1, . . . , li. Then we can rewrite the generalized within-class
scatter matrix defined in Eq. (5) as

Sw =
1

n

c∑
i=1

li∑
j=1

∑
k∈Ci,j

(xk −mi
j)(xk −mi

j)
T ,

where Ci,j = {k|mk = mi
j} denotes the set of the indices

corresponding to the data points belonging to the jth modal
(or cluster) of the ith class. By using the generalized scat-
ter matrices, we can easily model the multimodal structure
contained in the data.

2.3 Properties
The newly defined scatter matrices in Eqs. (4) and (5) are
called the generalized between-class and within-class scatter
matrices since the conventional scatter matrices are special
cases of them, and the relation is revealed in the following
theorem.
Theorem 1 By setting mi to be m̄j when xi belongs to the
jth class, we have Sb = Qb and Sw = Qw.

Recall that the conventional between-class and within-class
scatter matrices have one property that Qb+Qw = Qt where
Qt = 1

n

∑n
i=1(xi − m̄)(xi − m̄)T is the total scatter ma-

trix. Similar to that, the following theorem shows that the
generalized scatter matrices have a similar property.
Theorem 2 For Sb and Sw, we have

Sb + Sw =
1

n

c∑
i=1

li∑
j=1

∑
k∈Ci,j

(xk − m̃)(xk − m̃)T

− 1

n

c∑
i=1

li∑
j=1

∑
k∈Ci,j

(xk −mi
j)(m

i
j − m̃)T

− 1

n

c∑
i=1

li∑
j=1

∑
k∈Ci,j

(mi
j − m̃)(xk −mi

j)
T

− 1

n2

c∑
i=1

ni

li∑
j=1

ni,j(m
i
j − m̃i)(m

i
j − m̃i)

T ,

where ni,j is the cardinality of Ci,j implying that the jth cluster
of the ith class has ni,j data points, m̃ = 1

n

∑n
i=1 mi, and

m̃i = 1
ni

∑
yj=i

mj . Moreover, when mi
j is set to be the

average of all the data points in the jth cluster of the ith class,
we have

Sb + Sw = Qt −
c∑

i=1

ni

n2

li∑
j=1

ni,j(m
i
j − m̄i)(m

i
j − m̄i)

T . (6)
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According to Theorem 2, we can see that when {mi} take
appropriate values, the sum of the generalized between-class
and within-class scatter matrices equals the total scatter ma-
trix minus a matrix called the average between-cluster scatter
matrix whose formulation is just the second term in the right-
hand side of Eq. (6). The average between-cluster scatter
matrix measures the separability between different clusters in
the same class and is not useful for discriminating different
classes.

2.4 The Model
When given M = (m1, . . . ,mn), we formulate the objec-
tive function of the MLDA model in a similar way to the
conventional LDA model as

max
W∈RD×d

tr
((

WT (Sw + αID)W
)−1

WTSbW
)
. (7)

A by-product of this formulation is that if the unique instance-
specific class means are linearly independent, the rank of Sb is∑c
i=1 li−1 which is larger than c−1 and so the dimension of

the reduced space d can be larger than c−1, which overcomes
a limitation of the conventional LDA model that d is at most
c− 1. The solution of problem (7) can be obtained by solving
a generalized eigen-decomposition problem as

SbW = (Sw + αID)WΛ,

where Λ is a diagonal matrix containing the largest d eigen-
values.

2.5 Learning M
When M is given, we can compute the transformation matrix
W. However, in most applications, M is unknown and we
need to learn it from data automatically.

We propose to use the objective function of the MLDA
model, which encourages the class separability, to learn M,
that is, maximizing tr

((
WT (Sw + αID)W

)−1
WTSbW

)
with respect to W and M. However, this problem contains
two variables, making it not very easy to be solved. In the
following theorem, we introduce its upper bound which can
be used as a surrogate function.
Theorem 3

max
W∈RD×d

tr
((

WT (Sw + αID)W
)−1

WTSbW
)

≤ tr
(
(Sw + αID)

−1Sb
)
.

