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Abstract
Link prediction is a challenging problem for com-
plex network analysis, arising in many disciplines
such as social networks and telecommunication
networks. Currently, many existing approaches es-
timate the proximity of the link endpoints from the
local neighborhood around them for link predic-
tion, which suffer from the localized view of net-
work connections. In this paper, we consider the
problem of link prediction from the viewpoint of
learning path-based proximity ranking metric em-
bedding. We propose a novel proximity ranking
metric attention network learning framework by
jointly exploiting both node-level and path-level at-
tention proximity of the endpoints to their between-
ness paths for learning the discriminative feature
representation for link prediction. We then de-
velop the path-based dual-level attentional learn-
ing method with multi-step reasoning process for
proximity ranking metric embedding. The exten-
sive experiments on two large-scale datasets show
that our method achieves better performance than
other state-of-the-art solutions to the problem.

1 Introduction
Link prediction is an important problem for complex network
analysis [Liben-Nowell and Kleinberg, 2007], which has a
large number of applications in many disciplines like network
ranking [Zhao et al., 2015] and network clustering [Zhao et
al., 2016a]. The essential problem of link prediction is to
infer the missed or new relationships of the network based
on the currently observed connections, which has attracted
considerable attention recently [Katz, 1953; Cao et al., 2014].

Many previous approaches for the problem of link pre-
diction are neighborhood-based methods [Menon and Elkan,
2011; Wang et al., 2007; 2016], which learn the proximity
model for the link endpoints from the local neighborhood
around them, and then infer their closeness for link predic-
tion. Although the methods arising from these approaches
could be simple and efficient, they still suffer from the lo-
calized view of network connection [Martı́nez et al., 2016].
To tackle the localized view problem, the path-based ap-
proaches [Katz, 1953; Cao et al., 2014; Zhang et al., 2014]

were proposed for learning the proximity of link endpoints
based on their betweenness paths, and it can be shown that
such approaches are more effective [Martı́nez et al., 2016].
Although the path-based prediction methods have achieved
promising performance, most of them still suffer from the in-
sufficiency of discriminative path feature representation [Sun
et al., 2013].

Currently, the existing path-based link prediction meth-
ods [Cao et al., 2014; Zhang et al., 2014; Liu et al.,
2014] learn the semantic path representation based on the
hand-crafted meta feature (e.g., bag-of-words). However,
the rich content information in networking nodes is not
fully utilized on the feature representation in existing meth-
ods, which is critical for learning discriminative path rep-
resentation [Miller et al., 2009]. Recently, various embed-
ding methods are proposed to learn the semantic of similar
words [Mikolov et al., 2013] and encode the content infor-
mation into low-dimensional continuous embedding space.
Since the node contents are always the sequential data with
variant length, it is natural to employ the deep recurrent neu-
ral networks [Hochreiter and Schmidhuber, 1997] to learn the
semantic representation of the nodes. On the other hand,
learning the effective joint representation of betweenness
paths is also a challenging issue for path-based link predic-
tion. The shorter the path, the higher chance that the path
influences the link formation between its endpoints [Katz,
1953]. Furthermore, the importance of the betweenness paths
for link formation varies according to the specific endpoints,
and a number of betweenness paths are redundant and irrele-
vant for link formation [Sun et al., 2013]. Thus, learning the
discriminative joint representation of the betweenness paths
is critical for path-based link prediction.

In this paper, we consider the problem of link prediction
from the viewpoint of learning path-based proximity rank-
ing metric embedding. We then develop the ranking metric
dual-level attention networks to learn the discriminative joint
representation of the betweeness paths of the endpoints for
link prediction. The main contributions of this paper are il-
lustrated as follows:

• Unlike the previous studies, we study the problem of
link prediction from the viewpoint of path-based prox-
imity ranking. We propose the dual attention networks
to learn the discriminative joint representation from the
betweenness paths of the endpoints for learning proxim-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3525



ity ranking metric embedding.

• We incorporate the multi-step reasoning framework for
our proposed attention networks to enable the progres-
sive joint representation learning from the endpoint con-
tent information and their betweenness paths to further
improve the performance of link prediction.

