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Abstract
Top-N recommendation systems are useful in many
real world applications such as E-commerce plat-
forms. Most previous methods produce top-N rec-
ommendations based on the observed user purchase
or recommendation activities. Recently, it has been
noticed that side information that describes the
items can be produced from auxiliary sources and
help to improve the performance of top-N recom-
mendation systems; e.g., side information of the
items can be collected from the item reviews. In
this paper, we propose a joint discriminative pre-
diction model that exploits both the partially ob-
served user-item recommendation matrix and the
item-based side information to build top-N rec-
ommendation systems. This joint model aggre-
gates observed user-item recommendation activi-
ties to produce the missing user-item recommen-
dation scores while simultaneously training a lin-
ear regression model to predict the user-item rec-
ommendation scores from auxiliary item features.
We evaluate the proposed approach on a number of
recommendation datasets. The experimental results
show that the proposed joint model is very effective
for producing top-N recommendation systems.

1 Introduction
Top-N recommendation systems automatically predict the
missing recommendation scores over the set of product items
for each consumer, and recommend a short list of N items
with highest scores to each consumer. With the increas-
ing popularity of online shopping, effective top-N commer-
cial recommendation systems become of great importance in
helping consumers to find their interested items and hence en-
couraging online item purchases. For example, a top-N rec-
ommendation system can effectively help consumers to find
their potential interested products from Amazon.com and buy
them online, and help users to find movies that best match
their interests on Netflix. In such real world application do-
mains, effective top-N recommendation systems can make
significant commercial impacts.

Many algorithms have been developed in the literature to
build top-N recommendation systems [Ricci et al., 2011].

Most of them use a user-item rating matrix to build the
recommendation models. A classical technique is collab-
orative filtering (CF) [Schafer et al., 2007], which models
the relationships between users and the correlations between
items to identify new user-items relationship scores. Rank-
ing methods have also demonstrated good performance for
top-N recommendations [Weimer et al., 2008; Steck, 2010;
Chen and Pan, 2013; Aiolli, 2014; Park et al., 2015]. In
addition to CF and ranking, sparse aggregation methods
that exploit linear correlations between items have been ex-
plored in a few works to improve top-N recommendation
performance [Ning and Karypis, 2011; Cheng et al., 2014;
Kabbur et al., 2013; Christakopoulou and Karypis, 2014].
Nevertheless, all these methods focus solely on the user-item
rating (or purchase) matrix, without exploring any additional
information.

In many applications, in addition to the user-item rating or
purchase matrix, item-based side information such as prod-
uct reviews, book reviews, item comments, and movie plots
can be easily collected from the Internet. This abundant item-
based information can be used for recommendation systems.
The work in [Mooney and Roy, 2000] used book titles, re-
views, and comments as item features; the work in [Melville
et al., 2002] used item contents to enrich the sparse rating ma-
trix. These recommendation systems however either only fo-
cus on user profiles or item contents without fully considering
the user-item rating matrix or simply use item contents to pre-
process the sparse rating matrix to produce small improve-
ments. Moreover, they have not addressed the top-N rec-
ommendation problems. A recent work [Ning and Karypis,
2012] incorporated item-based side information to improve
top-N recommender systems, which however assumes that
user-item matrix and item-based side information matrix are
reproduced by the same linear aggregation model and does
not exploit the discriminative power of the side information.

In this paper, we propose a joint discriminative predic-
tion model that exploits both the partially observed user-item
recommendation (rating/purchase) matrix and the item-based
side information such as item contents (product reviews and
movie plots) to build top-N recommendation systems. The
item information used in this work can be viewed as descrip-
tions of the items and hence can produce feature represen-
tation vectors for the items. We propose a novel component
that predicts the user-item recommendation (purchase) scores
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discriminatively from the item features with linear regression
models, and integrate this component together with an ag-
gregation model on the user-item matrix to jointly predict
the unknown user-item recommendation scores. The joint
prediction of the recommendation scores from both informa-
tion sources is expected to increase the performance of top-
N recommendation systems. We formulate this joint predic-
tion model as a convex minimization problem, which can be
solved using a projected gradient descent algorithm. We eval-
uate the proposed approach by conducting experiments on
several real world datasets. The experimental results show
that the proposed approach can outperform both popular top-
N recommendation methods that only use user-item matrix
and state-of-the-art algorithms that exploit additional side in-
formation. Moreover, our empirical study also reveals an in-
teresting observation: the discriminative prediction compo-
nent that predicts the recommendation scores from the item
features (i.e., side information) contributes to most of the rec-
ommendation capacity of our joint prediction model, and the
prediction component itself already outperforms other com-
parison methods. This observation encourages researchers to
explore prediction models for building top-N recommenda-
tion systems.

