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Abstract
Q-learning is a popular reinforcement learning
algorithm, but it can perform poorly in stochastic
environments due to overestimating action values.
Overestimation is due to the use of a single
estimator that uses the maximum action value
as an approximation for the maximum expected
action value. To avoid overestimation in Q-
learning, the double Q-learning algorithm was
recently proposed, which uses the double estimator
method. It uses two estimators from independent
sets of experiences, with one estimator determining
the maximizing action and the other providing
the estimate of its value. Double Q-learning
sometimes underestimates the action values. This
paper introduces a weighted double Q-learning
algorithm, which is based on the construction of
the weighted double estimator, with the goal of
balancing between the overestimation in the single
estimator and the underestimation in the double
estimator. Empirically, the new algorithm is shown
to perform well on several MDP problems.

1 Introduction
Sequential decision problems under uncertainty are often
framed as Markov decision processes (MDPs) [Kochenderfer,
2015; Bertsekas, 2007]. Reinforcement learning is concerned
with finding an optimal decision making strategy in problems
where the transition model and rewards are not initially
known [Littman, 2015; Wiering and van Otterlo, 2012; Sutton
and Barto, 1998]. Some reinforcement learning algorithms
involve building explicit models of the transitions and
rewards [Brafman and Tennenholtz, 2001], but other “model-
free” algorithms learn the values of different actions directly.

One of the most popular model-free algorithms is Q-
learning [Watkins, 1989]. The original Q-learning algorithm
inspired several improvements, such as delayed Q-learning
[Strehl et al., 2006], phased Q-learning [Kearns and Singh,
1999], fitted Q-iteration [Ernst et al., 2005], bias-corrected
Q-learning [Lee and Powell, 2012; Lee et al., 2013], and
weighted Q-learning [D’Eramo et al., 2016].

This paper focuses on an enhancement known as double
Q-learning [van Hasselt, 2010; 2011], a variant designed

to avoid the positive maximization bias when learning the
action values. The algorithm has recently been generalized
from the discrete setting to use deep neural networks [LeCun
et al., 2015] as a way to approximate the action values in
high dimensional spaces [van Hasselt et al., 2016]. Double
Q-learning, however, can lead to a bias that results in
underestimating action values.

The main contribution of this paper is the introduction of
the weighted double Q-learning algorithm, which is based
on the construction of the weighted double estimator, with
the goal of balancing between the overestimation in the
single estimator and underestimation in the double estimator.
We present empirical results of estimators of the maximum
expected value on three groups of multi-arm bandit problems,
and compare Q-learning and its variants in terms of the
action-value estimate and policy quality on MDP problems.

2 Background
The MDP framework can be applied whenever we have an
agent taking a sequence of actions in a system described as
a tuple (S,A, T,R, γ), where S is a finite set of states, A
is a finite set of actions, T : S × A × S → [0, 1] is a
state-transition model, where T (s, a, s′) gives the probability
distribution over state s′ after the agent executes action a in
state s, R : S × A → R is a reward function, where R(s, a)
gives the reward obtained by the agent after executing action
a in state s, and γ ∈ [0, 1) is a discount factor that trades off
the importance of immediate and delayed rewards.

An MDP policy is a mapping from S to A, denoted by
π : S → A. The goal of solving an MDP is to find an optimal
policy π∗ that maximizes V π : S → R, the value of a state s
under policy π, defined as

Eπ

{ ∞∑
t=0

γtR(st, π(st)) | s0 = s
}
. (1)

A similar state-action value function is Qπ : S × A → R,
whereQπ(s, a) is the value of starting in state s, taking action
a, and then continuing with the policy π. The optimal state-
value function Q∗(s, a) in the MDP framework satisfies the
Bellman optimality equation [Bellman, 1957]:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′

Q∗(s′, a′). (2)

We can use Q∗ to define π∗(s) ∈ arg maxa∈AQ
∗(s, a).
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3 Estimators of the Maximum Expected Value
This section considers the problem of finding an approxima-
tion for maxiE{Xi}, the maximum expected value of the
set of N random variables X = {X1, X2, . . . , XN}. We first
describe two existing methods, the single estimator and the
double estimator, and then introduce our new weighted dou-
ble estimator method.

