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Abstract

As an important and challenging problem in com-
puter vision, learning based optical flow estimation
aims to discover the intrinsic correspondence struc-
ture between two adjacent video frames through
statistical learning. Therefore, a key issue to
solve in this area is how to effectively model the
multi-scale correspondence structure properties in
an adaptive end-to-end learning fashion. Motivat-
ed by this observation, we propose an end-to-end
multi-scale correspondence structure learning (M-
SCSL) approach for optical flow estimation. In
principle, the proposed MSCSL approach is capa-
ble of effectively capturing the multi-scale inter-
image-correlation correspondence structures with-
in a multi-level feature space from deep learning.
Moreover, the proposed MSCSL approach builds a
spatial Conv-GRU neural network model to adap-
tively model the intrinsic dependency relationship-
s among these multi-scale correspondence struc-
tures. Finally, the above procedures for correspon-
dence structure learning and multi-scale dependen-
cy modeling are implemented in a unified end-to-
end deep learning framework. Experimental results
on several benchmark datasets demonstrate the ef-
fectiveness of the proposed approach.

1 Introduction

Optical flow estimation seeks for perceiving the motion infor-
mation across consecutive video frames, and has a wide range
of vision applications such as human action recognition and
abnormal event detection. Despite the significant progress in
the literature, optical flow estimation is still confronted with
a number of difficulties in discriminative feature representa-
tion, correspondence structure modeling, computational flex-
ibility, etc. In this paper, we focus on how to set up an ef-
fective learning pipeline that is capable of performing multi-
scale correspondence structure modeling with discriminative
feature representation in a flexible end-to-end deep learning
framework.
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Due to the effectiveness in statistical modeling, learn-
ing based approaches emerge as an effective tool of optical
flow estimation [Dosovitskiy et al., 2015; Jason et al., 2016;
Ahmadi and Patras, 2016; Zhu et al., 2017]. Usually, these
approaches either just take image matching at a single scale
into account, or take a divide-and-conquer strategy that copes
with image matching at multiple scales layer by layer. Un-
der the circumstances of complicated situations (e.g., large
inter-image displacement or complex motion), they are often
incapable of effectively capturing the interaction or depen-
dency relationships among the multi-scale inter-image corre-
spondence structures, which play an important role in robust
optical flow estimation. Furthermore, their matching strate-
gies are often carried out in the following two aspects. 1)
Set a fixed range of correspondence at a single scale in the
learning process [Dosovitskiy et al., 2015; Jason et al., 2016;
Zhu et al., 2017]; and 2) update the matching range dynami-
cally with a coarse-to-fine scheme [Ahmadi and Patras, 2016;
Ranjan and Black, 2016]. In practice, since videos have time-
varying dynamic properties, selecting an appropriate fixed
range for matching is difficult for adapting to various com-
plicated situations. Besides, the coarse-to-fine scheme may
cause matching error propagations or accumulations from
coarse scales to fine scales. Therefore, for the sake of robust
optical flow estimation, correspondence structure modeling
ought to be performed in an adaptive multi-scale collabora-
tive way. Moreover, it is crucial to effectively capture the
cross-scale dependency information while preserving spatial
self-correlations for each individual scale in a totally data-
driven fashion.

Motivated by the above observations, we propose a nov-
el unified end-to-end optical flow estimation approach called
Multi-Scale Correspondence Structure Learning (MSC-
SL) (as shown in Fig. 1), which jointly models the depen-
dency of multi-scale correspondence structures by a Spatial
Conv-GRU neural network model based on multi-level deep
learning features. To summarize, the contributions of this
work are twofold:

e We propose a multi-scale correspondence structure
learning approach, which captures the multi-scale inter-
image-correlation correspondence structures based on
the multi-level deep learning features. As a result, the
task of optical flow estimation is accomplished by joint-
ly learning the inter-image correspondence structures
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at multiple scales within an end-to-end deep learning
framework. Such a multi-scale correspondence structure
learning approach is innovative in optical flow estima-
tion to the best of our knowledge.

e We design a Spatial Conv-GRU neural network model to
model the cross-scale dependency relationships among
the multi-scale correspondence structures while preserv-
ing spatial self-correlations for each individual scale in
a totally data-driven manner. As a result, adaptive multi-
scale matching information fusion is enabled to make
optical flow estimation adapt to various complicated sit-
uations, resulting in robust estimation results.