By using Theorem 3, we can use the upper bound as a
surrogate function to learn M as

max
M

tr
(
(Sw + αID)

−1
Sb

)
. (8)

If directly solving this problem, we may get a trivial solution
such as mi = xi. In order to avoid this situation, we can
utilize the structural sparsity among all mi’s that each class
has a limited number of clusters, which corresponds to the
situation that the number of unique instance-specific class
means for each class is not very large or equivalently that
many elements in {mi−mj |yi = yj} are zero vectors. In the
next section, we discuss how to learn M via the structurally
sparse regularization without knowing the number of clusters
in each class.

3 Learning M via Structural Sparsity
When there is no information available about M, we need
to learn M from data automatically. In this case, we utilize
the structurally sparse regularization [Hocking et al., 2011;
Bach et al., 2012b; Bach et al., 2012a] to enforce the sparsity
in the set {mi −mj |yi = yj}.

The objective function to learn M is formulated as

min
M

β
∑

i<j,yi=yj

γij‖mi −mj‖p − tr
(
(Sw + αID)−1Sb

)
, (9)

where Sb and Sw are the generalized between-class and within-
class scatter matrices defined in Eqs. (4) and (5), β is a positive
regularization parameter, ‖ · ‖p denotes the `p norm of a vector,
and γij denotes the nonnegative similarity between xi and xj .
γij can be set to 1 by assuming that each pair of data points are

equal of similarity or to be exp{−‖xi−xj‖22
2ω2 } to incorporate

the local density into the consideration.
Similar to [Hocking et al., 2011], the regularization term

in problem (9) (i.e., the first term) enforces the difference
between some pairs of the instance-specific class means corre-
sponding to data points in the same class to be zero, leading
to a limited number of unique instance-specific class means
in each class. In order to make the subproblem in the proxi-
mal method convex as we will see later, p is assumed to be
no less than 1, i.e., p ≥ 1. Moreover, when p equals 1, the
regularization term only enforces some corresponding entries
in some pairs of columns in M but not the entire columns to
be identical, which does not match our expectation. Hence p
is assumed to be large than 1, i.e., p > 1.

Obviously problem (9) is non-convex due to the non-
convexity of the second term in problem (9). To solve prob-
lem (9), we use a proximal method for non-convex opti-
mization problems called the GIST algorithm [Gong et al.,
2013]. To apply the GIST algorithm to problem (9), we de-
fine f(M) and g(M) as f(M) = −tr

(
(Sw + αID)

−1Sb
)

and g(M) = β
∑

i<j
yi=yj

γij‖mi − mj‖p. We rewrite Sb

and Sw in Eqs. (4) and (5) as Sb = 1
n2 MLMT and

Sw = 1
n (X −M)(X −M)T , where X = (x1, . . . ,xn),

G is an n × n matrix with the (i, j)th element being 1
when yi 6= yj and 0 otherwise, and L is the Laplacian ma-
trix of G. Then we can compute the gradient Of(M) as
Of(M) = 2

n3 S̃−1w MLMT S̃−1w (M−X)− 2
n2 S̃−1w ML, where

S̃w = Sw + αID.
In the GIST algorithm, we only need to solve the following

problem:

min
M

tk
2
‖M− M̂(k)‖2F + β

n∑
i<j,yi=yj

γij‖mi −mj‖p

where M̂(k) = M(k) − 1
tk
Of(M(k)). Note that in the above

problem, two submatrices of M, Mi and Mj for any i 6= j,
where matrix Mi consists of all the instance-specific class
means for the ith class as its columns, are decoupled in the
two terms of the objective function and so the above problem
can be decomposed into c independent problems with the ith
one formulated as

min
Mi

tk
2
‖Mi − M̂

(k)
i ‖

2
F + β

∑
j,k∈Ri,j<k

γjk‖mj −mk‖p, (10)
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whereRi = {j|yj = i}. By this decomposition, we not only
reduce the size of the problem to be optimized but also enable
the parallel optimization for the c independent problems. In
the following section, we discuss the optimization procedure
to solve problem (10) in details.