3.1 Single Estimator
Let µ = {µ1, µ2, . . . , µN} be a set of unbiased estimators
such that E{µi} = E{Xi}, for all i. Assume that D =
∪Ni=1Di is a set of samples, where Di is the subset contain-
ing at least one sample for the variable Xi, and the samples
in Di are i.i.d. The single estimator method uses the value
maxi µi(D) as an estimator of maxiE{Xi}, where µi(D) =

1
|Di|

∑
d∈Di

d is an unbiased estimator for the value of
E{Xi}. However, maxiE{µi(D)} ≥ maxiE{Xi}, and the
inequality is strict if and only if P (j /∈ arg maxi µi(D)) > 0
for any j ∈ arg maxiE{Xi} [van Hasselt, 2010]. This im-
plies that there will be a positive maximization bias if we use
the maximum of the estimates as an estimate of the maximum
of the true values. Such a biased estimate can happen when
all variables in X are i.i.d. The overestimation in the single
estimator method is due to the same samples are both used to
determine the maximizing action and to estimate its value.

3.2 Double Estimator
To avoid maximization bias in the single estimator, Hasselt
proposed the double estimator approach [van Hasselt, 2010].
One of the key ideas is to divide the sample set D into two
disjoint subsets, DU and DV . Let µU = {µU1 , µU2 , . . . , µUN}
and µV = {µV1 , µV2 , . . . , µVN} be two sets of unbiased
estimators such that E{µUi } = E{µVi } = E{Xi} for all i.
The two sample subsets are used to learn two independent
estimates, µUi (D) = 1

|DU
i |
∑
d∈DU

i
d and µVi (D) =

1
|DV

i |
∑
d∈DV

i
d, each an estimate of the true valueE{Xi} for

all i. The value µUi (D) is used to determine the maximizing
action a∗ ∈ arg maxi µ

U
i (D), and the other is used to

provide the estimate of its value, µVa∗(D). This estimate
will then be unbiased in the sense that E{µVa∗(D)} =
E{Xa∗}. However, since E{Xa∗} ≤ maxiE{Xi}, we
have E{µVa∗(D)} ≤ maxiE{Xi}. The inequality is strict
if and only if P (a∗ /∈ arg maxiE{Xi}) > 0 [van Hasselt,
2010]. This implies that there will be a negative bias if
we use µVa∗ as an estimate of the maximum of the true
values when the variables have different expected values and
overlapped distributions. When the variables are i.i.d., the
double estimator is unbiased because all expected values are
equal and P (a∗ ∈ arg maxiE{Xi}) = 1.

3.3 Weighted Double Estimator
Our weighted double estimator method provides a way of
constructing a set of estimators that balances the overestima-
tion of the single estimator and the underestimation of the
double estimator. Mathematically, we write it as follows:

µWDE(D) = βµUa∗(D) + (1− β)µVa∗(D), (3)

Algorithm 1 Q-learning
1: Initialize Q, s
2: loop
3: Choose action a from state s based on Q and some

exploration strategy (e.g., ε-greedy)
4: Take action a, observe r, s′
5: a∗ ← arg maxaQ(s′, a)
6: δ ← r + γQ(s′, a∗)−Q(s, a)
7: Q(s, a)← Q(s, a) + α(s, a)δ
8: s← s′

where β ∈ [0, 1] and a∗ ∈ arg maxi µ
U
i (D). Thus,

µWDE(D) equals the result of the single estimator when
β = 1, and the double estimator when β = 0.

Now we consider how to construct the function β. Assume
that the variable Xi follows the distribution Hi, i.e., Xi ∼
Hi. Denote the Kullback-Leibler divergence between the
two distributions Hi and Hj as KL(Hi ‖ Hj). When
maxi,j KL(Hi ‖ Hj) = 0, the variables Xi in X
are i.i.d. To make µWDE(D) be an unbiased estimate
for maxiE{Xi}, β should be set to 0. Similarly, when
maxi,j KL(Hi ‖ Hj) is small, we will want to also set β to a
small value. We hypothesize that KL(Ha∗ ‖ HaL), where
aL ∈ arg mini µ