2  Our Approach

2.1 Problem Formulation

Let {(X;,0;)}}Y, be a set of N training samples, where
X; = (X{ € RIXWx3 XB ¢ REXWx3) and O; €
RIXWX2 represent an RGB image pair and the correspond-
ing optical flow respectively. In this paper, our objective is
to learn a model f(X;;#) parameterized by 6 to predict the
dense motion of the first image XZ-A. For the sake of expres-
sion, we ignore the left subscript ¢ in the remaining parts.

In this paper, we focus on two factors, (1) computing the
correlation maps between image representations at different
scales and adaptively setting up the correspondence structure
in a data-driven way, (2) encoding the correspondence maps
into high-level feature representation for regressing the opti-
cal flow.

2.2 Multi-Scale Correspondence Structure
Modelling

Multi-Scale Image Representations. To represent the input
image at multiple scales, we firstly employ convolution neural
networks (CNN5s) to extract the deep features at a single scale
parameterized by 6, to represent the image I, as illustrated in
Fig. 1:

Y = fonni(L; 61) )]

and then model the multi-level feature representations param-
eterized by {62} with Y as the input, as depicted in Fig. 1:

F' = fonn2(Yi02,,0=1,2,...) 2)

where F! represents the I-th level, and the size of F!*! is
larger than that of F!. From top to bottom (or coarse to
fine), the feature representations at small scales' tend to learn
the sematic components, which contribute to find the corre-
spondence of semantic parts with large displacements; Fur-
thermore, the large scale feature maps tend to learn the local
representation, which can distinguish the patches with small
displacements. In this paper, we use {F*'} and {BFB 1 to
denote the multi-scale representations of X4 and X respec-
tively.

Correspondence Structure Modelling. Given an image pair
(X4, XPB) from a video sequence, we firstly extract their

'In this paper, the small scale means small size; the large scale
means large size
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multi-level feature representations {F4:'} and {FZ!'} us-
ing Eq. 1 and Eq. 2. In order to learn the correspondence
structures between the image pair, we calculate the simi-
larity between the corresponding feature representations in-
stead. Firstly, we discuss the correlation computation pro-
posed in [Dosovitskiy et al., 2015]:

A
C’orr(Fi,j,F?(i j;d)) =

Concat 3 3 (b on P
O.c:_koyf
(p,q) € p—¢z+ﬂ [j—d,j+d}

3)

where FA- and FB] denote the feature vector at the (7, j)-

th locatlon of F4 and F? respectively, and Concat{-} de-
notes concatenatmg the elements in the set {-} to a vec-
tor, S(i,j;d) denotes the (2d + 1) x (2d + 1) neighbor-
hood of location (7, 7). The meaning of Eq. 3 is that given
a maximum displacement d, the correlations between the lo-
cation (4, 7) in FA and S(4,5;d) in FZ can be obtained by
computing the similarities between the square patch of size
(2k 4 1) x (2k + 1) centered at location (i, ) in F4 and
squajrBe patches of the same size centered at all locations of S
inF

To model the correspondence between the (7,j)-th lo-
cation in F4 and its corresponding location (i, 7) in F5,
we can (1) calculate Corr(F# 7,F (i d)) in a small nelgh-
bourhood S of the (i, j) th location in FB, or (2) calculate

Corr(F4 T Fs(l i d)) in a large enough nelghbourhood S of

the (7, 7)-th location in FZ, or even in the whole feature map
FZ. But the former can not guarantee the computation of
similarity between the (%, j)-th location and the correspond-

ing (%, j)-th location, while the latter leads to low computa-
tional efficiency, because the complexity O(d?k?) of Eq. 3
exhibits quadratic growth when the value of d increases. To
address that problem, we adopt correlation computation at

each scale of multi-scale feature representations {F“4'} and
{FB M } :

I Al 1Bl
M; ; = Corr(F; ; ’Fs(i,j;dl)) 4
where the maximum displacement d; varies from bottom to

top.

