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Abstract

Open-ended video question answering is a chal-
lenging problem in visual information retrieval,
which automatically generates the natural language
answer from the referenced video content accord-
ing to the question. However, the existing vi-
sual question answering works only focus on the
static image, which may be ineffectively applied
to video question answering due to the lack of
modeling the temporal dynamics of video con-
tents. In this paper, we consider the problem
of open-ended video question answering from the
viewpoint of spatio-temporal attentional encoder-
decoder learning framework. We propose the hi-
erarchical spatio-temporal attention network for
learning the joint representation of the dynamic
video contents according to the given question.
We then develop the spatio-temporal attentional
encoder-decoder learning method with multi-step
reasoning process for open-ended video question
answering. We construct a large-scale video ques-
tion answering dataset. The extensive experiments
show the effectiveness of our method.

1 Introduction

Visual information retrieval (VIR) is the visual information
delivery mechanism that enables users to post their queries
and obtain the relevant information in visual media. Visual
question answering is the essential problem in VIR sites,
which automatically returns the relevant answer from the
reference visual content according to the user’s given ques-
tion. Most of the existing works consider the problem of
open-ended visual question answering as the multimodal un-
derstanding task, which learn the joint representation from
the multimodal features of the given visual content and tex-
tual question, and then generate the natural language an-
swer. However, the existing works mainly tackle the prob-
lem of static image question answering [Antol et al., 2015;
Shih et al., 2016; Lu et al., 2016; Li and Jia, 2016; Xiong
et al., 2016]. Although the existing works have achieved
promising performance in image question answering, they
may still be ineffectively applied to video question answering

Question: What is the cat doing? Answer: playing with a tablet

Figure 1: Open-ended Video Question Answering.

due to the lack of modeling the temporal dynamics of video
content.

The video contents often contain the complex interactions
of the targeted objects to the given question that evolves over
time [Yao et al., 2015]. Thus, the simple extension of exist-
ing image question answering methods based on the single
temporally collapsed video representation is likely to gener-
ate unsatisfactory answers. We illustrate a simple example
of open-ended video question answering in Figure 1. We
show that the answer generation to the question “what is the
cat doing?” requires the collective information from multiple
video frames. Recently, temporal attention mechanism has
been proposed to extract the critical frame information across
the entire video for representation learning [Yao er al., 2015].
We then employ the temporal attention mechanism to model
the collective information of video content for video ques-
tion answering. On the other hand, the sequential order of the
frames is also important for video representation [Fernando
and Gould, 2016]. Thus, leveraging the sequential complex
interactions of the targeted objects according to the question
from the collective frame-level video representation is criti-
cal for modeling the temporal dynamics of video content in
video question answering.

In this paper, we present the problem of open-ended video
question answering from the viewpoint of spatio-temporal
attentional encoder-decoder learning framework. We pro-
pose the hierarchical spatio-temporal attention networks that
jointly learn the representation of the sequentially critical
frames with the targeted objects according to the question.
We then develop the encoder-decoder learning framework
that enables the joint representation learning of the multi-
modal spatio-temporally attentional video and textual ques-
tion through multiple reasoning steps for open-ended video

3518



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

question answering, named as r-STAN. When a certain ques-
tion is issued, r-STAN can generate natural language answer
for it based on the reference video content. The main contri-
butions of this paper are as follows:

e Unlike the previous studies, we study the problem of
open-ended video question answering from the view-
point of spatio-temporal attentional encoder-decoder
learning framework. We propose the spatio-temporal at-
tention networks that learn the joint representation from
the critical video frames of the targeted objects accord-
ing to the question.

e We incorporate the multi-step reasoning process for the
proposed spatio-temporal attention networks to enable
the progressive joint representation learning of the mul-
timodal spatio-temporal attentional video and textual
question to further improve the performance of video
question answering.

e We construct a large-scale dataset for open-ended video
question answering and validate the effectiveness of our
proposed method through extensive experiments.

