
Random Shifting for CNN: a Solution to Reduce
Information Loss in Down-Sampling Layers

Gangming Zhao1,4, Jingdong Wang5, Zhaoxiang Zhang1,2,3,4∗

1Research Center for Brain-inspired Intelligence, CASIA
2National Laboratory of Pattern Recognition, CASIA

3CAS Center for Excellence in Brain Science and Intelligence Technology
4University of Chinese Academy of Sciences

5Microsoft Research

Abstract
Down-sampling is widely adopted in deep convo-
lutional neural networks (DCNN) for reducing the
number of network parameters while preserving the
transformation invariance. However, it cannot uti-
lize information effectively because it only adopts a
fixed stride strategy, which may result in poor gen-
eralization ability and information loss. In this pa-
per, we propose a novel random strategy to alleviate
these problems by embedding random shifting in
the down-sampling layers during the training pro-
cess. Random shifting can be universally applied
to diverse DCNN models to dynamically adjust re-
ceptive fields by shifting kernel centers on feature
maps in different directions. Thus, it can gener-
ate more robust features in networks and further
enhance the transformation invariance of down-
sampling operators. In addition, random shifting
cannot only be integrated in all down-sampling lay-
ers including strided convolutional layers and pool-
ing layers, but also improve performance of DCNN
with negligible additional computational cost. We
evaluate our method in different tasks (e.g., image
classification and segmentation) with various net-
work architectures (i.e., AlexNet, FCN and DFN-
MR). Experimental results demonstrate the effec-
tiveness of our proposed method.

1 Introduction
Deep convolutional neural networks (DCNN) have been
widely studied in computer vision and pattern recognition.
They achieve impressive performances in many vision appli-
cations such as image classification, object detection [Gir-
shick et al., 2014], image segmentation [Long et al., 2015]
and edge detection [Xie and Tu, 2015]. The classic convo-
lutional neural networks consist of alternative stacked con-
volutional layers and spatial pooling layers. Pooling can be
regarded as a form of non-linear down-sampling, which re-
duces the dimensionality of intermediate representations and
provides small transformation invariance. In addition, many
researchers utilize strided convolution to substitute pooling as

∗Corresponding author. (zhaoxiang.zhang@ia.ac.cn)

1 3 8 7

2 4 5 3

7 8 9 1

3 4 5 6

1 3 8 7

2 4 5 3

7 8 9 1

3 4 5 6

1 3 8 7

2 4 5 3

7 8 9 1

3 4 5 6

1 3 8 7

2 4 5 3

7 8 9 1

3 4 5 6

1 8

7 9

4 8

8 9

9 3

5 6

Three Kinds of OutputThe Input Feature Map

Forward Propagation

Randomly Shifts to One Direction

Original Form

Figure 1: An example of random shifting pooling operator. The out-
puts are marked yellow. The dimension of the input feature map is
(4, 4); the kernel size is (2, 2) and the stride is (2, 2). After pool-
ing, the size of the feature map is reduced to (2, 2). If we add two
rows and two columns offset variables, feature map can be shifted to
upper left corner, lower right corner or keep original form. At each
iteration, random shifting utilizes different information by shifting
feature map to the three directions. It can be observed that the ran-
dom shifting pooling explores more information compared with the
traditional pooling.

another down-sampling operator. In traditional DCNN mod-
els, down-sampling operators can reduce the computational
cost and improve the performance of networks. However, we
argue that the traditional fixed strategy cannot mine informa-
tion effectively, which may lead to poor generalization ability
and information loss.

We propose random shifting to alleviate these problems
by exploring information compared with traditional down-
sampling layers during the training of DCNN. It can be uni-
versally embedded into diverse DCNN models to improve
performance by shifting kernel centers on feature maps in dif-
ferent directions. The offsets of kernel center shifting are ran-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3476



domly generated respectively for each iteration during train-
ing. DCNN with random shifting can produce more robust
convolution filters in networks and further enhance the trans-
formation invariance of down-sampling operators. We can
apply random shifting in all down-sampling layers including
strided convolutional layers and pooling layers at a low com-
putational cost.