In order to give the network more flexibility in how to deal
with the correspondence maps, we add three convolutional
layers to the outputs of the C'orrelation operation, which is
the same as that proposed in [Dosovitskiy et al., 2015], to ex-
tract the high-level representations parameterized by {63 ;},
as described in Fig. 1:

Q' = fonns(Mh05,,1=1,2,...) (5)

2.3 Correspondence Maps Encoding Using Spatial
Conv-GRU

Cross-Scale Dependency Relationships Modelling. For the
sake of combining the correlation representations {Q'} and
preserving the spatial structure to estimate dense optical flow,
we consider the representations as a feature map sequence,



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Multi-Scale

B o
Image X Reprsentations
) Pool(4ytConv(2) T . T T T T T I
4 I 256 FB,I
Pool(2)+Conv(2) I - B2 |
: |
Conv (2) [ - . Intra Level
1. : | Correspondence
BB Conv (1) | »oe Py Maps Dependency Maps
YB ______ - e —— | Conv(1)x 3
Im* 153 I Q! Zis GRU o
I Conv(1)x 3
. IM2 153 | o) Q? 512 GRU 128
Siamese Correlation I Conv()x3
Network : M3 473 1 Q? 512 GRU 128
| Conv(l)x 3
Iy 153 I Q* 512 GRU o
/ Pool(4)+Conv(2) — T = = = = = L=
y | 256 paal
Pool(2)+Conv(2) [ | ey ___:_I_ .
| 256 FA2 | : I Upsamv\m%
Cony (2) | p— FA3I 1 P! 128 : :
= N !
28 & Conv (1) 1 e FMI 1,p? 128 il
vA | | | :P3 - : | Concat e Prediction /
_______ | !
Y4 1 :P‘* 128 ! g
1 [
| mmm e = = — — — — — 1 1
Image X A Copy I ga 128 1 Flow Map

Figure 1: The proposed CNN framework of Multi-Scale Correspondence Structure Learning (MSCSL). The n in Pool(n) and Conv(n) denotes
the stride of corresponding operation, and x 3 denotes three consecutive operations. The network consists of three parts: (1) Multi-Scale
Correspondence Structure Modelling, this part uses a Siamese Network to extract robust multi-level deep features for the two images, and then
constructs the correspondence structures between the feature maps at different scales, (2) Correspondence Maps Encoding, this part employs
a Spatial Conv-GRU presented in this work to encode the correspondence maps at different scales, (3) Prediction, we use the encoded feature

representation to predict the optical flow map.

and then apply Convolutional Gated-Recurrent-Unit Recur-
rent Networks(Conv-GRUs) to model the cross-scale depen-
dency relationships among the multi-scale correspondence
structures. Conv-GRUs have been used to model the temporal
dependencies between frames of the video sequence [Ballas
et al., 2015; Siam et al., 2016]. A key advantage of Conv-
GRUs is that they can not only model the dependencies a-
mong a sequence, but also preserve the spatial location of
each feature vector. One of significant differences between a
Conv-GRU and a traditional GRU is that innerproduct opera-
tions are replaced by convolution operations.

However, because of the employed scheme similar to
coarse-to-fine, the size of the (¢ + 1)-th input in the sequence
is larger than that of the ¢-th input. We cannot apply the s-
tandard Conv-GRU on our problem, so instead we propose a
Spatial Conv-GRU in which each layer’s output is upsampled
as the input of the next layer. For the input sequence {Q'},
the formulation of the Spatial Conv-GRU is:

7= o(W, « Q! + U, « H-11) (6)
R' = o(W, xQ' + U, s H 1T )
H' = tanh(W =« Q' + U (R 0 H"1T)) ®
H=(1-z)oH " +Z oH ©)
H' — W @ H (10)

where * and ® denote a convolution operation and an
element-wise multiplication respectively, and o is an activa-

tion function, e.g., sigmoid., ® denotes the transposed con-
volution. The Spatial Conv-GRU can model the transition
from coarse to fine and recover the spatial topology, out-
putting intra-level dependency maps {H'}.
Intra-Level Dependency Maps Combination. After getting
the hidden outputs {H'}, we upsample them to the same size,
written as P!:

P' = fonna(Q'04) (11)

where 0, := {W_,U,, W, U,, W, U, W'} are the param-
eters needed to be optimized. Furthermore, we concatenate
the hidden outputs {P'} with the 2nd convolutional output

Y4 of X4 to get the final encoded feature representation for
optical flow estimation, as depicted in Fig. 1:

E = Concat{Y*, P, 1=1,2,...} (12)

where C'oncat represents the concatenation operation.
Finally, the proposed framework learns a function parame-
terized by 65 to predict the optical flow:

O = fonns(E;05)
= f(XAaXB;91792,Z793,179479531 = 1727 .. )

2.4 Unified End-to-End Optimization

As the image representation, correspondence structure learn-
ing and correspondence maps encoding are highly related,
we construct a unified end-to-end framework to optimize the

(13)
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Table 1: Comparison of average endpoint errors (EPE) to the state-of-the-art. The times with right superscript * indicate that the methods
run on CPU, while the rest run on GPU. The numbers in parentheses are the results of the networks on dataset they were fine-tuned on. And
the methods with +ft represent that the models were fine-tuned on MPI Sintel training dataset (two versions together) after trained on Flying

Chairs training dataset.

Methods Sintel clean Sintel final KITTI 2012 Middlebury Flying Chairs Time (sec)
train test train test train test train test
EpicFlow 2.40 4.12 3.70 6.29 3.47 3.80 0.31 2.94 16*
DeepFlow 3.31 5.38 4.56 7.21 4.58 5.80 0.21 3.53 17*
FlowFields 1.86 3.75 3.06 5.81 3.33 3.50 8.33 0.27 22*
EPPM — 6.49 — 8.38 — 9.20 — — 0.2
DenseFlow - 4.39 - 7.42 — 2.90 — - 265*
LDOF 4.64 7.56 5.96 9.12 10.94 12.40 0.44 3.47 65
FlowNetS 4.50 7.42 5.45 8.43 8.26 — 1.09 2.71 0.08
FlowNetC 4.31 7.28 5.87 8.81 9.35 — 1.15 2.19 0.15
SPyNet 4.12 6.69 5.57 8.43 9.12 — 0.33 2.63 0.07
MSCSL/wosr 3.63 — 4.93 — 5.98 — 0.87 2.14 0.05
MSCSL/wor 3.37 — 4.72 — 5.80 — 0.92 2.11 0.06
MSCSL 3.39 — 4.70 — 5.87 — 0.90 2.08 0.06
FlowNetS-+ft (3.66) 6.97 (4.44) 7.76 7.52 9.10 0.98 3.04 0.08
FlowNetC+ft (3.78) 6.85 (5.28) 8.51 8.79 - 0.93 2.27 0.15
SPyNet+{t (3.17) 6.64 (4.32) 8.36 8.25 10.10 0.33 3.07 0.07
MSCSL/wosr+ft (3.18) 5.68 (4.21) 7.49 5.89 6.90 0.81 2.51 0.05
MSCSL/wor+t (3.07) 5.79 (4.16) 7.42 5.87 6.80 0.87 2.28 0.06
MSCSL+t (3.07) 5.78 (4.15) 7.42 5.77 7.10 0.86 2.25 0.06
.. . . .. Ground Truth FlowNetC MSCSL/wosr MSCSL/wor MSCSL
three parts jointly. The loss function used in the optimiza- >
4 »

tion framework consists of two parts, namely, a supervised
loss and an unsupervised loss (or reconstruction loss). The
former is the endpoint error (EPE), which measures the Eu-
clidean distance between the predicted flow O and the ground
truth O, while the latter is based on the brightness constancy
assumption, which measures the Euclidean distance between
the first image X4 and the warped second image X Bwarr,

L£(0,0; X4, X)) = £,(0,0) + A\,(0; X", X5)

(14)

+(0Y; —0y,)2 (15)