2 Video Question Answering via
Spatio-Temporal Attention Networks

In this section, we study the problem of open-ended video
question answering from the viewpoint of spatio-temporal at-
tentional encoder-decoder learning framework. We first de-
velop the spatio-temporal attentional encoder networks with
multi-step reasoning process to learn the joint representation
of multimodal saptio-temporal attentional video and textual
question progressively. We then devise the recurrent decoder
network to generate the natural language answer for open-
ended video question answering.

Before presenting the learning framework, we first intro-
duce some basic notions and terminologies. We denote the
question by q € @, the video by v € V and the answer by
a € A, where (O, V and A are the sets of questions, videos
and answers, respectively. Since the video is composed of se-
quential frames, the frame-level representation of video v is
given by v = (vq,va,...,vy) of length N, where vy is the
second frame. We then denote the word-level representation
of natural language answer by a by a = (aj, as,...,ay ) of
length M, where a,, is the Mth word token. Since both the
video and answer are sequential data with variant length, it is
natural to choose the variant recurrent neural network called
gated recurrent unit (GRU) [Chung et al., 2014] to learn the
feature representation by:

r; = 6(Wgrxi + Wyhi y +b,), M
Zy = 5(szxt + Wy h, + bZ)v (2)
hy = tanh(Wunx; + Win(r; @ hy) +by),  (3)
hy = zOh+(1-2)0h_, )

where x; and h; are the input and output vectors, z; and r;
are the update and reset gate vectors, Ws and bs are the pa-
rameter matrices and bias vector. We note that gate vector z;
in Equation (2) is the trade-off parameter for updating hidden
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state h; from the previous state h;_; and the currently esti-

mated one h;. Specifically, we learn the sequential feature
representation of both video and answer by directional GRU,
which consists of a forward GRU and a backward GRU. The
backward GRU has the same network structure with the for-
ward one while its input sequence is reversed. We denote the

hidden state of the forward GRU for the video at time ¢ by h{,
and the hidden state of the backward GRU by hf. Thus, the
tth hidden state of video v from the bidirectional GRU layer

is denoted by h; = [h/, h?], and the hidden states of video v
is given by h = (hy, hsy, ... hy).

Using the notations above, the problem of open-ended
video question answering is formulated as follows. Given the
set of videos V, questions ) and answers A, our goal is to
learn the encoder-decoder network model g(f(v,q)) where
the encoder network f(v,q) that learns the joint represen-
tation of the video and question, and the decoder network
a = g(f(v,q)) generates the answer a for open-ended video
question answering. We present the details of the spatio-
temporal attention network learning framework in Figure 2.

2.1 Hierarchical Spatio-Temporal Attentional
Encoder Network Learning

In this section, we propose the encoder neural network f(-) to
learn the joint representation of video and question with hier-
archical spatio-temporal attention and multiple reasoning up-
dates for the problem of open-ended video question answer-
ing.

Inspired by attention mechanism [Xu et al., 2015], we pro-
pose the hierarchical spatio-temporal attention networks to
learn the joint representation from the relevant frames of the
targeted regions according to the question. Since the global
representation of the frame may fail to capture all necessary
information for answering the question [Li and Jia, 2016],
it is natural to choose the spatial attention model to auto-
matically localize the targeted regions in each frame accord-
ing to the question. Following the existing spatial attention
model [Li and Jia, 2016], we employ the object generator
to produce a set of candidate regions that are most likely
to be an object. The frame representation is thus given by
the set of the candidate region features and the whole frame
region feature, denoted by ' = {Fy,F,,...,Fx}. The
F; = {fj1,£2,...,fk} is the feature set of the j-th frame,
where fj1,fjo,. .., f;(x_1) are the candidate region features
and fx is the whole frame region feature. Given question q
and the region feature of j-th frame representation f;; € F},
(s)

the spatial attention score s, is given by

sﬁ) = w(s)t(mh(quq + Wy f;; + by), 3)
where W, and Wy, are parameter matrices and by is bias
vector. For each region f;;, the activations in spatial dimen-
—
>, exp(ssy)’
which is the normalization of the spatial attention score.
The spatially attended frame representation is then given by

Vit =33, agityi.

sion by the softmax function is given by «;; =
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Figure 2: The Overview of Open-Ended Video Question Answering via Hierarchical Spatial-Temporal Attentional Encoder-Decoder Learn-
ing Framework (r-STAN in case of r = 2). The hierarchical spatio-temporal attentional encoder networks learn the joint representation of
multimodal spatio-temporal attentional video and textual question with multiple reasoning steps, and the recurrent decoder network generates

the natural language answer for open-ended video question answering.