Fig. 1 illustrates a random shifting pooling operator, where
the dimension of the input feature map is (4, 4), the kernel
size is (2, 2) and the stride is (2, 2). After pooling, the size
of the feature map is reduced to (2, 2). As we can see in
Fig. 1, the pooling operator with random shifting can utilize
the information ignored compared with the traditional pool-
ing operator. In addition, for any down-sampling layer, ran-
dom shifting can further improve the performance of DCNN
by utilizing more information.

2 Related Work
Many efforts have been made to improve the DCNN learn-
ing algorithm, such as xavier [Glorot and Bengio, 2010] and
msra [He et al., 2015] for initialization, FitNets [Romero et
al., 2014] and Net2Net [Chen et al., 2015] for knowledge
transfer and batch normalization [Ioffe and Szegedy, 2015]
for both performance and efficiency improvement. In addi-
tion, GoogLeNet [Szegedy et al., 2015], ResNet [He et al.,
2016] and Deep Fusion Network (DFN) [Zhao et al., 2016]
are shown to be able to effectively train a very deep network.
Furthermore, Swapout ensembles the advantages of dropout
[Srivastava et al., 2014], stochastic depth [Huang et al., 2016]
and residual architectures [He et al., 2016] to further improve
the performance of DCNN.

In deep convolutional neural networks, traditional down-
sampling is widely adopted to reduce the number of network
parameters and preserve transformation invariance. How-
ever, it inevitably results in information loss. This problem is
barely studied. To our best knowledge, the work by Springen-
berg et al. [Springenberg et al., 2014] is the only paper which
dealt with this problem. They found that max-pooling can
simply be replaced by a strided convolutional layer without
loss in accuracy on several image recognition benchmarks.
Different from their work [Springenberg et al., 2014], our
proposed method mainly explores how to reduce informa-
tion loss by randomly shifting kernel centers on feature maps
during training as illustrated in Fig. 1. In addition, random
shifting can be applied in all down-sampling layers including
strided convolutional layers and pooling layers. Since ran-
domness has been widely used to improve the performance in
previous research (e.g., dropout [Srivastava et al., 2014] and
drop-connect [Wan et al., 2013].), it is the first time to intro-
duce randomness into the down-sampling process. Random
shifting as another random strategy has dynamic larger recep-
tive field by randomly shifting kernel centers on feature maps
during training. The trained network with random shifting
cannot only generate more robust features, but also can fit the
distribution of the test dataset better.

Considering that random image cropping is widely used
data augmentation technique, random shifting can be treated
as a feature augmentation method. There is a main difference

that random shifting focuses on feature maps while random
cropping takes advantage of the input image.

However, cropping as a data augmentation method has a
non-negligible disadvantage. There are many overlapping
crops fed into the network for each image which leads to
repetitive computations in the forward and backward pro-
cesses. Fortunately, Fully Convolutional Networks (FCN)
[Long et al., 2015] [Chen et al., 2014] can avoid cropping
image into patches. These works have been proposed to use
fully convolutional network in image parsing. As an alterna-
tive to solve the similar problem in image recognition, some
researchers [Simonyan and Zisserman, 2014] [Oquab et al.,
2014] use fully convolution to extend the output of the net-
work form 1×1×c to n×m×c, where c, n and m denote the
number of class, the width and height of output, respectively.
denote this method as FCN-style. It performs slightly better
to use multiple crops, which is described in [Simonyan and
Zisserman, 2014]. To improve the performance of FCN-style
and avoid the repetitive computations of random cropping,
we combine FCN-style with random shifting which dynamic
adjusts the receptive field and utilizes more contextual infor-
mation.