)= o, - oy
z%

where O" and OV denote the displacement in horizontal and
vertical respectively, and \ is the balance parameter. X Bwarr
can be calculated via bilinear sampling according to 0, as
proposed in Spatial Transform Networks[Jaderberg et al.,
2015]:

wa7p)2

L.s(0; X4, XP) = (16)

XZ e ZZX amaz(0,1 — Hz—l—O —m)
maz (0,1 —[|j + O ; — n])
a7

Because the raw data X# and X? contain noise and illu-
mination changes and are less discriminative, in some cases
the brightness constancy assumption is not satisfied; Further-
more, in highly saturated or very dark regions, the assumption
also suffers difficulties [Jason et al., 2016]. Therefore, apply-
ing Eq. 16 on the raw data directly will make the network
more difficult when training. To address that issue, we apply
the brightness constancy assumption on the 2nd convolution-

al outputs Y4 and Y2 of X* and X2 instead of X4 and
X B The training and test stages are shown in Alg. 1.
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Figure 2: Examples of optical flow estimation using FlowNetC, M-
SCSL/wosr, MSCSL/wor and MSCSL on the MPI Sintel dataset
(Clean version). Note that our proposed methods perform well in
both small displacement and large displacement.

3 Experiments

3.1 Datasets

Flying Chairs [Dosovitskiy er al., 2015] is a synthetic dataset
created by applying affine transformations to a real image
dataset and a rendered set of 3D chair models. This dataset
contains 22, 872 image pairs, and is split into 22, 232 training
and 640 test pairs.

MPI Sintel [Butler et al., 2012] is created from an animated
movie and contains many large displacements and provides
dense ground truth. It consists of two versions: the Final
version and the Clean version. The former contains motion
blurs and atmospheric effects, while the latter does not in-
clude these effects. There are 1,041 training image pairs for
each version.

KITTI 2012 [Geiger et al., 2012] is created from real world
scenes by using a camera and a 3D laser scanner. It consists
of 194 training image pairs with sparse optical flow ground
truth.

Middlebury [Baker et al., 2011] is a very small dataset, con-
taining only 8 image pairs for training. And the displacements
are typically limited to 10 pixels.
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Table 2: Comparison of FlowNet, SPyNet and our proposed methods on MPI Sintel test datasets for different velocities (s.) and displacement

(d).

Methods Sintel Final

do—10  dio—60  d60—140  S0—10  S510—40 S40+4
FlowNetS+ft 7.25 4.61 2.99 1.87 5.83 43.24
FlowNetC-+ft 7.19 4.62 3.30 2.30 6.17 40.78
SPyNet+ft 6.69 4.37 3.29 1.39 5.53 49.71
MSCSL/wosr+ft 6.27 3.77 2.96 1.96 4.97 40.98
MSCSL/wor+ft 6.08 3.57 2.79 1.76 4.81 41.74
MSCSL+t 6.06 3.58 2.81 1.73 4.83 41.87
Methods Sintel Clean

do—10  dio—60  de0—140  S0—10  S10—40 S40+
FlowNetS+ft 5.99 3.56 2.19 1.42 3.81 40.10
FlowNetC+ft 5.57 3.18 1.99 1.62 3.97 33.37
SPyNet+ft 5.50 3.12 1.71 0.83 3.34 43.44
MSCSL/wosr+ft 4.84 2.39 1.64 1.27 3.26 33.40
MSCSL/wor+ft 4.80 2.34 1.61 1.26 3.07 34.90
MSCSLA+t 4.79 2.33 1.58 1.24 3.08 34.83

3.2 Implementation Details

Network Architecture

In this part, we introduce the network architecture briefly. We
use 7 x 7 convolutional kernel for the first convolutional layer
and 5 x 5 for the second and third convolutional layers. Then
we use max-pooling and convolutional operations to obtain
multi-scale representations, as illustrated in Fig. 1. The cor-
relation layer is the same as that proposed in [Dosovitskiy ef
al., 2015], and the d; are set to 5, 5, 10, 10 from top to bottom
(or from coarse to fine). And then we employ 3 x 3 kernel
and 4 x 4 kernel for the other convolutional layers and decon-
volutional layers respectively.