3.1 Optimization Procedure for Problem (10)
In this section, we discuss how to solve problem (10). To
simplify the presentation, we use slightly different notations
from problem (10) to formulate it as

min
Z∈RD×m

t

2
‖Z−A‖2F +

m∑
i=1

m∑
j=1,j>i

θij‖zi − zj‖p, (11)

where zi is the ith column of Z. Note that problems (11) and
(10) are equivalent. Here we investigate a case that p = 2
and other cases will be left for future study. Problem (11) is a
convex proximal problem and due to the complex regularizer
on Z, it has no closed-form solution. Here we use the proximal
average technique [Yu, 2013] to solve it. The proximal average
method approximates the solution of a proximal problem with
a convex combination of multiple regularizers by a convex
combination of the solutions of proximal problems with each
regularizer individually. One advantage of the proximal aver-
age method is that each simple proximal problem can have an
analytical solution and hence the approximated solution also
has, leading to a low complexity for solving problem (11).

For problem (11), without loss of generality, we assume
that

∑
i,j θij = 1. Then we can see that the regularizer in

problem (11) is a convex combination of simple regularizers
‖zi − zj‖p. Suppose Z(i,j) is the solution of the following
problem as

min
Z

t

2
‖Z−A‖2F + ‖zi − zj‖p. (12)

Then the proximal average method approximate the solution
of problem (11) by

∑
j>i θijZ

(i,j). For problem (12), it has
an analytical solution as shown in the following theorem.

Theorem 4 When p = 2, problem (12) has an analytical
solution as

zk =ak∀k 6= i, j

zi =

{
1
2 (ai + aj) if ‖ai − aj‖2 ≤ 2/t

ai − ai−aj

t‖ai−aj‖2 otherwise ,

zj =

{
1
2 (ai + aj) if ‖ai − aj‖2 ≤ 2/t

aj − aj−ai

t‖ai−aj‖2 otherwise

where ai is the ith column of A.

Moreover, we can divide the set of index pairs {(i, j)|i < j}
into several subsets S1, . . . ,St so that in each subset Sl, the
indices in different pairs are non-overlapping, i.e., for any
two different pairs (i1, j1) and (i2, j2) in Sl, i1, j1, i2, j2 are
different from each other. Suppose Z(l) is the solution of the
following problem as

min
Z

t

2
‖Z−A‖2F +

1

θ(l)

∑
(i,j)∈Sl

θij‖zi − zj‖p, (13)

where θ(l) =
∑

(i,j)∈Sl θij . Then the proximal aver-
age method approximates the solution of problem (11) by∑
l θ(l)Z

(l). Similar to problem (12), problem (13) has an
analytical solution by using a similar analysis and we omit the
details. For the construction of the subsets, we can adopt a
greedy approach which S1 choose successive indices as a pair,
S2 choose the indices with distance 2 as a pair, and so on. It is
easy to show that t = O(m).

For the two proximal average variants, we can compute the
solutions of all the subproblems (i.e., problems (12) and (13))
in a parallel way, which can accelerate the training process.
It is easy to show that problem (12) needs to be solved for
O(m2) times but problem (13) is only needed for O(m) times.
So for complexity consideration, we are more preferable to the
second approach even though the analysis in the first approach
is the footstone of the second one.

For the whole GIST algorithm where the proximal subprob-
lem is solved by the proximal average method approximately,
by following [Zhong and Kwok, 2014] we can prove that the
algorithm can converge to a critical point, which can be a local
optimum for problem (9).

3.2 Discussion
To see which condition leads to different instance-specific
class means of the same value, we investigate a special case of
problem (9) that p equals 2 and γij is equal to γ for all pairs
(i, j) where γ is a constant. Suppose in a class there exists
a cluster consisting of two data points xi and xj only with
their instance-specific class means denoted by mi and mj . By
setting the derivative of the objective function in problem (9)
with respect to mi and mj to zero respectively, we can get the
stationary condition as

∑
k 6=j

yk=yi

∂‖mi −mk‖2
∂mi

+

∂f(M)
∂mi

βγ
+
∂‖mi −mj‖2

∂mi
= 0 (14)

∑
k 6=i

yk=yj

∂‖mj −mk‖2
∂mj

+

∂f(M)
∂mj

βγ
+
∂‖mi −mj‖2

∂mj
= 0, (15)

where f(M) = −tr
(
(Sw + αID)