On the other hand, a number of frames in the video are
redundant and irrelevant to the question. Thus, it is impor-
tant to localize the relevant video frames with the targeted
information according to the question. We thus introduce the
temporal attention model to estimate the relevance of video
frames according to the question. Given the spatially attended
video frames v(®) = (vgs),vgs), .. ,VE\?)), we learn their
latent state representation from bidirectional GRU layer by
h®) = (hgs),hgs), . .,hg{ji)). Then, their relevance scores
based on temporal attention mechanism [Xu er al., 2015] is
given by

sg»t) = W(t)tanh(thq + Whthg's) +by), (6)

where W, and Wy, are parameter matrices and b, is bias

vector. For the latent state of each frame h(.s), its activa-
tion in temporal dimension by the softmax function is de-
_ ewlsl)
noted by ﬂj = W
the temporal attention scores (i.e., 5; € (0,1)). Inspired
by the attentional gate [Kumar and Irsoy, 2015], we em-
ploy the attentional GRU networks to learn the order-sensitive
representation of the spatio-temporally attended, denoted as
aGRU network. The inputs to the aGRU network are the la-
tent state of spatially attended frames by bidirectional GRU

layer h§5)7 hés), o hg\sf), and the estimated temporal atten-

., Bn. The current estimated state fl§t)
is obtained based on the input h§s)_ The aGRU network then

updates its hidden state h;t) based on the mixture of current

estimated state h'") and its previous state h(tll. Unlike the
update rule of GI&U in Equation (4), the adRU updates the
current state h§-t), given by

, which is the normalization of

tion scores (1, (2, - -

W =00 +(1-5)enl",,

@)
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where the update gate vector is set to the normalized temporal
attention score (i.e., z; = ;). Therefore, spatio-temporal
attentional representation of video v according to question g
is given by hef (v) = hg\t,), where hg\t,) is the last hidden state
of the aGRU networks.

We then incorporate the multi-step reasoning pro-
cess [Sukhbaatar er al., 2015] for the proposed spatio-
temporal attention networks to further improve the perfor-
mance of open-ended video question answering. Given
spatio-temporal network h®P(-), video v and question g, the
spatio-temporal attention network learning with multi-step
reasoning process is given by:

yr Yr—1 +
Yo q,

where is recursively updated. The joint representation of
spatio-temporal attentional video is returned after the R-th
update, given by f(q,v) = ygr. The learning process of
reasoning spatio-temporal attention networks is illustrated in
Figure 2.

We now present the decoder neural network ¢(-) based on
the joint representation of spatio-temporal attentional video
for answer prediction. Unlike the encoder neural network
which simply encodes the spatio-temporal attentional video
representation according to the question, we decoder neural
network is learned to generate the answer. At each time j, the
decoder computes the probability of generating k-th word by

exp(w,(;!)ypb + w,(c(,)l) hé.o))

h;I:-—l (V)’

plajr = 1ai,...,a; 1,yr) = = N
S exp(wy) e + wiy b))
where w,(cz) and w,(c(;f are parameter vectors. The h§-0) is the

j-th latent state of the decoder neural network. We note that
instead of the decoder layer to generate free-form answers
for open-ended question answering, it is also possible to be
extended for multiple-choice question answering.
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Table 1: Summary of Dataset

. Question Types
Data Splitting Object | Number | Color | Location
All 25,767 | 9,933 14,916 3,530
Train 19,205 | 17,355 10,813 2,519
Valid 2,574 976 1,390 336
Test 3,988 1,602 2,713 675

3 Experiments

3.1 Data Preparation

We construct the video question-answering datset from the
annotated video clip data [Li ef al., 2016] with natural lan-
guage descriptions, which consists of 201,068 GIFs and
287,933 descriptions. Following the state-of-the-art question
generation method [Heilman and Smith, 20101, we generate
the question-answer pairs from the movie descriptions. Fol-
lowing the existing question answering approaches [Antol et
al., 2015; Shih et al., 2016; Yang et al., 2016; Zhao et al.,
2015; 20161, we generate four types of questions, which are
related to the object, number, color and location queries for
the video. We split the generated dataset into three parts: the
training, the validation and the testing sets. The four types of
video question-answering pairs used for the experiments are
summarized in Table 1.