• We conduct extensive experiments on two large-scale
datasets to show that our method achieves better perfor-
mance than other state-of-the-art solutions to the prob-
lem.

The rest of this paper is organized as follows. In Section 2,
we introduce the problem of link prediction from the view-
point of path-based proximity ranking metric learning frame-
work and propose the path-based ranking metric dual-level
attention networks to learn the discriminative joint represen-
tation of the endpoints for link prediction. A variety of exper-
imental results are presented in Section 3. We provide a brief
review of the related work about link prediction in Section 4.
Finally, we provide some concluding remarks in Section 5.

2 Link Prediction via Ranking Metric
Dual-Level Attention Network Learning

In this section, we first present the problem of link predic-
tion from the viewpoint of learning proximity ranking metric
embedding, and then introduce the path-based ranking metric
dual-level attention network learning framework.

2.1 The Problem
Before presenting the problem, we first introduce some ba-
sic notions and terminologies. Since the contents of nodes
in networking sites are always the sequential data with vari-
ant length, we then encode them into the fixed length fea-
ture representation using recurrent neural networks. Given a
set of nodes X = {x1,x2, . . . ,xn} of size n, we take the
last hidden layer of recurrent neural networks as their se-
mantic embeddings by V = {v1,v2, . . . ,vn} where vi is
the embedding vector for the latent representation of the i-th
node. We then denote the link set of nodes in networks by
E = {e1, e2, . . . , em} of size m, where ei = (xj ,xk) is the
i-th edge.

We denote the set of betweenness paths for the s-th node
and the t-th node with length l by P (l)

(s,t), which is derived
from set E. Given the path length threshold L, we con-
sider that the path set P(s,t) is formed by P(s,t) = P

(2)
(s,t) ∪

P
(3)
(s,t) . . .∪P

(L−1)
(s,t) , which is the set union of P (l)

(s,t). We denote
the collection of path sets by P . We then consider that the
predictive function fw(P(s,t)) = wTh(P(s,t)) quantifies the
likelihood of the link formation between the s-th node and the
t-node based on path set P(s,t). The w is the parameter vec-
tor and h(P(s,t)) is the embedding model for path set P(s,t).
Inspired by negative edge sampling [Tang et al., ], we intro-
duce the relative ranking metric to learn the discriminative
model for link prediction, which is in the form of triplet con-
straints. Given edge e = (xi,xj), we randomly sample an-
other node xk ∈ X to obtain the negative link e′ = (xi,xk)

(i.e., e′ /∈ E). We then denote the triplet constraint by the
order tuple (i, j, k), meaning that “the likelihood of link for-
mation between the pair of the i-th node and the j-th node
is higher than that of the pair of the i-th node and the k-th
node”. Let T = {(i, j, k)} be the set of triplet constraints
derived from the negative sampling process based on set E in
networks. More formally, we aim to learn the ranking metric
function that for any (i, j, k) ∈ T , the inequality holds:

fw(P(i,j)) > fw(P(i,k))⇐⇒ wTh(P(i,j)) > wTh(P(i,k)).

Using the notations above, we define the problem of link
prediction from the viewpoint of path-based proximity rank-
ing metric learning as follows. Given the network graph
G = (X,E) with node set X and edge set E, our goal is
to learn the ranking metric predictive function fw(P(s,t)) for
link prediction. The endpoints e = (xs,xt) (e /∈ E) with the
highest value according to fw(P(s,t)) is then returned.

2.2 Path-based Proximity Ranking Metric
Embedding with Recurrent Neural Networks

In this section, we propose the hierarchical path-based prox-
imity ranking metric learning method for link prediction in
networking sites in Figures 1(a) and 1(b). We first present the
dual-level attention learning method and then introduce the
multi-step reasoning framework for path-based ranking met-
ric embedding.