3 Model Description

In this section, we first describe strided convolutional opera-
tors. Then we introduce the process of random shifting ap-
plied to strided convolutional layers in details.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Illustration of sampling grids in 3× 3 regular and random
shifting convolutions. (a), (b), (c), (d), (f), (g), (h), and (i): random
shifts kernel centers in different directions with augmented offsets
(blue arrows) in a random shifting convolution. (e): a traditional
convolution.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3477



Algorithm 1 Random Shifting
Input: Ck

s (x)

1: Calculate the maximum available value r of random
shifting. Practically, to keep all the kernel centers not
fall out of feature maps, we consider three factors: kernel
stride, kernel size and padding. We denote stride, kernel
size and padding in a down-sampling layer as s, k and p,
respectively. We calculate r as:

r = min(s− 1, (k − 1)/2− p).

2: Randomly select a value O as the offset from the available
domain of random shifting

{−r,−r + 1, ..., 0, ..., r − 1, r}

at each iteration. Here 0 means the kernel center is kept
just as the conventional DCNN, negative numbers mean
we shift the kernel center to left of the conventional ker-
nel center and positive ones mean a shift to the right.

3: Random shifting is defined by the function Y (f), where
f is the down-sampling layer.

Y (Ck
s ) =

∑
i′∈[(i−1)s+1+O,(i−1)s+k+O]
j′∈[(j−1)s+1+O,(j−1)s+k+O]

wm,i′,j′ ∗ xm,i′,j′

Output: Y

3.1 Down-Sampling Operators
Recently, many researches adopt strided convolutional layer
as an alternative to pooling in DCNN. We use a strided con-
volutional layer for illustrating how to apply random shifting.
Let x ∈ Rc∗h∗w be the input feature map before a strided con-
volutional layer. This strided convolutional layer with kernel
size of k× k and stride of s× s, which is defined by the func-
tion y= Ck

s (x), y ∈ Rc∗dh−k
s +1e∗dw−k

s +1e, we extend the size
of convolutional kernel w to h × w, and

ym,i,j =
∑

i′∈[(i−1)s+1,(i−1)s+k],i′≤h
j′∈[(j−1)s+1,(j−1)s+k],j′≤w

wm,i′,j′ ∗ xm,i′,j′

m ∈ [1, c], i ∈ [1,
h

s
], j ∈ [1,

w

s
].

(1)

Max pooling and strided convolution reduce the dimen-
sionality of feature maps through down-sampling the input
representation. These two operations prevent over-fitting by
providing an abstracted form of the representation. In addi-
tion, down-sampling operators reduce the computational cost
and preserve small transformation invariance to the internal
representation. We propose random shifting to enhance the
effect of transformation invariance and reduce the informa-
tion loss during down-sampling as illustrated in Fig. 1.

3.2 Random Shifting
Random shifting can be applied in any down-sampling layer
to reduce information loss. As long as the kernel stride on
feature map is greater than 1, the available domain of ran-
dom shifting is not empty. At each iteration of training,

we randomly choose one from the available domain of ran-
dom shifting as the offset. Algorithm 1 describes the pro-
cess of random shifting in details. Random shifting can fur-
ther enhance the transformation invariance of max pooling
and strided convolutional layers because the random strategy
expands the receptive field by shifting kernel centers on fea-
ture maps. Down-sampling layer with random shifting can
generate more robust features. In addition, random shifting
requires nearly no time for computation. The implementation
is straightforward. Fig. 2 shows how to effectively increase
receptive field by utilizing different information in a random
shifting convolution during forward process.

4 Experiments
To demonstrate the effectiveness of our proposed method, we
design four experiments to:

1) testify different kinds of tactics for adding random shift-
ing.

2) explore the relation between random shifting and data
augmentation methods such as image cropping and random
flipping.

3) exploit both full convolution and random shifting for
object recognition.

4) further explore better performance and verify the appli-
cability of random shifting.