2 Related Work
In this section, we review related works, including standard
top-N recommendation systems and recent recommendation
approaches that exploit item-based side information.

Collaborative filtering (CF) technology is widely used in
top-N recommendation systems. CF methods, which ex-
plore the purchase history of all the users, relationships be-
tween the users and correlations between the items, can be
divided into two types, neighborhood-based CF and model-
based CF. Neighborhood-based CF methods exploit similari-
ties between all the items and users to make recommendations
[Deshpande and Karypis, 2004; Verstrepen and Goethals,
2014]. Model-based CF methods learn latent factors for users
and items to reconstruct the user-item matrix. For example,
the work in [Cremonesi et al., 2010] developed a singular
value decomposition (SVD) method to directly learn latent
user factors and item factors. Though simple, this method
has good performance for top-N recommendations. In [Hu
et al., 2008; Sindhwani et al., 2010], a weighted regularized
matrix factorization (WRMF) model is formulated to learn
the latent factors based on implicit user-item feedbacks. The
work in [Shi et al., 2012b] proposed to learn the latent factors
by directly maximizing the mean reciprocal rank. The work
in [Liu and Aberer, 2014] addressed top-N recommendation
in dynamic situations.

Weimer et.al [Weimer et al., 2008] considered the top-N
recommendation problem as a ranking problem, and used
maximum margin matrix factorization to optimize ranking
scores instead of rating scores. Following this work, a number
of methods have been developed in this direction. The authors
of [Rendle et al., 2009] proposed a Bayesian personalized
ranking optimization method for item recommendation with
matrix factorization. The work in [Steck, 2010] addressed
top-N item recommendation in the non-random missing situ-

ation by optimizing the metric of area under top-N curve. The
work in [Chen and Pan, 2013] assumed that a user’s prefer-
ence is on a set of products instead of only one, and pro-
posed to learn pairwise preferences over item-sets. The work
in [Aiolli, 2014] focused on implicit feedbacks where prefer-
ences are given in the form of binary ratings, and proposed
to optimize the ranking score within a margin maximization
paradigm. The authors of [Park et al., 2015] developed a
large-scale optimization algorithm for ranking based matrix
completion.

In addition to collaborative filtering and ranking methods,
a few sparse linear aggregation methods have recently been
developed in the literature. The work in [Ning and Karypis,
2011] proposed a novel sparse linear method (SLIM) to per-
form top-N recommendation. It learns a sparse aggregation
coefficient matrix for items by solving an `1-norm and `2-
norm regularized optimization problem, and aggregates the
user purchase/rating profiles to produce the top-N recommen-
dations. The work in [Kabbur et al., 2013] developed a fac-
tored item similarity model to tackle the situation where user-
item matrix is very sparse and the SLIM method may fail
to capture the item-item similarity. It learns the similarity
matrix as the product of two low dimensional latent factor
matrices and overcomes the sparsity problem. The work in
[Cheng et al., 2014] proposed a low rank SLIM method to
improve SLIM, which adds a nuclear norm constraint to en-
force a low rank aggregation matrix. The methods in [Chris-
takopoulou and Karypis, 2014] extend item pairwise similari-
ties to higher orders, and capture more information with high
order item correlations to better reconstruct the user-item ma-
trix. In [Sedhain et al., 2016], the authors exploit user-user
similarities instead of item-item similarities to produce rec-
ommender systems based on linear logistic regression.