Data Augmentation

To avoid overfitting and improve the generalization of net-
work, we employ the data augmentation strategy for the train-
ing by performing random online transformations, including
scaling, rotation, translation, as well as additive Gaussian
noise, contrast, multiplicative color changes to the RGB chan-
nels per image, gamma and additive brightness.

Training Details

We implement our architecture using Caffe [Jia ef al., 2014]
and use an NVIDIA TITAN X GPU to train the network. To
verify our proposed framework, we conduct three compari-
son experiments, (1) MSCSL/wosr, this experiment does not
contain both the proposed Spatial Conv-GRU and reconstruc-
tion loss, and use the refinement network proposed in [Doso-
vitskiy er al., 2015] to predict dense optical flow, (2) M-
SCSL/wor, this experiment employs the Spatial Conv-GRU,
which can be implemented by unfolding the recurrent mod-
el in the prototxt file, to encode the correspondence maps for
dense optical flow estimation and demonstrates the effective-
ness of the Spatial Conv-GRU in comparison to MSCL/wosr,
(3) MSCSL, this experiment contains all parts (Spatial Conv-
GRU and reconstruction loss) aforementioned.

In the MSCSL/wosr and MSCSL/wor, we train the net-
works on Flying Chairs training dataset using Adam opti-
mization with 8; = 0.9 and B = 0.999. To tackle the
gradients explosion, we adopt the same strategy as proposed
in [Dosovitskiy et al., 2015]. Specifically, we firstly use a
learning rate of 1e — 6 for the first 10k iterations with a batch
size of 8 pairs. After that, we increase the learning rate to
le — 4 for the following 300k iterations, and then divide it by

2 every 100k iterations. We terminate the training after 600k
iterations (about 116 hours).

In the MSCSL, we firstly train the MSCSL/wor for 500k
iterations using the training strategy above. After that, we add
the reconstruction loss with the balance parameter A = 0.005.
And then we fine-tune the network for 100k iterations with a
fixed learning of 1.25e — 5.

After training the three networks on Flying Chairs training
dataset respectively, we fine-tune the networks on the MPI
Sintel training dataset for tens of thousands of iterations with
a fixed learning rate of le — 6 until the networks converge.
Specifically, we fine-tune the networks on the Clean version
and Final version together with 1,816 for training and 266
for validation. Since the KITTI 2012 dataset and Middlebury
dataset are small and only contain sparse ground truth, we do
not conduct fine-tuning on these two datasets.

3.3 Comparison to State-of-the-Art

In this section, we compare our proposed methods to recen-
t state-of-the-art approaches, including traditional methods,
such as EpicFlow [Revaud et al., 2015], DeepFlow [Wein-
zaepfel et al., 2013], FlowFields [Bailer et al., 2015], EPP-
M [Bao et al., 2014], LDOF [Brox and Malik, 2011],
DenseFlow [Yang and Li, 2015], and deep learning based
methods, such as FlowNetS [Dosovitskiy et al., 2015],
FlowNetC [Dosovitskiy et al., 2015], SPyNet [Ranjan and
Black, 2016]. Table 1 shows the performance comparison
between our proposed methods and the state-of-the-art us-
ing average endpoint errors (EPE). We mainly focus on the
deep learning based methods, so we only compare our pro-
posed methods with the learning-based frameworks such as
FlowNet and SpyNet.

Flying Chairs. For all three comparison experiments, We
train our networks on this dataset firstly, and employ MPI S-
intel dataset to fine-tune them further. Table 1 shows that M-
SCSL outperforms the other comparison experiments, MSC-
SL/wosr and MSCSL/wor. Furthermore, our proposed meth-
ods achieve better performance comparable with the state-of-
the-art methods. After fine-tuning, in most cases most learn-
ing based methods suffer from performance decay, this is
mostly because of the disparity between Flying Chairs and
MPI Sintel dataset. Some visual estimation results on this
dataset are shown in Fig. 3.