4.1 Datasets
In our experiments, we use three datasets that are commonly
used for object recognition: CIFAR-10 [Krizhevsky and Hin-
ton, 2009], CIFAR-100 [Krizhevsky and Hinton, 2009] and
ImageNet [Berg et al., 2010]. And SIFT Flow [Liu et al.,
2016] is used for segmentation. All the four datasets are de-
scribed as follows and the network settings are introduced in
the corresponding experimental section.

CIFAR-10 The CIFAR-10 dataset has 50, 000 images for
training and 10, 000 for testing. All images are tiny RGB
images with a size of 32 × 32 × 3, falling into 10 categories
with 6, 000 images per class. The dataset is preprocessed by
global contrast normalization and ZCA whitening.

CIFAR-100 The CIFAR-100 dataset is similar to the
CIFAR-10, except that it has 100 classes. There are 600 im-
ages per class, where we use 500 images for training and 100
images for testing. We use the same network settings as those
in CIFAR-10 except that the last layer outputs 100 feature
maps instead of 10.

ImageNet The ImageNet 2012 dataset consists of 1.2 mil-
lion training, 50,000 validation, and 100,000 testing images,
which are categorized in 1,000 classes.

SIFT Flow SIFT Flow is a dataset of 2,688 images with
pixel labels for 33 semantic categories (bridge, mountain,
sun), as well as three geometric categories (horizontal, ver-
tical, and sky).

4.2 Evaluation Metrics and Notations
For the experiments on the evaluation of random shifting in
object recognition, we use the recognition accuracy to ver-
ify its effectiveness. For the experiments on the compar-
ison between conventional convolution network and FCN-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3478



style with/without random shifting, we consider two aspects:
recognition accuracy and the training speed.

For notations, Normal denotes normal training without any
kinds of data augmentation. Aug denotes the network is
trained with random image cropping and image flipping. If
random shifting is adopted, we will denote the specific layer
or layers where it is added to. For example, SPool1 means
random shifting is added to the pool1 layer. Crop, Flip and
SConv1, SPool1, 2, 5 means image cropping, image flipping
and random are all used in conv1, pool1, pool2 and pool5
layer. But sometimes random shifting is briefly denoted as
rand for simplicity. In addition, FCN + 128 and SPool1
means that we use the FCN-style in which the batch size is
128, the size of the output classification map is 2 × 2 and the
random strategy is applied in pool1.

4.3 How to Use Random Shifting
In this section, to provide a guidance on how to use our
method in practice, we explore two questions: 1) how to set
learning rate during training when random shifting is used. 2)
how to decide which layers random shifting should be added.

We adopt AlexNet [Krizhevsky et al., 2012] to explore the
influence of random shifting on ImageNet. AlexNet has 5
convolutional layers and 3 fully-connected layers. The first
and second convolutional layers are followed by a pooling
layer and a LRN layer respectively. Random shifting can be
applied in the first convolutional layer and all the pooling lay-
ers, considering that their strides are not 1 × 1. Because we
only aim at providing an illustrative comparison of the rela-
tive benefits of combining FCN with random shifting on this
dataset, we do not adopt the state-of-the-art networks such
as VGG [4], GoogleNet [5], which cost much more time for
training.

For CIFAR, we adopt NIN [Lin et al., 2014] for experi-
ments. The network contains 3 convolutional layers with 192
filter channels. We also use the mlpconv layer after each con-
volutional layer, and a global averaged pooling scheme with
kernel size 8 for the output prediction. ReLU neuron with 0.5
dropout rate and 3 × 3 max pooling with stride 2 are used
after the first two convolutional layers. Since there are no
strided convolutional layers in the network, we only apply
random shifting into the two pooling layers.

And to perform image cropping, for CIFAR-10, we aug-
ment the datasets by zero-padding 4 pixels on each side, re-
sulting in 40 × 40 images. For ImageNet, we follow the con-
ventional image preprocessing method which resizes all the
images to 255 × 255 and subtracts them with the mean im-
age.