Instead of only focusing on the user-item matrix, a few
works in the literature have incorporated contextual infor-
mation [Zheng et al., 2014; Shi et al., 2012a], user social
networks [Yang et al., 2012], and information from linked
open data [Ostuni et al., 2013] to improve recommendation
performance. Moreover, a number of methods have used
more easily obtained item-based information to design rec-
ommendation systems. For example, the work in [Mooney
and Roy, 2000] used a Bayesian learning algorithm to build a
content-based recommender system based on the item-based
features, without using the user-item recommendation ma-
trix. The work in [Melville et al., 2002] used item contents
to pre-process the sparse rating matrix to overcome the spar-
sity of user-item purchase matrix. These two methods though
are not designed for top-N recommendations, they verified
the usefulness of item contents for item recommendation sys-
tems. More recently, the authors of [Ning and Karypis, 2012]
proposed a collective SLIM (cSLIM) method to incorporate
item-based side information such as the reviews of the items
into the SLIM to improve top-N recommender systems. This
method assumes that user-item purchase matrix and item-
based side information matrix are reproduced by the same
sparse linear aggregation matrix, which is a very strong as-
sumption in many real applications. The work in [Zhao et
al., 2016] incorporated side informaiton into low-rank col-
laborative filtering. A few recent works [Bao et al., 2014;
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McAuley and Leskovec, 2013; Xu et al., 2014] have also
exploited user reviews for building recommender systems.
However these methods require the reviews to be directly as-
sociated with the user ratings, while our approach can exploit
reviews from auxiliary resources that have no direct relation-
ships with the target users.

3 Proposed Approach
In this section, we present a novel joint prediction model to
produce personalized top-N recommendation systems. We
assume an item purchase matrix Y = {0, 1}n×t over n prod-
uct items and t users is given, where Yij = 1 indicates
an observed purchase relationship between the i-th product
item and the j-th user while Yij = 0 indicates an unknown
relationship between them. Note that an unobserved entry
does not mean that the corresponding user is not interested
in the particular product item. It only shows that the pur-
chase record is not observed in the given user’s past purchase
history. The recommendation system will predict the unob-
served entries and recommend to each user the top-N items
with highest prediction scores from the unobserved item pool.
We also assume the existence of item-based side informa-
tion, which could be in the form of product reviews for e-
commerce applications or film plots for movie recommenda-
tions. Different from some literature works [Bao et al., 2014;
Xu et al., 2014] that exploited product reviews to build direct
relationships between the considered users and products, we
only require reviews provided as “side-information”, which
have no assumed connections to the target group of users.
For simplicity, we assume the side-information will be pre-
sented as an item-feature matrix X ∈ Rn×d, whose each row
contains features for a product item. We will use both X and
Y to jointly recover an item-user recommendation matrix Ŷ ,
which contains the predicted recommendation scores for all
product items. We then can produce the top-N most interest-
ing items for each target user based on the predicted scores.

In the rest of the paper, we will use 1 to denote a column
vector of all 1s, assuming the size of the column vector can
be inferred from the context. We use I to denote an identity
matrix; use ‖X‖F to denote the Frobenius norm of matrix
X; use X:j to denote the j-th column and Xij to denote the
(i, j)-th entry of matrix X respectively.

3.1 A Joint Prediction Model
We aim to predict the unobserved recommendation entries in
the item-user matrix by exploiting both the given item-user
matrix and the item-based side information matrix. The pro-
posed joint recommendation prediction model hence has two
components, a self-recovery component that recovers a full
item-user recommendation matrix Ŷ from Y and a linear re-
gression prediction component that predicts Ŷ from the item-
based side information matrix X . We will first describe each
component below and then present the joint model.

Self-Recovery of the Recommendation Matrix
Given the partially observed item-user recommendation ma-
trix Y , we propose to automatically recover the full recom-
mendation matrix Ŷ and fill the recommendation scores in the

unobserved entries of Y by aggregating the existing item-user
recommendations. Specifically, we assume an unobserved
recommendation score for the j-th user on the i-th item, Yij ,
can be calculated as a nonnegative linear aggregation of the
observed item recommendations for the j-th user; that is

Ŷij = wTY:j

for w ≥ 0. Such a linear recovery model can be built for any
items, Ŷ:j = WY:j . The principal behind the linear recov-
ery models is that one assumes the items chosen by the same
user have nonnegative linear correlation patterns. Assuming
the same linear aggregation pattern for each item is shared
across different users, we then have a matrix self-recovery
formulation Ŷ = WY with W ≥ 0, where W is an n × n
linear aggregation coefficient matrix that is shared across all
the t users. The matrix self-recovery aims to recover the un-
observed recommendation entries without affecting much the
observed recommendation scores. Hence, to pursue a mean-
ingful matrix self-recovery we should minimize the changes
of the recovered matrix Ŷ from the pre-given item-user rec-
ommendation matrix Y . Moreover, to avoid the trivial solu-
tion of setting W as an identity matrix, we enforce the di-
agonal of W to be zeros. This leads to the following matrix
self-recovery problem:

min
W

‖Y −WY ‖2F s.t. W ≥ 0, diag(W ) = 0. (1)