MPI Sintel. After the training on Flying Chairs firstly, we
fine-tune the trained models on this dataset. The models
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Algorithm 1: Deep Optical Flow Estimation Via MSCSL

Input: A set of N training samples {((X#, X5), 0,)}Y,
Output: The deep model parameterized by 6: f(X*, XZ;6)

/+* The training stage *,
1 repeat
/+* For the K batches, do *

2 fork=1,...,Kdo
/* Process the k-th training

mini-batches By *
3 for n € ) do
/* Process the n—-th image pair in
Bk */
4 Extract the image representation Y7 and Y2
using Eq. 1;
5 Model the multi-scale feature representation
{FA4 and {FZ"'} using Eq. 2;
6 Compute the correlation between feature
representations {M, } using Eq. 3 and Eq. 4;
7 Extract the high-level representations {Q', } of
{M} using Eq. 5;
8 Encode the correspondence representations {Q!, }
to get {P,} using Eq. 6;
9 Concatenate {P%,} with the 2nd convolutional
outputs of X2 to obtain E,, using Eq. 12;
10 Regress the optical flow estimation 0, using
Eq. 13;
1 Minimize the objective function Eq. 14;
12 end
/* Update network parameters */
13 Update parameters
0= {01,0271, 93,1, 04,95,[ = 1, 2, e } using Adam;
14 end
15 tter < iter + 1
16 until iter < max_iter;
17 return;
/* The test stage %/

Input: Given an image pair (X“*, X5*) and the trained deep
model f(X*, X?5;0)
Output: The predicted optical flow o =
FXAXP01,000,05,,04,05,1=1,2,...)
18 return;

trained on Flying Chairs are evaluated on the training dataset.
The results shown in Table 1 demonstrate MSCSL’s and M-
SCSL/sor’s better ability to generalize than MSCSL/wosr’s
and other learning based approaches’. To further verify our
proposed methods, we compare our methods with FlowNetS,
FlownetC and SPyNet on MPI Sintel test dataset for different
velocities and distances from motion boundaries, as described
in Table 2. As shown in Table 1 and Table 2, our proposed
methods perform better than other deep learning based meth-
ods. However, in the regions with velocities larger than 40
pixels (smaller than 10 pixels), the proposed methods are less
accurate than FlowNetC (SpyNet). Some visual results are
shown in Fig. 2.

KITTI 2012 and Middlebury. These two datasets are too s-
mall, so we do not fine-tune the models on these datasets. We
evaluate the trained models on KITTI 2010 training dataset,
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Figure 3: Examples of optical flow prediction on the Flying Chairs
dataset. Comparison to MSCSL/wosr, the results of MSCSL/wor
and MSCSL are more smooth and finer.

KITTT 2012 test dataset and Middlebury training dataset re-
spectively. Table 1 shows that our proposed methods outper-
form other deep learning based approaches remarkably on the
KITTI 2012 dataset (including training set and test set). How-
ever, in most cases, on Middlebury training dataset, mainly
containing small displacements, our proposed methods do not
perform well, comparison to SPyNet.

Analysis. The results of our framework are more smooth and
fine-grained. Specifically, our framework is capable of cap-
turing the motion information of fine-grained object parts, as
well as preserving edge information. Meanwhile, our Spatial
Conv-GRU can suppress the noises in the results of model
without it. All these insights can be observed in Fig. 3 and
Fig. 2. However, our proposed frameworks are incapable of
effectively capturing the correspondence structure and unsta-
ble in regions where the texture is uniform (e.g., on Middle-
bury dataset).

Timings. In Table 1, we show the per-frame runtimes of dif-
ferent approaches. Traditional methods are often implement-
ed on a single CPU, while deep learning based methods tend
to run on GPU. Therefore, we only compare the runtimes with
FlowNetS, FlowNetC and SPyNet. The results in Table 1
demonstrate that our proposed methods (run on NVIDIA TI-
TAN X GPU) improve the accuracy with a comparable speed
against the state-of-the-art.

4 Conclusion

In this paper, we propose a novel end-to-end multi-scale cor-
respondence structure learning based on deep learning for op-
tical flow estimation. The proposed MSCSL learns the corre-
spondence structure and models the multi-scale dependency
in a unified end-to-end deep learning framework. Our mod-
el outperforms the state-of-the-art approaches based on deep
learning by a considerable computing efficiency. The exper-
imental results on several datasets demonstrate the effective-
ness of our proposed framework.
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