U
i (D), can serve as an approximation to

maxi,j KL(Hi ‖ Hj), because Xa∗ and XaL are the two
variables with the biggest difference in terms of the expected
values in the sample subset DU . Since the distributions
of variables are unavailable, we further use |E{Xa∗} −
E{XaL}| to approximateKL(Ha∗ ‖ HaL). Since |µVa∗(D)−
µVaL(D)| is an unbiased estimator of |E{Xa∗} − E{XaL}|,
we define β as follows:

β(D, c) =
|µVa∗(D)− µVaL(D)|

c+ |µVa∗(D)− µVaL(D)|
, (4)

where c ≥ 0. Because there exists one β∗ ∈ [0, 1] such that
β∗E{µUa∗(D)}+ (1− β∗)E{µVa∗(D)} = maxiE{Xi}, and,
for any β∗ ∈ [0, 1], there is a corresponding c∗ ∈ [0,+∞)
such that β∗ = E{β(D, c∗)}, we can conclude that there
always exists one c∗ ∈ [0,+∞) such that µWDE(D, c∗) is
an unbiased estimator of maxiE{Xi}. Note that even if c
is a constant, Eq. (4) can ensure that the more similar the
distributions that variables follow, the closer the gap between
β(D, c) and 0 is. Tuning parameter β directly cannot achieve
this. Selecting c is discussed in a later section.

4 Q-learning and Its Variants
This section first describes Q-learning and double Q-learning,
and then presents the weighted double Q-learning algorithm.

4.1 Q-learning
Q-learning is outlined in Algorithm 1. The key idea is to apply
incremental estimation to the Bellman optimality equation.
Instead of using T and R, it uses the observed immediate
reward r and next state s′ to obtain the following update rule:

Q(s, a)← Q(s, a) +α(s, a)[r+ γmax
a′

Q(s′, a′)−Q(s, a)],

(5)
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Algorithm 2 Double Q-learning
1: Initialize QU , QV , s
2: loop
3: Choose a from s based on QU and QV (e.g., ε-greedy

in QU +QV )
4: Take action a, observe r, s′
5: Choose (e.g. random) whether to update QU or QV
6: if chose to update QU then
7: a∗ ← arg maxaQ

U (s′, a)
8: δ ← r + γQV (s′, a∗)−QU (s, a)
9: QU (s, a)← QU (s, a) + αU (s, a)δ

10: else if chose to update QV then
11: a∗ ← arg maxaQ

V (s′, a)
12: δ ← r + γQU (s′, a∗)−QV (s, a)
13: QV (s, a)← QV (s, a) + αV (s, a)δ
14: s← s′

where α(s, a) ∈ [0, 1] is the learning rate. Q-learning
can be interpreted as using the single estimator method
to estimate the maximum expected value of Q(s′, a′),
maxa′ E{Q(s′, a′)}. Here, maxa′ Q(s′, a′) is the single es-
timator. Since maxa′ Q(s′, a′) is an unbiased sample drawn
from a distribution with mean E{maxa′ Q(s′, a′)}, and
E{maxa′ Q(s′, a′)} ≥ maxa′ E{Q(s′, a′)}, the estimator
maxa′ Q(s′, a′) has a positive bias. Hence, Q-learning can
suffer from overestimation of action values.

4.2 Double Q-learning
Double Q-learning, as shown in Algorithm 2, uses the double
estimator method to estimate the maximum expected value
of the Q function for the next state, maxa′ E{Q(s′, a′)}.
It stores two Q functions, QU and QV , and uses two
separate subsets of experience samples to learn them. The
action selected to execute in line 3 is calculated based
on the average of the two Q values for each action and
the ε-greedy exploration strategy. In lines 5 to 13, with
the same probability, each Q function is updated using
a value from the other Q function for the next state. In
line 7, the action a∗ is the maximizing action in state
s′ based on the value function QU . However, in line 8,
as opposed to Q-learning, the value QV (s′, a∗) but not
the value QU (s′, a∗) is used to update QU . Since QV

was updated with a different set of experience samples,
QV (s′, a∗) is an unbiased estimate for the value of the
action a∗ in the sense that E{QV (s′, a∗)} = E{Q(s′, a∗)}.
Similarly, the value of QU (s′, a∗) in line 12 is also unbiased.
However, since E{QV (s′, a∗)} ≤ maxaE{QV (s′, a)} and
E{QU (s′, a∗)} ≤ maxaE{QU (s′, a)}, both estimators,
QV (s′, a∗) and QU (s′, a∗), sometimes have negative biases.
This results in double Q-learning underestimating action
values in some stochastic environments.