The constraints force each entry to be recovered from the
other entries for the same user and hence encourage the statis-
tical discovery of consistent item aggregation models across
all the users. Moreover, with this constrained learning prob-
lem, the observed entries of the recommendation matrix Y
may not be exactly maintained in the recovered matrix WY .
To overcome this problem, we simply combine the original
observed entries and the recovered unobserved entries to-
gether to form our final recovered item-user recommendation
matrix Ŷ ; that is, we set Ŷ = Y + (WY ) ◦ (1− Y ), where ◦
denotes the Hadamard product operator.

Discriminative Prediction from the Side Information
Given the item-based side information expressed as an item-
feature matrix X , where each feature vector describes the
properties of a given product item, we propose to learn a pre-
diction model from the item-feature matrix X to predict the
user ratings. Our intuition is that though the item-based side
information is common to all the users, different parts of the
item properties may correspond to the interests of different
users. That is, different users may have different tastes, re-
flected by the recommendation scores or purchase activities,
over the same item, which can be related to the different fea-
tures or feature subsets of the item. We hence assume the rec-
ommendation scores/purchase activities of each user over the
set of product items can depend on the properties of items,
and propose to predict the recommendation scores of each
user over a product item from the feature vector of this prod-
uct item. In particular, we can use a linear regression model,
fj(x) = xTq + b, for the j-th user to predict his recom-
mendation score y for the item described with feature vector
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x. Given the observed item-feature matrix X and the recov-
ered item-user recommendation matrix Ŷ , the linear regres-
sion model fj for the j-th user can be trained by minimizing
a least squares regression loss ||Xq + b1 − Ŷ:,j ||2 over the
model parameters q and b. For all the t users, we will then
train t linear regression models by minimizing the following
regularized least squares loss function

min
Q,b

‖XQ+ 1bT − Ŷ ‖2F + β‖Q‖2F (2)

where Q ∈ Rd×t and b ∈ Rt are the parameters for the t
linear regression models, the regularization term over Q is
used to avoid over-fitting. When Ŷ is unknown, these linear
regression models will contribute to the prediction of the un-
known entries of Ŷ . This prediction component is a novel
component, which is fundamentally different from the previ-
ous methods in the literature by predicting the recommenda-
tion scores directly from the item-based side information.

Integration Model
With the bridge equation Ŷ = Y +(WY )◦(1−Y ), finally we
can integrate the two components presented above, the rec-
ommendation matrix self-recovery component (i.e., Eq.(1))
and the linear regression prediction component (i.e., Eq.(2)),
into the following joint matrix prediction model:

min
W,Q,b

∥∥∥XQ+1bT−(Y +(WY ) ◦ (1−Y ))
∥∥∥2
F

+ β‖Q‖2F + γ‖Y −WY ‖2F (3)
s.t. W ≥ 0, diag(W ) = 0

where the trade-off parameter γ is introduced to balance the
contribution of the two components. This joint model inte-
grates information from both the partially observed item-user
recommendation/purchase matrix Y and the item-feature ma-
trix X , and is expected to further improve top-N recommen-
dation systems.

In terms of learning a linear aggregation model to recon-
struct the item-user matrix. our proposed method is related
to the SLIM method and the cSLIM method developed in
the literature. However, SLIM does not exploit side infor-
mation, while cSLIM exploits the item-based side informa-
tion with the same aggregation matrix W used for the matrix
self-recovery. Our proposed approach is significantly differ-
ent from these two methods in exploiting the item-based side
information with linear regression models and integrating the
two components via joint predictions.

3.2 Optimization Algorithm
The learning problem we formulated in Eq.(3) is a joint con-
vex minimization problem over two sets of parameters, the
linear regression model parameters {Q,b} and the linear ag-
gregation coefficient matrix W . For a fixed coefficient matrix
W , the minimization problem in Eq.(3) over Q and b be-
comes a standard linear regression problem, which has the
following closed-form solution:

b =
1

n
(Y + (WY ) ◦ (1− Y )−XQ)

>
1 (4)

Q = (X>HX+βI)−1X>H(Y +(WY ) ◦ (1−Y )) (5)

Algorithm 1 Projected Gradient Descent Algorithm

Input: X,Y , parameters β > 0, γ > 0.
Initialize W as zeros.
while not converged do