We employ the efficient path enumeration algorithm [Wang
et al., 2007] to collect the set P(s,t) of betweenness paths for
the link endpoints xs and xt in network. We then choose
the proper embedding method for path representation. Given
a path of nodes pi = (xi1,xi2, . . . ,xik) (pi ∈ P(s,t)), we
learn the node-level embedding of xj by pre-trained LSTM
model [Hochreiter and Schmidhuber, 1997] as vij and then
use the sequence (vi1,vi2, . . . ,vik) as the input of the bidi-
rectional LSTM model for path representation. The bidirec-
tional LSTM model consists of a forward LSTM model and a
backward LSTM model. The backward LSTM model has the
same network structure with the forward one while its input
sequence is reversed. We denote the hidden state of the j-th
node in path pi as hfij by forward LSTM model, and its hid-
den state by backward LSTM model as hbij . Thus, the hidden
state of the j-th node from the bidirectional LSTM layer is
denoted by hij = [hfij ,h

b
ij ], and then the representation of

path pi is given by pi = (hi1,hi2, . . . ,hik).
Inspired by attention mechanism [Xu et al., 2015], we pro-

pose the dual-level attention networks that jointly explore the
discriminative nodes and critical paths according to the paired
nodes xs and xt for link prediction. The joint representa-
tion of the paired nodes xs and xt is given by the element-
wise product of their embeddings from the pre-trained LSTM
model as z

(0)
(s,t) = vs ⊗ vt. We denote the vector z

(0)
(s,t)

as the joint representation for paired nodes and ⊗ is the
element-wise product operator. We first introduce the node-
level attention network to explore the discriminative node
embeddings from the path representation. Given the joint
representation of paired nodes z

(0)
(s,t) and path representation

pi = (hi1,hi2, . . . ,hik), the node-level attention score of
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Figure 1: The Overview of Path-based Proximity Ranking Metric Dual-Level Attention Learning (PRML). (a) The set P(s,t) of the between-
ness paths for paired nodes xs and xt is collected by path enumeration algorithm. (b) The dual-level attention network h(P(s,t)) learns the
discriminative joint representation of the betweenness paths for paired nodes xs and xt. (c) The path-based proximity ranking metric function
fw(·) is then trained with triplet constraints T and joint representation of their betweeness paths.

node xij is given by:

s
(n)
ij (z

(0)
(s,t)) = h(n)tanh(W(n)

zs z
(0)
(s,t) + Whshij + bn), (1)

where W
(n)
zs , Whs are parameter matrices, h(n) is param-

eter vector and bn is the bias vector. The hij is the hid-
den state of the j-th node from the bidirectional layer. For
each node xij , its activation by softmax function is given

by αij(z
(0)
(s,t)) =

exp(s
(n)
ij (z

(0)

(s,t)
))∑

j exp(s
(n)
ij (z

(0)

(s,t)
))

, which is the normaliza-

tion of node-level attention scores. Therefore, the latent rep-
resentation of path pi with attention mechanism is denoted
by yi =

∑
j αij(z

(0)
(s,t))hij . We then propose the path-level

attention network to explore the critical paths according to
paired nodes representation z

(0)
(s,t). Given the representation

of paired nodes z
(0)
(s,t) and the path set P(s,t), the path-level

attention score of path pi ∈ P(s,t) is given by:

s
(p)
i (z

(0)
(s,t)) = h(p)tanh(W(p)

zs z
(0)
(s,t) + Wysyi + bp), (2)

where W
(p)
zs , Wys are parameter matrices, h(p) is parame-

ter vector and bp is the bias vector. The vector yi is the la-
tent representation of path yi with node-level attention mech-
anism. We note that the shorter the path, the higher chance
that the path influences the link formation between two nodes.
Unlike the node-level attention, we introduce the damping
factor that penalizes the contribution of longer path expo-
nentially for path-level attention score regularization. For
each path pi, its activation by softmax function is given by

βi(z
(0)
(s,t)) =

exp(spi (z
(0)

(s,t)
))·exp(−γli)∑

pi∈P(s,t)
exp(spi (z

(0)

(s,t)
))·exp(−γli)

, which is the

normalization of path-level attention scores with path length
awareness. The exp(−γli) is the damping factor for path pi,

where li is the path length and γ is the coefficient. There-
fore, the latent representation of path set P(s,t) with atten-
tion mechanism of paired nodes representation z

(0)
(s,t) is given

by g
z
(0)

(s,t)

(P(s,t)) =
∑

pi∈P(s,t)
βi(z

(0)
(s,t))

∑
j αij(z

(0)
(s,t))hij ,

where βi(z
(0)
(s,t)) is the path-level activation coefficient and

αij(z
(0)
(s,t)) is the node-level activation coefficient.