We then preprocess the video question-answering dataset
as follows. We first sample 25 frames from each video
and then resize each frame to 224x224. We extract the
visual representation of each frame by the pretrained VG-
GNet [Simonyan and Zisserman, 2014], and take the 4,096-
dimensional feature vector for each frame. We choose 3 can-
didate regions for each frame. We employ the pretrained
word2vec model to extract the semantic representation of
questions and answers. Specifically, the size of vocabulary set
is 6,500 and the dimension of word vector is set to 256. Note
that we add a token <eos> to mark the end of the answer
phrase, and take the token <Unk> for the out-of-vocabulary
word.

3.2 Evaluation Criteria

We evaluate the performance of our proposed r-STAN method
based on two widely-used evaluation criteria for visual ques-
tion answering, i.e., Accuracy [Antol er al, 2015] and
WUPS [Malinowski and Fritz, 2014]. Given the testing ques-
tion q € ) with its ground-truth answer a, we denote the
predicted answers from our r-STAN method by o. We now
introduce the evaluation criteria below.

e Accuracy. The Accuracy is the normalized criteria of
accessing the quality of the generated answer based on
the testing question set Q;, given by

M
Accuracy = ﬁ Z (1- H 1la; # o)),
" qeq. i=1

where Accuracy = 1 (best) means that the generated
answer and the ground-truth ones are exactly the same,
while Accuracy = 0 means the opposite.
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o WUPS. The WUPS is the soft measure based on the
WUP [Wu and Palmer, 1994] score to evaluate the
quality of the generated answer. The WUP mea-
sures word similarity based on WordNet [Fellbaum,
1998]. Thus, given the set of generated answer words

Oq4 = {01,029, ...,0n} and the ground-truth ones A, =
{a1,a9,...,ap} for testing question q, the WUPS
score with the threshold +y is given by

1 .
WUPS = o Z min{ H orjneaoxq WUP,(ai,05),

qeQ: a,;GAq
H max WUP,(0;,a;)},
0,€0,4 43€ 4

where the WU P, (-) score is given by

WUP(ai,oj)
0.1- WUP((li,Oj)

WUP(ai,05) > v

WUP,(ai,0;) = { WUP(a;,05) <7

Following the experimental setting in [Malinowski and
Fritz, 2014], we choose two WUPS evaluation crite-
ria with the parameter v to be 0 and 0.9, denoted by
WUPS@0.0 and WUPS@0.9, respectively. Because
of space limitation, we present the experimental results
with M = 1, and illustrate the results with high value of
M in the extended version of this paper.

3.3 Performance Comparisons

We extend the existing visual question answering methods
as the baseline algorithms for the problem of video question
answering.

e VQA+ method is the extension of VQA algorithm [An-
tol et al., 2015], where we add the mean-pooling
layer that obtains the joint video representation from
VGGNet-based frame features, and then computes the
joint representation of question embedding and video
representation by their element-wise multiplication for
generating open-ended answers.

e SAN+ method is the incremental algorithm based on
stacked attention networks [Yang et al., 2016], where
we add the GRU network to fuse the sequential repre-
sentation of spatially attended frames for video question
answering.

e UTC+ method is based on the temporal-context
encoder-decoder framework [Zhu et al., 2015], where
we add the GRU-based decoder network for video ques-
tion answering.

e QRU+ method is modified from the QRU algorithm [Li
and Jia, 2016], where we add the bidirectional GRU
network for obtaining video representation and perform
multiple question representation updates for video ques-
tion answering.