1. find an optimal step size τ∗ ∈ [0, 1] with line search
2. gradient descent: W =W − τ∗∇f(W )
3. project onto feasible set:

W = max(W, 0), diag(W ) = 0
end while

where H = I − 1
n11

> is a centering matrix. By plugging
these solutions back into the objective function of Eq.(3), we
can reformulate Eq.(3) equivalently into the following mini-
mization problem over W :

min
W

‖B(Y + (WY ) ◦ (1− Y ))‖2F+ (6)

β‖A(Y + (WY ) ◦ (1− Y ))‖2F + γ||Y −WY ||2F
s.t. W ≥ 0, diag(W ) = 0

where A = (XTHX + βI)−1XTH and B = H(XA− I).
This remains to be a linear constrained convex minimization
problem. We next develop a projected gradient descent algo-
rithm to solve it.

Let f(W ) denote the objective function of Eq.(6). The
projected gradient descent algorithm will iteratively minimize
f(W ) subjecting to the constraints. In each iteration, given
the current W , the gradient of the objective function can be
computed as:

∇f(W ) =2γ(WY − Y )TT + 2((1− Y )◦ (7)

((BTB + βATA)(Y + (WY ) ◦ (1− Y ))))Y T

With this gradient, it will first take a gradient descent step
over W and then project the new W into the feasible set de-
fined by the constraints. The overall algorithm is described in
Algorithm 1, where the step size parameter τ for the gradi-
ent descent is determined using a standard backtracking line
search:

τ∗ = argmin
0≤τ≤1

f(W − τ∇f(W ))

4 Experiment
We conducted experiments on a few real world datasets. In
this section, we will first describe the experimental setup and
then present experimental results and discussions.

4.1 Experimental Setup
We used the real world Amazon user rating and product re-
view data for five categories of products, Beauty, Office,
Sports& Outdoors, Health and Gourmet Foods, to conduct
experiments. For each category, the original dataset we down-
loaded contains the ratings of the users over the products and
the product reviews. Following [Ning and Karypis, 2011;
2012], we converted the rating values to 1s and produced
implicit feedback matrices to use. The initial implicit feed-
back matrices are extremely sparse. We selected the top ten
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thousand items based on the number of purchases for each
item, and then selected the top four thousands of users to use.
We further preprocessed the datasets by selecting users with
at least 3 purchases and filtering the items without any pur-
chases. Finally we obtained five item-user matrices.

For each item-user purchase (feedback) matrix produced,
we used the product reviews as the item-based side informa-
tion. The reviews are given in plain text and we preprocessed
each item review in the following way. We first extracted
unigram features from the review articles, and then removed
the stop words and selected the top 5000 frequent unigram
features as the item features. Finally each product item is
represented as a bag-of-word feature vector in terms of these
5000 unigram features. We used the term-frequency feature
values as the item-feature data.

Comparison Methods We compared our proposed method
with the following methods for top-N recommendation
systems: (1) Pure Singular Value Decomposition (pureSVD)
[Cremonesi et al., 2010]. This method performs singular
value decomposition directly on the item-user purchase
matrix, and reconstructs the matrix with the top subsets of
singular vectors. (2) Weighted Regularized Matrix Fac-
torization (WRMF) [Hu et al., 2008]. WRMF extracts the
latent factors for the users and items by performing weighted
regularized matrix factorization. The reconstructed item-user
matrix based on the extracted factors is then used for top-N
recommendations. (3) Sparse Linear Method (SLIM) [Ning
and Karypis, 2011]. SLIM learns an item-item aggregation
sparse coefficient matrix by minimizing a constrained
reconstruction loss. It uses the coefficient matrix to recon-
struct the item-user purchase matrix. (4) Collective SLIM
(cSLIM) [Ning and Karypis, 2012]. cSLIM incorporates
side information into the SLIM model by enforcing the
item-feature matrix to share the same aggregation matrix
with the item-user matrix. (5) Inductive Matrix Completion
(IMC) [Jain and Dhillon, 2013]. IMC is a state-of-art matrix
completion method that exploits side information. We
applied it to produce top-N recommendation systems.