4.3 Weighted Double Q-learning
Weighted double Q-learning, as outlined in Algorithm 3,
combines Q-learning and double Q-learning. The key
difference between Algorithm 2 and Algorithm 3 is that
Algorithm 3 uses lines 8 to 10 to replace line 8, and uses lines
14 to 16 to replace line 12 in Algorithm 2. These changes

Algorithm 3 Weighted Double Q-learning
1: Initialize QU , QV , s
2: loop
3: Choose a from s based on QU and QV (e.g., ε-greedy

in QU +QV )
4: Take action a, observe r, s′
5: Choose (e.g. random) whether to update QU or QV
6: if chose to update QU then
7: a∗ ← arg maxaQ

U (s′, a)
8: aL ← arg minaQ

U (s′, a)

9: βU ← |QV (s′,a∗)−QV (s′,aL)|
c+|QV (s′,a∗)−QV (s′,aL)|

10: δ ← r+ γ[βUQU (s′, a∗) + (1− βU )QV (s′, a∗)]−
QU (s, a)

11: QU (s, a)← QU (s, a) + αU (s, a)δ
12: else if chose to update QV then
13: a∗ ← arg maxaQ

V (s′, a)
14: aL ← arg minaQ

V (s′, a)

15: βV ← |QU (s′,a∗)−QU (s′,aL)|
c+|QU (s′,a∗)−QU (s′,aL)|

16: δ ← r+ γ[βVQV (s′, a∗) + (1−βV )QU (s′, a∗)]−
QV (s, a)

17: QV (s, a)← QV (s, a) + αV (s, a)δ
18: s← s′

make weighted double Q-learning use different δ values in
updating both QU and QV . We denote

QU,WDE(s′, a∗) = βUQU (s′, a∗) + (1− βU )QV (s′, a∗),
(6)

where

βU =
|QV (s′, a∗)−QV (s′, aL)|

c+ |QV (s′, a∗)−QV (s′, aL)|
. (7)

Equations (6) and (7) are the corresponding forms of Eqs. (3)
and (4) in the MDP setting, respectively. From Eq. (6) we see
that weighted double Q-learning uses a linear combination of
both QU (s′, a∗) and QV (s′, a∗). Thus, QU,WDE represents
a trade-off between the overestimation of Q-learning and the
underestimation of double Q-learning. A similar update is
used for QV , using a∗, QU , and QV .

By using the proof techniques in the convergence in the
limit of double Q-learning [van Hasselt, 2010], we can also
prove that weighted double Q-learning converges to the
optimal policy. Intuitively, this is what one would expect
based on the following two observations: (1) both Q-learning
and double Q-learning converge to the optimal function Q∗
under similar conditions; and (2) weighted double Q-learning
spans a spectrum that has the Q-learning algorithm at one end
and the double Q-learning algorithm at the other.

5 Experiments
In this section, we first present empirical results of estimators
of the maximum expected value on three groups of multi-arm
bandit problems. Then, we present empirical comparisons of
Q-learning and its variants in terms of the action-value es-
timate and policy quality on the game of roulette, four MDP
problems modified from a 3×3 grid world problem [van Has-
selt, 2010], and six intruder monitoring problems.
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(a) Results on G1 (b) Results on G2 (c) Results on G3

Figure 1: Estimated values and standard errors of different estimators for maximum expected values on three groups of multi-arm bandit
problems, G1, G2, and G3. SE: single estimator, DE: double estimator, WDE: weighted double estimator.

In some domains, we also compared the performance of
the bias-corrected Q-learning algorithm and the weighted Q-
learning algorithm, two recent proposed algorithms that ad-
dress the overestimation issue for Q-learning. Bias-corrected
Q-learning asymptotically cancels the max-operator bias in
Q-learning by subtracting to each Q-value a bias correction
term that depends on the standard deviation of the reward
and on the number of actions [Lee et al., 2013]. Weighted Q-
learning estimates the maximum action values by a weighted
estimator that computes a weighted mean of all the sample
means [D’Eramo et al., 2016].