Method CIFAR-10

Normal(baseline) 89.59%
SPool1 90.39%
SPool2 89.61%
SPool1, SPool2 90.05%

Table 1: Comparison of performing random shifting in different lay-
ers on CIFAR-10. Network in Network is used as baseline.

Method ImageNet

Aug(baseline) 80.19%
SConv1 80.25%
SPool1 80.23%
SPool2 80.22%
SPool5 80.63%
SConv1 and SPool1 80.20%
SPool1 and SPool2 80.60%
SPool2 and SPool5 80.80%

Table 2: Comparison of performing random shifting within different
layers on ImageNet. AlexNet is used as baseline.

Learning Rate
When random shifting is used, we experimentally find learn-
ing rate is better set to be lower than the original one for mak-
ing the model converge better. For example, on CIFAR-10,
the initial learning rate for training with/without data aug-
mentation is 0.1, we reduce it to 0.07 when random strategy
is used.

Where to Add
Table 1 shows the obtained results by adding random shifting
to different layers on CIFAR-10. If the size of the input image
is small, adding random shifting in lower layers is a good
choice. As shown in Table 1, random shifting can be added
to both pool1 and pool2, separately, but when adding random
strategy to pool2 or to pool1 and pool2 simultaneously, the
performance is not as good. The small input images limit
the size of the feature map. Therefore, changing the kernel
centers by few pixels in higher layers means shifting a lot on
the input image, which results in an unstable network.

Table 2 shows the results on ImageNet. Aug is the baseline,
where we achieve a top-5 accuracy of 80.19% on the valida-
tion set, using just the center crop in testing. It’s quite near
to 80.2% as reported in [Jia et al., 2014]. As for large input
images, Table 2 shows that when random strategy is added
to lower layers such as conv1, pool1 or pool2, no obvious
performance gain is achieved. The feature maps in low layers
usually have a large size, and changing the kernel centers by a
few pixels on these feature maps is trifling. Therefore, in this
situation, it’s better to add random shifting in higher layer or
multiple layers.

Method CIFAR-10 CIFAR-100

NormalNetwork in Network 89.59% 64.32%
Crop 90.19% 65.18%
Flip 90.62% 66.19%
SPool1 90.43% 65.20%
Crop and SPool1 90.21% 65.19%
Flip and Crop 91.74% 67.56%
Flip and SPool1 91.72% 67.76%

Table 3: The accuracy of normal, cropping, flipping and random
shifting on CIFAR-10, and CIFAR-100.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3479



Method ImageNet

NormalAlexNet 78.15%
Crop 78.30%
Flip 78.62%
Crop and SPool2, SPool5 80.08%
Flip and Crop 80.19%
Flip and SPool2, SPool5 80.76%

Table 4: The accuracy of normal, cropping, flipping and random
shifting on ImageNet.

4.4 Random Shifting vs. Data Augmentation
Random shifting can be considered as a data augmentation
method such as cropping. But unlike random image cropping
which only acts on the original image, our random strategy
acts on the feature maps in different down-sampling layers.
They are not equivalent with each other because the random
strategy goes deeper into the network. To quantitatively illus-
trate the relations between the proposed random shifting and
existing data augmentation methods such as image cropping
and image flipping, we perform comparison experiments on
two datasets with small input images (CIFAR-10 and CIFAR-
100) and a dataset with big input images (ImageNet).

The results on CIFAR-10 and CIFAR-100 are shown in Ta-
ble 3. From these results, we can draw such a conclusion: for
small input images, the improvements of performance with
random shifting or random cropping are similar. There is a
slight performance gain when using image flipping and ran-
dom shifting simultaneously compared with using image flip-
ping alone. Table 4 shows the results on ImageNet. When
the random strategy is added to the proper layers, obvious
accuracy gain can also be obtained, especially when we add
random strategy to pool2 and pool5 simultaneously.