Evaluation Metrics We evaluated our proposed method
and the comparison methods using 5-fold Leave-One-Out-
Cross-Validation. For each fold, the dataset is divided into
a training set and a testing set: We randomly chose one trans-
action for each user and placed it to the test set, and the rest is
used as training set. The training set is used to perform train-
ing. Then a ranked list of top N items are generated from the
unobserved items for each user according to their scores in
the reconstructed item-user matrix. The test results are pro-
duced by comparing the selected top N items for each user
to his observed test set item. If there is a match between the
test set item and the top N items, it is counted as one hit. The
default N value used in our experiments is 10. We used two
measurements to evaluate the test results: Hit Rate(HR) and
the Average Reciprocal Hit Rate (ARHR) [Deshpande and
Karypis, 2004], which are defined as

HR =
#hits

#users
, ARHR =

1

#users

∑#hits

i=1

1

pi
(8)

Table 1: Comparison results of top-N Recommendations on the five
datasets. Bold font indicates the best results.

Method Beauty
Params HR(%) ARHR(%)

PureSVD 100 - - 33.1± 0.3 29.3± 0.2
WRMF 10 50 - 36.8± 0.3 31.9± 0.2
SLIM 10 0.01 - 39.0± 0.2 35.2± 0.3
cSLIM 10 0.01 1e-6 39.4± 0.3 35.2± 0.3
IMC 200 1 - 39.3± 0.2 35.4± 0.2
Proposed 200 0.1 - 44.8± 0.4 39.7± 0.3

Method Office
Params HR(%) ARHR(%)

PureSVD 100 - - 11.8± 0.3 9.1± 0.2
WRMF 10 50 - 18.3± 0.3 11.8± 0.2
SLIM 10 0.01 - 20.1± 0.4 13.7± 0.3
cSLIM 10 0.01 1e-6 21.2± 0.4 14.2± 0.3
IMC 200 0.001 - 20.9± 0.3 14.3± 0.2
Proposed 200 0.1 - 27.6± 0.5 18.2± 0.4

Method Sports&Outdoors
Params HR(%) ARHR(%)

PureSVD 200 - - 38.6± 0.5 34.8± 0.5
WRMF 10 50 - 41.2± 0.3 36.5± 0.4
SLIM 1 0.01 - 42.4± 0.4 39.0± 0.3
cSLIM 1 0.001 1e-7 42.7± 0.4 39.1± 0.3
IMC 200 1 - 45.0± 0.4 40.6± 0.3
Proposed 200 0.05 46.9± 0.4 42.3± 0.4

Method Gourmet Foods
Params HR(%) ARHR(%)

PureSVD 100 - - 9.9± 0.3 5.6± 0.2
WRMF 10 50 - 14.0± 0.2 7.9± 0.2
SLIM 10 0.01 - 14.3± 0.1 9.1± 0.1
cSLIM 10 0.01 1e-6 15.3± 0.2 9.3± 0.1
IMC 200 0.001 - 14.3± 0.2 8.4± 0.1
Proposed 200 0.05 - 23.9± 0.1 13.7± 0.1

Method Health
Params HR(%) ARHR(%)

PureSVD 100 - - 21.6± 0.3 18.2± 0.3
WRMF 10 50 - 26.2± 0.3 21.5± 0.3
SLIM 10 0.01 - 27.0± 0.4 23.8± 0.3
cSLIM 1 0.01 1e-6 28.7± 0.4 24.0± 0.3
IMC 200 0.001 - 28.1± 0.2 24.3± 0.2
Proposed 200 0.1 - 32.2± 0.4 27.5± 0.3

The params columns contain the parameter setting for each approach. PureSVD has
one parameter f , indicating the number of latent factors. WRMF has two parameters,
the regularization parameter λ and the latent factor dimension f . SLIM has two
parameters, the `2 and `1 norm regularization parameters β and λ. Beyond β and λ,
cSLIM has an additional side information weight parameter α. IMC has two
parameters, hidden dimension f and regularization parameter λ. The proposed method
has two trade-off parameters, β and γ.