Algorithms with a polynomial learning rate, αt(s, a) =
1/nt(s, a)m with m = 0.8, was shown to have better per-
formance than ones with a linear learning rate, αt(s, a) =
1/nt(s, a) [van Hasselt, 2010]. This paper focuses on em-
pirical results of Q-learning, biased-corrected Q-learning and
weighted Q-learning with parameter m = 0.8, and both
double Q-learning and weighted double Q-learning with pa-
rameters mU = 0.8 and mV = 0.8 in the two learn-
ing rates αUt (s, a) = [1/nUt (s, a)]m

U

and αVt (s, a) =

[1/nVt (s, a)]m
V

, where the variables nUt (s, a) and nVt (s, a)
store the number of updates in QU (s, a) and QV (s, a), re-
spectively. The action-selection strategy in all algorithms was
ε-greedy with ε(s) = 1/nt(s)

0.5, where nt(s) is the number
of times state s has been visited.

5.1 Multi-arm Bandits
Our experiments are conducted on three groups of multi-arm
bandit problems: (G1) E{Xi} = 0, for i ∈ {1, 2, . . . , N};
(G2) E{X1} = 1 and E{Xi} = 0 for i ∈ {2, 3, . . . , N};
and (G3) E{Xi} = i

N , for i ∈ {1, 2, . . . , N}. Here, E{Xi}
represents the expected reward of selecting the ith action, and
N is the number of actions. Thus, maxiE{Xi} = 0 in G1,
and maxiE{Xi} = 1 in G2 and G3.

In each N -arm bandit experiment, we repeated the fol-
lowing procedure 100 times: generate µi from N (E{Xi}, 1)
for all i and then generate 1000 samples di from N (µi, 1).
Thus, |Di| = 1000. The single estimator (SE) method com-
putes µi(D) = 1

|Di|
∑
d∈Di

d, and then uses the average
of maxi µi(D) in the 100 repetitions as the single estima-
tor of maxiE{Xi}. The double estimator (DE) method and
the weighted double estimator (WDE) method first divide

Di into two independent sample subsets, DU
i and DV

i , with
|DU

i | = |DV
i | = 500. Then, the DE method computes

µVa∗(D) = 1
|DV

a∗ |
∑
d∈DV

a∗
d, where a∗ ∈ arg maxi µ

U
i (D)

as the double estimator; the WDE method also computes
µVa∗(D) as in the DE method, but uses the weighted average
β(D, c)µUa∗(D)+(1−β(D, c))µVa∗(D) in the 100 repetitions
as the weighted double estimator.

Figure 1 shows empirical results for the estimated values
and standard errors of different estimators for maxiE{Xi}
on the three groups of multi-arm bandit problems. For the
weighted double estimator method, we report the results with
the input parameter c = 1, 10, 100. From this figure, we see
that on all domains, as N increases from 2 to 1024, the de-
gree of overestimation in the single estimator increases. In
addition, the larger the value of c, the closer it is to the double
estimator; the closer the value of c is to 0, the closer it is to
the single estimator.

This figure shows that there is no fixed best value of c,
even with problems with a fixed number of actions. For ex-
ample, when N = 128 on the G1 domain, the best c is +∞;
on G2 the best c is around 10; and on G3 the best c is larg-
er than 10. Although there is always a c∗ ∈ [0,+∞) such
that µWDE(D, c∗) is an unbiased estimator of maxiE{Xi}
on each multi-arm bandit problem, the value of c∗ appears
to be different among problems with different characteristics.
Hence, we want to set c adaptively based on the characteris-
tics of the problem.

We observed that the number of actions clearly influences
the degree of overestimations in the single estimator;
however, a similar effect does not appear with the double
estimator. As a result, the estimation errors in the weighted
double estimator are affected by the number of actions. The
empirical relationship between c in WDQ andN appears log-
linear. This suggests to us that c ∝ log2N .