−1Sb
)

and ∂g(x)
∂x denotes

the (sub)gradient of a function g(·) with respect to a variable
x. Since xi and xj compose a cluster which implies that mi

is equal to mj and mk is not equal to mi for all other k’s in
the same class, then the first terms in Eqs. (14) and (15) are
equal to each other and based on the chain rule, the last terms
in those two equations are equal to the subgradients ∂‖0‖2
and −∂‖0‖2 which satisfy that their `2 norms are no larger
than 1. By computing the difference between Eqs. (14) and
(15), we can have

∥∥∥∂f(M)
∂mi

− ∂f(M)
∂mj

∥∥∥
2
≤ 2βγ, which implies

that data points with similar gradients of the function f(·) are
more likely to share the same instance-specific class mean.
So for nearby data points in one class, the difference between
their gradients can be small and so they tend to lie in a cluster.

4 Experiments
In this section, we empirically test the performance of the
MLDA model.
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The methods in comparison include the LDA method [Bel-
humeur et al., 1997], the LLDA method [Kim and Kittler,
2005], the SDA method [Zhu and Martínez, 2006], and the
LFDA method [Sugiyama, 2007]. As discussed in the intro-
duction, the LLDA method is a two-stage method which first
clusters the whole dataset via the k-means clustering algorithm
and then learns a LDA model on each cluster, the SDA method
can learn the number of clusters, and the LFDA method uti-
lizes the local density to model the multimodal structure.

Recall that the proposed objective function to learn M in
problem (9) is non-convex, making it sensitive to the initial val-
ue of M. In the following experiments, the initial value for mi

is set to be xi. The parameters (i.e., η, σ, and t0) in the GIST
algorithm are set to be 2, 0.2 and 1 respectively. The regular-
ization parameters α and β are selected via the 10-fold cross
validation method from the candidate set {0.001, 0.01, 0.1, 1}
and the hyperparameters of the baselines in comparison are
also selected via the 10-fold cross validation. For fair compar-
ison with the conventional LDA method, we set the reduced
dimensions of all the methods in comparison to c− 1 where c
is the number of classes. After learning the transformations in
all the methods, we use the nearest neighbor classifier to make
prediction.

4.1 Experiments on Synthetic Data
The first synthetic data is generated as follows. There are
two classes in this dataset. The first class contains two clus-
ters with the first cluster generated from a Gaussian distribu-
tion N (

[
1
0

]
, I2) and the second one following N (

[
20
0

]
, I2).

The second class has three clusters with them sampled from
N (
[
10
10

]
, I2), N (

[
10
2

]
, I2), and N (

[
10
−15

]
, I2) respectively.

For each cluster in those two classes, we randomly generate
100 data points respectively to form the training set and the
data set is plotted in Figure 1(a). The settings of the second
synthetic data keep almost the same as those of the first one
with the difference lying in the setting of the covariance ma-
trices in different clusters. Here different covariance matrices
are used for different classes, i.e., the two clusters in the first
class use

[
1.5 0
0 1

]
as the covariance matrix and all the co-

variance matrices of the three clusters in the second class equal[
1 0
0 1.5

]
.

The one-dimensional transformations of the LDA, SDA,
LFDA, and MLDA methods for the two synthetic datasets
are plotted in Figure 1. Here the LLDA method is not in-
cluded since it cannot discover the clusters within each class.
Based on the data distributions of two synthetic data, the ide-
al transformation is the horizontal line and we can compare
with the transformations produced by the methods in compari-
son. From the results, we can see the discriminative ability of
the transformation produced by the SDA model is the worst
since some clusters in different classes are overlapped after
the dimensionality reduction. One reason is that the data dis-
tribution violates an assumption of the SDA model that the
numbers of clusters in different classes are equal to each other.
The LDA model is better than the SDA model but the data
points in different classes still have some overlap after the
projection, leading to possible classification error for testing.

−5 0 5 10 15 20 25 30
−30

−20
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(a) Synthetic Data I
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(b) Synthetic Data II

Figure 1: Experiments on two synthetic datasets. Blue and black
points are from the first and second classes.