Among them, methods VQA+, SAN+ and QRU+ are ex-
tended from the image-based question answering methods,
while UTC+ is modified from fill-in-the-blank video ques-
tion answering method. Unlike the previous visual question
answering works, our r-STAN method learns the hierarchical
spatio-temporal attended video representation with multiple
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Table 2: Experimental results on Accuracy, WUPS@0.0 and
WUPS @0.9 with all types of visual questions.

Method | Accuracy | WUPS@0.0 | WUPS@0.9
VQA+ 0.37 0.6851 0.4993
SAN+ 0.4101 0.7159 0.5039
UTC+ 0.42 0.7107 0.5066
QRU+ 0.4747 0.7574 0.5692

r-STAN ) 0.478 0.7601 0.5753
r-STAN 1) 0.48 0.763 0.5807
r-STAN() | 0.4893 0.7728 0.5788

reasoning process for the problem. To exploit the effect of
reasoning process, we denote the our r-STAN method with r
reasoning steps by r-STAN(,.) and the one without reasoning
process by r-STAN(gy. The input words of our method are
initialized by pre-trained word embeddings [Mikolov er al.,
2013] with size of 256, and weights of GRUs are randomly
by a Gaussian distribution with zero mean.

Table 2 shows the overall experimental results of the meth-
ods on all types of questions based on three evaluation cri-
teria. Tables 3, 4 and 5 illustrate the evaluation results on
Accuracy, WUPS @0.0 and WUPS @0.9 with different types
of questions, respectively. The hyperparamters and parame-
ters which achieve the best performance on the validation set
are chosen to conduct the testing evaluation. We report the
average value of all the methods on three evaluation criteria.
The experiments reveal a number of interesting points:

e The methods based on GRU network learning, SAN+,
UTC+ and QRU+ outperform the mean-pooling based
method VQA+, which suggests that the sequential
frame-level representation is critical for the problem.

e The reasoning based method QRU+ achieves better per-
formance than other baselines. This suggests that the
reasoning framework that enables the multiple updates
over the joint representation of video and question can
also improve the performance of video question answer-
ing.

e In all the cases, our r-STAN method achieves the best
performance. This fact shows that the reasoning spatio-
temporal attention network learning framework that ex-
ploits both the joint spatio-temporally attended video
representation, and multiple reasoning updates can fur-
ther improve the performance of video question answer-
ing.

In our approach, there are three essential parameters, which
are the dimension of hidden state in bi-GRU networks, the di-
mension of hidden state in bi-aGRU network and the size of
fully connected units for decoder networks. We investigate
the effect of these parameters on our method by varying both
the dimension of hidden state in bi-GRU and bi-aGRU net-
works from 128 to 1,024, and the number of hidden units in
fully connected layer from 300 to 1,200. We first illustrate the
performance of our method by varying the dimension of hid-
den state in bi-aGRU network, the dimension of hidden state
in bi-GRU network and the number of hidden untis on Accu-
racy in Figures 3(a), 3(b) and 3(c). We then vary these param-

3522

Table 3: Experimental results on Accuracy with different types of
visual questions.

Accuracy

Method Object | Number | Color | Location

VQA+ 0.3333 | 0.7901 | 0.2515 | 0.1764

SAN+ 0.3108 | 0.7243 | 0.3841 0.366

UTC+ 0.3313 | 0.7284 | 0.3741 | 0.3928

QRU+ 0.3795 | 0.7704 | 0.4791 | 0.3273
r-STAN(gy | 0.3749 | 0.7715 | 0.4928 | 0.3541
r-STAN(yy | 0.3807 | 0.7674 | 0.4956 | 0.3422
-STAN(,) | 0.3815 | 0.7899 | 0.5064 0.372

Table 4: Experimental results on WUPS @0.0 with different types of
visual questions.

WUPS@0.0
Method Object | Number | Color | Location
VQA+ 0.4962 | 0.9746 | 0.8867 0.262
SAN+ 0.5997 | 0.9456 | 0.8029 | 0.5798
UTC+ 0.6146 | 0.9459 | 0.7674 0.53
QRU+ 0.6051 | 0.9606 | 0.9169 | 0.6741
r-STAN(qy | 0.6085 | 0.9592 | 0.9175 | 0.6918
-STAN(;y | 0.616 | 0.9632 | 0.9195 | 0.6604
-STAN(o) | 0.6387 | 0.9645 | 0.9188 | 0.6394

Table 5: Experimental results on WUPS @0.9 with different types of
visual questions.