Table 1 shows the maximum difference between the
expected value of the best action and the expected values of
other actions, denoted ∆ =

E{Xi∗}−maxj 6=i∗ E{Xj}
E{Xi∗}−mini E{Xi} where

E{Xi∗} = maxiE{Xi} (assume that ∆ = 0 when
E{Xi∗} − miniE{Xi} = 0). As ∆ becomes small, the
double estimator tends to decrease the error caused by its
underestimation, as opposed to the single estimator, which
suggests setting c ∝ 1

∆ .
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Table 1: Estimation biases according to the single estimator and the
double estimator on three groups of multi-arm bandit problems with
128 actions.

Group (→) G1 G3 G2

Difference (∆) 0 1/128 1
Single estimator 2.66 2.19 1.62
Double estimator −0.06 −0.33 −0.86
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Figure 2: Comparison of WDE(k = 1) and DE in terms of estimated
values and standard errors of on three groups of multi-arm bandit
problems, G1, G2, and G3.

The domain G2 is an extreme case where only one action
has the highest expected reward and all other actions have
the lowest expected reward. In this case, DE has the largest
estimation error, and the proportion of estimation error size
between DE and SE is about 1

2 ≈
0.86
1.62 . In all other cases, the

proportion should be less than 1
2 . This suggests that 1

3 should
be an upper bound of β(D, c) due to 1

3/
2
3 = 1

2 , and therefore,
β(D, c) ∈ [0, 1

3 ].
Based on the above analysis, we define c as a heuristic

function with the following form:

c = max
( k log2N

max(∆, 10−6)
, 2|µVa∗(D)− µVaL(D)|

)
, (8)

where 10−6 is used to avoid the value of the denominator
∆ becoming too close to 0, 2|µVa∗(D) − µVaL(D)| is used to
make β(D, c) ∈ [0, 1

3 ], and k is a constant independent of
the characteristics of the problem that has to be determined
empirically. In this paper, we set k = 1 because it leads to a
much lower estimation error than DE on G2 and G3, as shown
in Fig. 2. The average errors of WDE(k = 1) are 0.10, 0.20,
0.16 on G1, G2, and G3, respectively, while the correspond-
ing estimation errors are 0.01, 0.70, 0.35 in DE.

5.2 Roulette
Roulette is a bandit problem with 171 arms, consisting of
170 betting actions with an expected payout of $0.947 per
dollar and one walk-away action yielding $0. Each betting
action has an expected loss of $−0.053 per play based
on the assumption that a player bets $1 every time. We
recorded the mean action values over all betting actions as
found by Q-learning (Q), bias-corrected Q-learning (BCQ),
weighted Q-learning (WQ), double Q-learning (DQ), and

weighted double Q-learning (WDQ) with different values
of parameter c, and a heuristic value, denoted c(k = 1)
and defined by Eq. (8). Each trial involves a synchronous
update of all actions. As the value of c increases, the degree
of overestimation decreases. After 100, 000 trials, WDQ
valued all betting actions $12.87, $2.93, $−0.11, $0.00 when
c = 1, 10, 100, c(k = 1), respectively. The estimates of
the expected profit in all betting actions in WDQ(k = 1),
WDQ(c = 100), BCQ, WQ, and DQ after 100, 000 trials are
very close to the expected loss $−0.053, all with absolute
biases smaller than $0.10.

5.3 Grid World
An n× n grid world problem has n2 states (one state per cell
in the grid) and four actions: {north, south, east, west}. Move-
ment to adjacent squares is deterministic, but a collision with
the edge of the world results in no movement. The initial state
s0 corresponds to the bottom left cell, and the goal state sg
corresponds to the top right cell. The agent receives a random
reward of −30 or +40 for any action ending an episode from
the goal state and a random reward of−6 or +4 for any action
at a non-goal state. Since an episode starting from s0 consists
of 2(n − 1) + 1 actions given an optimal policy, the optimal
average reward per action is 5−2(n−1)

2(n−1)+1 = 7−2n
2n−1 . With a dis-

count factor of γ = 0.95, V ∗(s0) = 5γ2(n−1) −
∑2n−3
i=0 γi.

Figure 3 shows the results of Q-learning and its variants on
four n× n grid world problems.