We then incorporate the multi-step reasoning frame-
work [Sukhbaatar et al., 2015] for the proposed dual-level
attention network to further improve the performance of link
prediction. Given dual-level attention network gz(·) and path
set P(s,t), the reasoning dual-level attention network learning
is given by

z
(k)
(s,t) = z

(k−1)
(s,t) + g

z
(k−1)

(s,t)

(P(s,t)), (3)

z
(0)
(s,t) = vs ⊗ vt, (4)

which is recursively updated. The latent representation of
path set P(s,t) is returned after the K-th update, given by
h(P(s,t)) = z

(K)
(s,t). The learning process of reasoning dual-

level attention network is illustrated in Figure 1(b).

2.3 Proximity Ranking Metric Learning
In this section, we present the details of our path-based prox-
imity ranking metric learning method and summarize the
main training process in Algorithm 1.

We first start with negative edge sampling for set E to con-
struct the triplet constraints T for ranking metric learning. For
each triplet constraint t = (i, j, k), we design its ranking loss
function by

L(t) = max(0, C + fw(P(i,k))− fw(P(i,j))), (5)
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Algorithm 1 Path-based Proximity Ranking Metric Learning
Input: Network Graph G = (X,E)
Output: Ranking metric predictive function fw(·)

1: for e = (xi,xj) ∈ E do
2: xk ← NegativeSampling(xi, xj)
3: P(i,j) ← PathEnum(xi, xj)
4: P(i,k) ← PathEnum(xi, xk)
5: T ← T ∪ (i, j, k)
6: end for
7: for t = (i, j, k) ∈ T do
8: Accumulate ranking loss L(t) by Equation (5)
9: end for

10: Accumulate the total loss by L =
∑
t∈T L(t).

11: Update predictive function fw(·) by SGD.

where the hyper-parameter C (0 < C < 1) controls the mar-
gin in the loss function and fw(P(i,k)), fw(P(i,j)) are the em-
bedding functions of set P(i,k) and P(i,j) by reasoning dual-
level attention network, respectively. We denote all the model
coefficients including neural network parameters and the re-
sult function parameter by Θ. Therefore, the objective func-
tion in our learning process is given by:

min
Θ
L(Θ) =

∑
t∈T
L(t) + λ‖Θ‖2,

where λ is the trade-off parameter between the training loss
and regularization. To optimize the objective, we employ the
stochastic gradient descent (SGD) with the diagonal variant
of AdaGrad in [Kingma and Ba, 2014].

3 Experiments
In this section, we conduct several experiments on the co-
authorship network DBLP and the collaborative development
network Github, to show the effectiveness of our apporach for
the problem of link prediction in heterogeneous networks.

3.1 Experimental Setting
We present the data preparation procedure for obtaining the
datasets from both networks. For DBLP dataset, we choose
the faculty in research institutions as the user node, and the
paper with the number of citations greater than 3 as the
item node. The DBLP dataset contains 15,728 user nodes
and 97,523 item nodes. The number of observed links be-
tween user node and item node is 118,245, and the number
of observed links among item nodes is 247,081. For Github
dataset, we choose the developer that participates in more
than 20 projects as user node, and the project developed by
more than 500 users as item node. The Github dataset is
composed of 2,407 user nodes and 6,490 item nodes. The
number of observed links between user node and item node
is 19,153 and the number of observed links among user nodes
is 13,153. Thus, the average degree in DBLP data is 3.2 and
average degree in Github data is 3.6. We sort the network
links based on their established timestamps. We use the first
70% links as training set, 10% ones as the validation set and

Table 1: Experimental results using Github dataset.

Method MAP@10 NDCG@10 AUC
FactRank 0.5824 0.5831 0.6292

Katz 0.5918 0.6323 0.6439
LPGM 0.5239 0.6803 0.6815
MMMF 0.6439 0.6688 0.7157

HNE 0.7419 0.7183 0.7141
SDNE 0.7430 0.7280 0.7252

PRML1 0.7442 0.7318 0.7730
PRML2 0.7487 0.7394 0.7823

Table 2: Experimental results using DBLP dataset.