WUPS@0.9

Method Object | Number | Color | Location
VQA+ 0.3764 | 0.8385 | 0.5585 | 0.2099
SAN+ 0.3745 | 0.8436 | 0.5216 | 0.4353
UTC+ 0.3969 | 0.8423 | 0.4898 | 0.4418
QRU+ 0.4301 | 0.8866 | 0.6371 | 0.4325
r-STAN(q) | 0.4266 | 0.8874 | 0.6611 | 0.4534
r-STAN(yy | 0.4394 | 0.8866 | 0.6616 | 0.4371
-STAN(y) | 0.4397 | 0.8987 | 0.6438 | 0.4491

eters to show their effect on our method using WPUS@0.9 in
Figures 4(a), 4(b) and 4(c). Our method achieves the best
performance when the dimension of hidden state of bi-GRU
networks is set to 512, the dimension of hidden state in bi-
aGRU networks is set to 512 and the number of hidden units
in fully connected layer is set to 500.

4 Related Work

In this section, we briefly review some related work on image-
based question answering and video-related question answer-
ing.

The problem of image-based question answering has at-
tracted considerable attention recently [Antol et al., 2015;
Shih et al., 2016; Lu et al., 2016; Li and Jia, 2016; Xiong
et al., 2016]. Given an image and a natural language question
about the image, the task of image question answering [Antol
et al., 2015] is to provide an accurate natural language an-
swer. With the advancement of visual attention [Xu et al.,
2015], Shih et. al. [Shih et al., 2016] introduce the spatial
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attention that selects the relevant image regions to the text-
based questions. Yang et. al. [Yang ef al., 2016] develop the
stacked attention networks and Lu et. al. [Lu et al., 2016]
propose the co-attention mechanism with joint image and
question attention for image question answering. To exploit
complex visual question answering tasks, QRU method [Li
and Jia, 2016] employs the reasoning process with attention
mechanism that iteratively selects the relevant image regions
for question representation update. Xiong et. al. [Xiong et
al., 2016] introduce the dynamic memory networks for both
image and textual question answering. Kim et. al. [Kim et
al., 2016] present multimodal residual networks for image
question-answering, which uses element-wise multiplication
for the joint residual mappings exploiting the residual learn-
ing of the attentional models. Malinowski et. al. [Malinowski
and Fritz, 2014] propose a multi-world approach for open-
ended image question answering. A survey of existing image
question answering works can be found in [Wu ez al., 2016].

As a natural extension of image-based question answer-
ing, video-related question answering is introduced as a
more challenging task, which has drawn a significant atten-
tion [Tapaswi et al., 2016; Zhu et al., 2015; Mazaheri et
al., 2016; Tu et al., 2014; Yu et al., 2015]. Tapaswi et.
al. [Tapaswi et al., 2016] introduce the multi-modal movie-
related question answering with high-level abstract concepts,
which are extracted from both visual and external informa-
tion. On the other hand, the proposed models [Zhu et al.,
2015; Mazaheri et al., 2016; Tu et al., 2014] for fill-in-
the-blank [Yu er al., 2015] video-related question answering
task are mainly based on time-invariant visual information,
which are extended from the existing image-based question
answering methods. Unlike the previous studies, we for-
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mulate the problem of open-ended video question answering
from the viewpoint of hierarchical spatio-temporal attentional
encoder-decoder network learning.

5 Conclusion

In this paper, we present the problem of open-ended video
question answering from the viewpoint of spatio-temporal at-
tentional encoder-decoder learning framework. We first pro-
pose the hierarchical spatio-temporal attention networks to
learn the video representation from the critical frames of the
targeted objects according to the question. We then incorpo-
rate the multi-step reasoning process to our proposed atten-
tion networks that enables the progressive joint representation
learning of multimodal spatio-temporal attentional video and
textual question for video question answering. We construct
a large-scale video question answering dataset and evaluate
the effectiveness of our proposed method through extensive
experiments.
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