In contrast with Hasselt’s grid world problem, we assume
stochastic reward at the goal state. Such a setting makes un-
derestimating action values at the goal states negatively im-
pact performance in DQ. In additon, the random reward at
non-goal states makes the overestmates at non-goal states
negatively impact performance in Q. As a result, both the Q
and DQ agents often estimate that the action values at the
goal state are lower than some action values at other states
and do not move towards the goal state. Consequently, they
performed poorly on all problems, as shown in Figure 3 (a–
d). WDQ(c = 10) and WDQ(k = 1)1 performed significantly
better because their estimates of the maximum action values
were much closer to the true values, e.g., at the initial state
s0 as shown in Figure 3 (e–h). On this domain, setting c to
10 is empirically a better choice in terms of the action-value
estimate and policy quality than setting it adaptively by using
Eq. (8), in part due to the shortcomings of approximating the
constant in a bandit setting and deploying it in an MDP set-
ting. We leave the design of a more effective heuristic to find
an appropriate value of c in MDPs as a future research topic.

Figure 3 also shows the performance of WQ on the grid
world domain. In terms of the average reward per action, WQ
performs better than Q and DQ, but worse than WDQ(c =
10) and WDQ(k = 1). Compared with other methods, WDQ
shows less max-operator bias.

5.4 Intruder Monitoring
An intruder monitoring task involves guarding danger zones
using a camera so that if an intruder moves to a danger

1On this domain, c = 10 and k = 1 are not the best parameter
values, and c = 8 and k = 2 can yield better empirical results.
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Figure 3: (a–d) The average reward per action and (e–h) the maximum action value in the initial state s0 according to Q-learning and its
variants on the n× n grid world problems, where n ranges from 3 to 6. Results are averaged over 1000 runs.
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Figure 4: Maps of intruder monitoring problems: (a–b) two 4 × 4
maps with 256 states, (c–d) two 5 × 5 maps with 625 states, and
(e–f) two 6× 6 maps with 1296 states, where an intruder is initially
located in 1, a camera initially in 2, and danger zones in 3.

zone, the camera points at that location. An n × n grid task
has n4 states. Each state corresponds to a unique position
of the camera and intruder. At each time step, a camera
or intruder has five actions to choose: {north, south, east,
west, stay}. All movements are deterministic. The policy in
the intruder is uniform random, but this is unknown to the
camera. The system receives a reward of −10 for every visit
of the intruder to a danger zone with no camera present,
+100 when there is a camera present, and 0 otherwise. The
discount factor γ is 0.95. Figure 4 shows the maps of six
intruder monitoring problems. From Table 2 we can see that
on these problems WDQ is robust and can perform better
than both Q and DQ even when there is no randomness in
the reward function. Compared with BCQ, WDQ can usually
generate better policies due to its more accurate estimate of
the maximum over action values. Since the only uncertainty
is the behavior of the intruder, the small estimation errors
in both Q and DQ sometimes have no significant negative
impact in performance, making the improvement achieved by

Table 2: The average reward per action over 200, 000 actions on
the six intruder monitoring problems shown in Fig. 4. Results are
averaged over 1000 runs.

Problems Q DQ BCQ WDQ(c) WDQ(k)
Fig. 4 (a) 12.02 12.07 11.95 12.15 12.30
Fig. 4 (b) 14.35 14.48 14.35 14.69 14.72
Fig. 4 (c) 8.52 8.65 8.54 8.75 8.79
Fig. 4 (d) 8.32 8.31 8.33 8.58 8.53
Fig. 4 (e) 10.61 10.48 10.67 10.78 10.79
Fig. 4 (f) 9.64 9.54 9.75 9.82 9.95
WDQ(c): WDQ(c = 10), WDQ(k): WDQ(k = 1)

WDQ appear not as significant as on the grid world domain.

6 Conclusion
This paper presented a weighted double Q-learning algorithm
to avoid the overestimation bias of action values inherent
in regular Q-learning and the underestimation bias of action
values inherent in double Q-learning. The parameter c is
used to control the importance weight of the single and
double estimates. We proposed a heuristic for selecting c
based on insights from the empirical results in multi-arm
bandit problems and used it to set the parameter adaptively.
Empirically, we found that the new algorithm reduces the
estimation error and performs well on a variety of MDP
problems. In the future, it would be interesting to analyze
the performance of weighted double Q-learning when using
value function approximation on Atari video games [van
Hasselt et al., 2016; Mnih et al., 2015].
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