Method MAP@10 NDCG@10 AUC
FactRank 0.5021 0.5927 0.6513

Katz 0.5312 0.6306 0.6915
LPGM 0.5422 0.6278 0.7023
MMMF 0.6542 0.6927 0.7481

HNE 0.7649 0.7610 0.7805
SDNE 0.7663 0.7626 0.7882

PRML1 0.7721 0.7826 0.7804
PRML2 0.7802 0.7923 0.7915

the remaining 20% links as the testing set. So the training,
validation and test data do not have overlap. The dataset will
be provided later.

3.2 Performance Comparisons
We evaluate the performance of our proposed method based
on three widely-used ranking evaluation criteria for the
problem of link prediction, i.e., mean average precision
(MAP) [Chang et al., 2015; Wang et al., 2016], normalized
discounted cumulative gain (nDCG) and area under the curve
(AUC) [Menon and Elkan, 2011; Wang et al., 2007]. We
compare our proposed method with other six state-of-the-art
methods for the problem of network link prediction as fol-
lows:
• FactRank method [Menon and Elkan, 2011] employs

the low-rank approximation based ranking function for
link prediction form the partial observed network adja-
cent matrix.
• Katz method [Katz, 1953] estimates the likelihood of

the unknown links based on the set of betweenness path
of their endpoints.
• LPGM method [Wang et al., 2007] is the local prob-

abilistic graphical model based on the co-occurrence
probability of two nodes for link prediction.
• MMMF method [Zhu et al., 2016] is the max-margin

matrix factorization model for predicting the missing
links in the partially observed network.
• HNE method [Chang et al., 2015] learns the heteroge-

neous network embedding of both user node and item
node based on the network content and its observed
structure for link prediction.
• SDNE method [Wang et al., 2016] learns the vertex em-

bedding of heterogeneous network based on first-order
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Figure 2: Effect of embedding dimension on MAP@10, NDCG@10 and AUC.
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Figure 3: Effect of proportion of data for training on MAP@10, NDCG@10 and AUC.
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Figure 4: Effect of threshold of path length on MAP@10, NDCG@10 and AUC.

and second-order network proximity for link prediction.
Among them, method Katz is based on set of between-

ness path for the link endpoints, methods FactRank is rank-
ing model based on low-rank approximation, methods LPGM
and MMMF are probabilistic model, and methods HNE and
SDNE are network embedding model for link prediction. Un-
like the previous studies, our method PRML learns the rank-
ing metric predictive function based on path set for link pre-
diction. We then denote our PRML with one reasoning step
by PRML(1) and our method with two steps by PRML(2), re-
spectively.

Tables 1 and 2 show the experimental results of the meth-
ods on MAP@10, NDCG@10 and AUC using Github and
DBLP datasets, respectively. The hyperparameters and pa-
rameters which achieve the best performance on the valida-
tion set are chosen to conduct the testing evaluation. We re-
port the average value of all the methods on three evaluation

criteria. The experiments reveal two-fold interesting points:
• The path-based learning method Katz achieves better

performance than the neighborhood-based factorization
method FactRank, which suggests that the path-based
information is critical for link prediction.
• The deep network embedding methods HNE and SDNE

outperform the other baseline algorithms. This suggests
that the performance of link prediction can be improved
with discriminative node feature representation.
• In all the cases, our PRML method achieves the best per-

formance. This fact shows that the proximity ranking
metric learning framework that exploits both discrimina-
tive joint representation of betweenness paths and multi-
step reasoning can further improve the performance of
link prediction.