Analysis The results presented above demonstrate that for
small input images, the proposed random shifting has similar
effect as image cropping. For small input images, image crop-
ping has already enriched the image information to the best
extent, so adding random shifting cannot achieve better per-
formance. In this situation, random shifting can be regarded
as an alternative to image cropping, which achieves similar
performance but is more efficient. When it comes to more
complex networks and larger input images, random shifting
can be combined with data augmentation methods such as
image cropping and image flipping to further improve the per-
formance.

4.5 Object Recognition
In this section, we combine the proposed random shifting
with FCN-style for image recognition on the three datasets.
Table 5 shows the detailed network settings. For each dataset,
the first two rows correspond to the FCN-style network set-
ting and the third row corresponds to the baseline setting. In
Tables 7 and 8 baseline networks are all trained with image
cropping and random flipping on the fly.

CIFAR To get a dense classification map as supervision in-
formation, we resize each input image in CIFAR-10 to 36 ×
36, and thus acquire a 2× 2 output in FCN-style network. We

BTCH-S LEARN-R TIM-I TIM-P-I

C10/100
32 0.065 24w 1
64 0.08 12w 2

128 0.1 12w 3.12

ImageNet
64 0.001 90w 1
96 0.001 60w 1.5

256 0.01 45w 2.8

Table 5: The network settings and information for three datasets
under different batch sizes. BTCH-S=Batch Size, LEARN-
R=Learning Rate, TIM-I=Time Iterations, TIM-P-R=Time Per It-
erations, C10=CIFAR-10, C100=CIFAR-100.

Datasets C10/100 ImageNet

Baseline 1.56 1.40
FCN, Flip and Rand 1.00 1.00

Table 6: The relative training time comparison on CIFAR-10,
CIFAR-100 and ImageNet. C10=CIFAR-10, C100=CIFAR-100.

perform image cropping/random shifting and random flip-
ping simultaneously during conventional training, and ran-
dom flipping with/without random shifting during FCN-style
training. By utilizing FCN-style and random shifting, the
whole training time is reduced by 36% as shown in Table 6.
Besides, the proposed method achieves a recognition rate of
91.52% and 91.72% with/without FCN, both of which out-
perform original network as shown in Table 7. Tables 6 and
7 give the results of the final accuracy on test data and the
training time, respectively. The consistent better performance
again demonstrates the advantage of our proposed method.

ImageNet To further illustrate the effectiveness of random
shifting on larger scale training datasets, we test both original
AlexNet and FCN-style AlexNet on ImageNet 2012 dataset.
It should be noted that our goal is not to directly compete with
the best performing result in the challenge, but to provide an
illustrative comparison of the relative benefits of combining
FCN with random shifting on this dataset. We follow the con-
ventional image preprocessing procedure that resizes all the
images to 259× 259 and subtracts them with the mean image.
Tables 6 and 8 give the results of the final recognition accu-
racy and the training time on ImageNet, respectively. Our
proposed method reduces the training time by 29% and im-
proves the recognition rate by 0.67% and 0.56% with/without
FCN compared with original AlexNet.

Analysis Experimental results on three datasets in Tables
7 and 8 show that random shifting can obviously improve the

Method CIFAR-10 CIFAR-100

Network in Network(baseline) 91.19% 66.74%
Flip and Rand 91.72% 67.76%
FCN+32+Flip 90.01% 65.12%
FCN+64+Flip 91.11% 66.38%
FCN+64+Flip, SPool1 91.52% 67.48%

Table 7: FCN-style with different mini-batches vs. normal training
with augmentation on CIFAR-10 and CIFAR-100 test sets.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3480



Method ImageNet

AlexNet(baseline) 80.20%
Flip and Rand 80.76%
FCN+64+Flip 78.89%
FCN+96+Flip 80.47%
FCN+96+Flip and SPool2, SPool5 80.55%
FCN+96+Flip and SConv1, SPool1,2,5 80.87%