The LFDA and MLDA models have the best results since
the learned transformations are almost horizontal. Moreover,
one advantage of the proposed MLDA model over the LFDA
model is that the MLDA model can identify the clusters in
each class via the learned M. According to M, we find the
clusters found by the MLDA model are exactly the same as
the ground truth on those two synthetic datasets, which demon-
strates the cluster-finding ability of the MLDA model. The
five respective instance-specific class means corresponding
to the five clusters in the first dataset are

[
0.8864
−0.0386

]
,
[

20.3167
−0.0110

]
,[

9.6911
10.0980

]
,
[
10.0881
1.8842

]
,
[

9.9684
−15.2609

]
, and those in the second dataset

are
[
0.6381
0.0925

]
,
[

20.3047
−0.0310

]
,
[
10.0538
9.8551

]
,
[
9.9588
2.2973

]
,
[

9.8401
−15.4004

]
. We can

see that the unique instance-specific class means are very close
to the means of the underlying Gaussian distributions, which
demonstrates the effectiveness of the MLDA model on these
two datasets.

4.2 Experiments on Real-World Datasets
Six real-world datasets are used in our experiments, including
the ETH-80, COIL-20, COIL-100, AR, UMIST, and MNIST
databases. The ETH-80 dataset [Leibe and Schiele, 2003]
contains images of the following categories: apples, pears,
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(a) ETH-80 (b) COIL-20 (c) COIL-100

(d) AR (e) UMIST (f) MNIST
Figure 2: Test errors on real-world datasets when varying the size of the training set.

cars, cows, horses, dogs, tomatoes, and cups, and each catego-
ry includes the images of 10 objects taken at 41 orientations,
which give us a total of 410 images per category. The COIL-20
dataset contains 1,440 gray-scale images for 20 objects and
each object has 72 images of size 16× 16 with the difference
of two successive viewpoint as 5 degrees. The images in the
COIL-100 dataset are taken in a similar way to the COIL-20
dataset and it contains 7,200 gray-scale images for 100 object-
s. The AR dataset [Martínez and Benavente, 1998] contains
frontal face images of 100 persons (50 men and 50 women)
with different expressions, illuminations, and occlusions and
there are 26 images for each person taken in two sessions, each
having 13 images. The UMIST dataset [Graham and Allinson,
1998] is a multi-view dataset consisting of 575 gray-scale im-
ages of 20 people (subject) with each covering a wide range
of poses from profile to frontal views. The MNIST dataset
[LeCun and Cortes, 1998] contains 70,000 handwritten digits
ranging from 0 to 9 with each one having about 7,000 samples
where each image is normalized to a gray-level image with the
size as 14× 14.

In the proposed MLDA method, γij is set to be
exp{− 1

σ2
yi

‖xi − xj‖22} when yi = yj and 0 otherwise, where
σi denotes the average pairwise Euclidean distance in the ith
class. In order to investigate the effect of varying the size of
the training set, we randomly sample 30%, 50%, and 70% of
the total data as the training set and the rest forms the test set.
Each configuration repeats for 10 times and the average results
as well as the standard deviations are plotted in Figure 2. From
the results, we can see that sometimes the performance of the
LLDA, SDA and LFDA models is better than that of the LDA,
for example, on the COIL-20 and COIL-100 datasets, but in
other cases, they perform only comparably to the LDA model.
The proposed MLDA method has the best performance in all

settings. In the ETH-80 and AR datasets, the performance
of the proposed MLDA method using 30% data for training
is comparable to that of the SDA or LFDA method with the
training percentage as 70%, which in some aspect shows the
effectiveness of the MLDA method.

5 Conclusion
In this paper, we propose a multimodal extension of the L-
DA model by generalizing the between-class and within-class
scatter matrices based on the instance-specific class means as-
signed to each data point. The learning of the instance-specific
class means is accomplished by maximizing a surrogate func-
tion regularized by the structural sparsity and the resultant
objective function is solved by a proximal algorithm.

The objective function in problem (8) can be viewed as
a loss function, which encourages the class separability, for
M, but it is not the only one. We will try other criterions
such as the stability criterion proposed in [Martínez and Zhu,
2005] and the implementation can be reused since we only
need to modify the definition of the function f(·) and the
calculation of its gradient. Moreover, the proposed MLDA
model is a linear model and we are interested in investigating
its nonlinear extension.
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