In our approach, there are three essential parameters, which
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are the dimension of node embedding, the proportion of train-
ing data used for model learning and the threshold of path
length using both validation datasets. We plot the perfor-
mance of PRML(1) and PRML(2) using Github dataset with
red and green lines, while illustrating the performance of
PRML(1) and PRML(2) using DBLP dataset using blue and
black lines. We then investigate the effect of these parameters
of our method by varying the dimension of node embedding
from 60 to 180 in Figures 2(a), 2(b) and 2(c), the propor-
tion of training data for model learning from 10% to 90% in
Figures 3(a), 3(b) and 3(c), and the threshold of path length
from 3 to 11 in Figures 4(a), 4(b) and 4(c), respectively. We
observe that our method achieves the best performance on
Github dataset when the dimension of node embedding is set
to 120 and the threshold of path length is set to 7. We also re-
port that the best performance of our method can be achieved
on DBLP dataset when the dimension of node embedding is
set to 150 and the threshold of path length is set to 9. This
suggests that by leveraging the proximity sequence of nodes
with reasoning dual-level attention network, we can further
improve the performance of link prediction.

We train the proposed method on machines with Linux
OS, Intel(R) Core i7-5930K 3.50GHz and two GTX TITAN
X graphic cards. The running time of training PRML(1)

and PRML(2) on Github dataset are 8 hours and 14 hours.
The time cost of learning PRML(1) and PRML(2) on DBLP
dataset are 11 hours and 19 hours. The running time for
the training process validates the efficiency of our proposed
method.

4 Related Work
In this section, we briefly review some related work on link
prediction and network embedding.

The problem of link prediction is to estimate the prox-
imity of the link endpoints based on the partially observed
links and the node contents in network, which has attracted
considerable attention recently [Menon and Elkan, 2011;
Wang et al., 2007; Zhu et al., 2016]. The early link predic-
tion approaches are to compute the similarity between each
pair of network nodes for determining the proximity, which
are based on the number of shared common features [Lin,
1998] and localized neighborhood features [Lü et al., 2009].
To leverage the correlated link features, several matrix fac-
torization models [Menon and Elkan, 2011; Cao et al., 2014;
Agrawal et al., 2013; Leskovec et al., 2010] have been pro-
posed to make prediction from the observed network links.
Menon et al. [Menon and Elkan, 2011] employ the super-
vised matrix factorization method for solving the link pre-
diction problem. Cao et al. [Cao et al., 2014] study the prob-
lem of collective prediction of multiple types of links in het-
erogeneous information networks. Agrawal et al. [Agrawal
et al., 2013] propose a matrix factorization based method
with trace norm for link sign prediction. Zhao et al. [Zhao
et al., 2016b] propose the user preference learning method
for predicting the online link between the user and the item.
Leskovec et al. [Leskovec et al., 2010] study the link sign
prediction problem in online social networks. On the other
hand, various probabilistic approaches [Wang et al., 2007;

Miller et al., 2009] have also been developed for learning
a link probability distribution model from the observed net-
work. Unlike previous studies, we formulate the problem of
link prediction from the viewpoint of path-based proximity
ranking metric learning with recurrent neural networks.

Recently, deep learning models show great potential for
learning effective representation for network mining applica-
tions [Perozzi et al., 2014; Chang et al., 2015], which ex-
ploit the network structure for node embedding. Perozzi et
al. [Perozzi et al., 2014; Tang et al., ] propose the local net-
work structure embedding method. Chang et al. [Chang et
al., 2015] propose the embedding method for heterogeneous
networks. Yang et al. [Yang et al., ] develop the learning
method for attributed networks. Liu et al. [Liu et al., 2017]
propose the proximity embedding for the semantic search on
heterogeneous graph. Fang et al. [Fang et al., 2016] develop
the metagraph-based learning for semantic proximity graph
search. However, the objective of proximity ranking metric
learning in our problem is different from these deep learning
models. Thus, these methods may not be directly suitable for
our problem.

5 Conclusion

In this paper, we consider the problem of link prediction
from the viewpoint of learning path-based proximity rank-
ing metric embedding. We propose a novel ranking metric
network learning framework by jointly exploiting both node-
level and path-level attentional proximity of the endpoints to
their betweenness paths in order to learn the discriminative
joint representation for link prediction. We then develop the
path-based dual-level attention learning method with recur-
rent neural networks for proximity ranking metric embed-
ding. We next incorporate the multi-step reasoning frame-
work for the proposed dual-level attention networks to fur-
ther improve the performance of link prediction. The exten-
sive experiments on two large-scale datasets show that our
method achieves better performance than other state-of-the-
art solutions to the problem.
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