Table 8: FCN-style with different mini-batches vs. normal training
with augmentation on ImageNet test sets.

performance no matter whether it is applied to the conven-
tional algorithm or combined with FCN-style, which suggests
that it is a useful type of data augmentation. Secondly, FCN-
style training contributes most for network training acceler-
ation. However, it cannot be ignored for datasets with large
input images, FCN-style can also preserve contextual infor-
mation which improves the performance as shown in Table 8
between baseline and FCN and Flip. In addition, for small
images such as CIFAR-10 and CIFAR-100, The boundary
problem in FCN sometimes may have a negative influence on
the performance as shown in Table 7. The boundary problem
has been well demonstrated in inference phase of [Simonyan
and Zisserman, 2014]. Finally, in FCN-style network batch
size can be reduced by 4 times theoretically because the in-
put image in FCN is equivalent to 4 crops in the conventional
network in our setting. However, the variability in each batch
is accordingly reduced, so properly increasing the batch size
can improve the recognition accuracy as shown in Tables7, 8.

4.6 Comparison with DFN and FCN Baseline
To explore better performance and verify the applicability
of random shifting, in this section, we conduct experiments
with DFN on two classification datasets including CIFAR-
10, CIFAR-100 and FCN on SIFT Flow. DFN was proposed
by Zhao, Liming et al. They present a merge-and-run fusion
scheme to combine the two networks, and find Deeply Merge-
and-Run Fused Network (DFN-MR) performs better than to
ResNet. DFN consists of two parts of down-sampling lay-
ers. Per part down-sampling layer includes two convolutional
layers with kernel size 3 × 3 stride 2 × 2 and two convo-
lutional layers with kernel size 1 × 1 and stride 2 × 2. We
add random shifting in two convolutional layers with 3 × 3
kernel size of the two down-sampling parts. Table 9 shows
the evaluation results on the two benchmark datasets, respec-

Method CIFAR-10 CIFAR-100

DFN-MR1 95.06% 75.54%
DFN-MR1+Rand 95.55% 75.87%

DFN-MR2 96.06% 80.75%
DFN-MR2+Rand 96.31% 81.00%

DFN-MR3 96.43% 81.00%
DFN-MR3+Rand 96.50% 81.13%

Table 9: The classification accuracy comparison between deep fu-
sion network and random shifting on CIFAR-10 and CIFAR-100 test
set.

Method P.ACC M.ACC M.IU F.W.IU

FCN-32s 84.3% 44.8% 34.0% 74.6%
FCN-32s, SPool1 84.4% 45.9% 34.2% 74.8%
FCN-16s 85.2% 51.7% 39.5% 76.1%
FCN-16s, SPool1 85.2% 52.4% 39.4% 76.2%

Table 10: Empirical comparison of random shifting with FCN, in
terms of different evaluation indexes on SIFT Flow with class seg-
mentation. P.ACC: Pixel Accuracy, M.ACC: Mean Accuracy, M.IU:
Mean IU, F.W.IU: Frequency Weighted IU.

tively, in terms of accuracy. For the baseline DFN models, we
list the test results from the original paper [Zhao et al., 2016].
We find that random shifting improves the performance of
all three models. But adding random shifting in DFN-MR3
model hasn’t yielded the same improvement as other models
since the baseline model has achieved excellent results.

Also, we embed random shifting into FCN for semantic
segmentation. Firstly, we add random shifting in pool1 layer
of FCN-32s and use VGG-16 to fine-tune the model which
achieves higher mean accuracy compared with original FCN-
32s. Then we use acquired model in the first step to fine-tune
FCN-16s, which shows that random shifting also improves
the mean accuracy of FCN-16s. Table 10 gives the results of
our method.