where #users is the total number of users, #hits is the num-
ber of hits in the top-N recommendations across all users, and
pi is the position of the test item in the ranked recommenda-
tion list for the i-th hit. ARHR is a weighted version of HR,
which takes the ranking position of the test item in the top-N
recommendation list into account.
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4.2 Comparison Results
We compared the five comparison methods (pureSVD,
WRMF, SLIM, cSLIM and IMC) with the proposed approach
on the five Amazon datasets using the evaluation metrics
HR and ARHR. The average results and standard deviations
for all the methods are reported in Table 1. We can see that
within the three methods that do not exploit side information,
SLIM outperforms the other two methods, pureSVD and
WRMF. By using the item-based side information, cSLIM
consistently outperforms all the three methods that do not
exploit side information across all the datasets, and IMC
outperforms the three methods on four out of the five
datasets. This suggests that side information is useful, which
is consistent with the results reported in [Ning and Karypis,
2012]. However, the improvements produced by cSLIM and
IMC over the other three methods, especially over SLIM, are
relatively small. Our proposed approach on the other hand
consistently outperforms all the five comparison methods
across all the datasets. The improvements achieved by our
approach are notably large. For example, on Office, the
proposed approach outperforms cSLIM by 6.4% and 4.0% in
terms of HR and ARHR respectively, and outperforms IMC
by 6.7% and 3.9% in terms of HR and ARHR respectively.
Theses results demonstrate that our proposed approach pro-
vides an effective mechanism for exploiting the item-based
side information to improve top-N recommendation systems.

4.3 Component-Wise Study
The proposed approach integrates two components, the self-
recovery component and the linear regression prediction com-
ponent, together to jointly perform item-user matrix recon-
struction. How does each component contribute to the final
top-N recommendation? Which component is more impor-
tant? To answer these questions, we conducted another set
of experiments to compare the proposed approach with its
two individual components. The linear prediction component
based on the side information can be obtained by simply set-
ting γ = 0 in the proposed objective function Eq.(3) to drop
the self-recovery component. The self-recovery component
on item-user purchase matrix can be obtained by dropping
the linear regression models from Eq.(3). This component
can be viewed as a variant of the SLIM method without the
regularization terms on W .

We compared the two components with the proposed joint
model on all the five datasets. The comparison results are
reported in Table 2. We can see that the performance of
the prediction component with side information outperforms
the self-recovery component with only purchase matrix with
large margins across all the datasets. By comparing the re-
sults in both Table 1 and Table 2, we can see that the linear
prediction component even consistently outperforms the most
effective comparison methods, cSLIM and IMC, across all the
datasets. This suggests that our novel prediction component
that uses linear regression models to predict the item-user rec-
ommendation scores from the item-based side information is
very effective. Nevertheless, our proposed approach that inte-
grates the two components together consistently outperforms

Table 2: Comparison of the individual components of the proposed
approach with the integrated model.

Method Beauty
HR(%) ARHR(%)

Linear Prediction 42.3± 0.3 37.8± 0.3
Self-Recovery 37.6± 0.3 34.4± 0.2
Joint Model 44.8± 0.4 39.7± 0.3

Method Office
HR(%) ARHR(%)

Linear Prediction 23.0± 0.4 15.9± 0.3
Self-Recovery 18.5± 0.4 12.6± 0.3
Joint Model 27.6± 0.5 18.2± 0.4

Method Sports&Outdoors
HR(%) ARHR(%)

Linear Prediction 46.0± 0.4 41.6± 0.3
Self-Recovery 42.6± 0.3 39.0± 0.2
Joint Model 46.9± 0.4 42.3± 0.4

Method Gourmet Foods
HR(%) ARHR(%)

Linear Prediction 20.6± 0.2 11.7± 0.2
Self-Recovery 13.3± 0.2 8.3± 0.2
Joint Model 23.9± 0.1 13.7± 0.1

Method Health
HR(%) ARHR(%)

Linear Prediction 30.4± 0.4 26.4± 0.3
Self-Recovery 27.5± 0.3 24.2± 0.2
Joint Model 32.2± 0.4 27.5± 0.3

each individual component, which suggests the two compo-
nents contain complementary information and our proposed
model can effectively capture such information to improve
top-N recommendation performance.

5 Conclusion
In this paper, we proposed a novel joint discriminative pre-
diction model for personalized top-N recommendations. The
proposed model integrates information from the standard
item-user purchase matrix with a linear aggregation matrix
and from the auxiliary item-feature matrix with linear re-
gression models to predict the unobserved recommendation
entries. We formulated this method as a joint convex opti-
mization problem and solved it using a projected gradient de-
scent algorithm. We conducted experiments on five real world
Amazon datasets, and the proposed approach outperforms a
number of top-N recommendation methods developed in the
literature. Moreover, the experimental results also demon-
strated the efficacy of the novel linear regression prediction
component of the proposed model, which suggests it is effec-
tive to exploit the item-based side information in a discrimi-
native way and encourages researchers to explore prediction
models for building top-N recommendation systems.
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