5 Conclusion

Our work focus on the information loss problem in convolu-
tional neural networks. Specifically, we develop a novel and
general technique to reduce the information loss in down-
sampling layers by applying the proposed random shifting
into the DCNN. Compared with the fixed stride strategy, we
adopt the random strategy to improve the robustness of net-
work architectures and it is the first time that randomness is
introduced into the down-sampling process. Our method ef-
fectively suppress the contextual loss and improve the perfor-
mance of the standard networks. Experimental results with
our models on three benchmark datasets including CIFAR-
10, CIFAR-100, and ImageNet demonstrate that DCNN mod-
els trained with random shifting achieve better performance
compared to the corresponding baseline models. For seman-
tic segmentation, we also achieve a solid improvement which
further illustrate the superiority of random shifting. Addition-
ally, we embed random shifting into FCN-style for training
the classifiers. It not only reduces the training time but also
improves the performance of the network. Finally, there are
many interesting extensions of the present method. For ex-
ample, more offset directions can be added to further enhance
the randomness.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant 61375036, 61511130079,
and 61602481. Zhaoxiang Zhang is the corresponding author
of this paper.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3481



References
[Berg et al., 2010] Alex Berg, Jia Deng, and L Fei-Fei. Large

scale visual recognition challenge 2010, 2010.
[Chen et al., 2014] Liang-Chieh Chen, George Papandreou,

Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Se-
mantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv preprint arXiv:1412.7062,
2014.

[Chen et al., 2015] Tianqi Chen, Ian Goodfellow, and
Jonathon Shlens. Net2net: Accelerating learning via
knowledge transfer. arXiv preprint arXiv:1511.05641,
2015.

[Girshick et al., 2014] Ross Girshick, Jeff Donahue, Trevor
Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Ben-
gio. Understanding the difficulty of training deep feed-
forward neural networks. In Aistats, volume 9, pages 249–
256, 2010.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778,
2016.

[Huang et al., 2016] Gao Huang, Yu Sun, Zhuang Liu,
Daniel Sedra, and Kilian Q Weinberger. Deep networks
with stochastic depth. In European Conference on Com-
puter Vision, pages 646–661. Springer, 2016.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings
of the 22nd ACM international conference on Multimedia,
pages 675–678. ACM, 2014.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geof-
frey Hinton. Learning multiple layers of features from tiny
images. 2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[Lin et al., 2014] Min Lin, Qiang Chen, and Shuicheng Yan.
Network in network. Computer Science, 2014.

[Liu et al., 2016] Ce Liu, Jenny Yuen, and Antonio Torralba.
Sift flow: Dense correspondence across scenes and its ap-
plications. In Dense Image Correspondences for Com-
puter Vision, pages 15–49. Springer, 2016.

[Long et al., 2015] Jonathan Long, Evan Shelhamer, and
Trevor Darrell. Fully convolutional networks for seman-
tic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3431–
3440, 2015.

[Oquab et al., 2014] Maxime Oquab, Leon Bottou, Ivan
Laptev, and Josef Sivic. Learning and transferring mid-
level image representations using convolutional neural net-
works. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 1717–1724,
2014.

[Romero et al., 2014] Adriana Romero, Nicolas Ballas,
Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550, 2014.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Springenberg et al., 2014] Jost Tobias Springenberg,
Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for simplicity: The all convolutional net.
arXiv preprint arXiv:1412.6806, 2014.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing
Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[Wan et al., 2013] Li Wan, Matthew Zeiler, Sixin Zhang,
Yann L Cun, and Rob Fergus. Regularization of neural net-
works using dropconnect. In Proceedings of the 30th In-
ternational Conference on Machine Learning (ICML-13),
pages 1058–1066, 2013.

[Xie and Tu, 2015] Saining Xie and Zhuowen Tu.
Holistically-nested edge detection. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 1395–1403, 2015.

[Zhao et al., 2016] Liming Zhao, Jingdong Wang, Xi Li,
Zhuowen Tu, and Wenjun Zeng. On the connection of
deep fusion to ensembling. 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3482


