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Abstract

Deep Convolutional Neural Network (DCNN)
based deep hashing has shown its success for fast
and accurate image retrieval, however directly min-
imizing the quantization error in deep hashing will
change the distribution of DCNN features, and con-
sequently change the similarity between the query
and the retrieved images in hashing. In this paper,
we propose a novel Locality-Constrained Deep Su-
pervised Hashing. By simultaneously learning dis-
criminative DCNN features and preserving the sim-
ilarity between image pairs, the hash codes of our
scheme preserves the distribution of DCNN fea-
tures thus favors the accurate image retrieval. The
contributions of this paper are two-fold: i) Our
analysis shows that minimizing quantization error
in deep hashing makes the features less discrim-
inative which is not desirable for image retrieval;
ii) We propose a Locality-Constrained Deep Super-
vised Hashing which preserves the similarity be-
tween image pairs in hashing. Extensive experi-
ments on the CIFAR-10 and NUS-WIDE datasets
show that our method significantly boosts the accu-
racy of image retrieval, especially on the CIFAR-10
dataset, the improvement is usually more than 6%
in terms of the MAP measurement. Further, our
method demonstrates 10 times faster than state-of-
the-art methods in the training phase.

1 Introduction
Due to expensive computational cost and the constraint of
bandwidth in network communication, it is very infeasible to
directly use raw data for image retrieval among tons of high
dimensional data in big data era. Thus Approximate nearest
neighbor (ANN) is proposed to solve this problem. As one
of the most efficient and effective technique for ANN, hash-
ing draws more and more attention because of its superiority
in reducing the cost in terms of time and storage [Torralba
et al., 2008] by embedding data onto a hyper-cube (i.e. bi-
nary codes) and searching nearest neighbor with hamming
distance. For example, only 8MB memory is needed to store
1 million points with 64-bits code, and few milliseconds is

needed to search all points. Thus hashing is an extremely
useful technique for image retrieval.

The performance of hashing methods greatly depends on
features. For quite a long time, hand-crafted features dom-
inant the computer vision community. By leveraging some
elaborately designed features, hashing has shown its good
performance in image retrieval [Zhang et al., 2014; Shen et
al., 2015; Lin et al., 2013; 2014]. However, such hand-crafted
features may not be optimally compatible with hashing meth-
ods. Recently deep learning (a.k.a. deep neural network) has
demonstrated its great success in many computer vision ap-
plications, including image classification [Krizhevsky et al.,
2012; Russakovsky et al., 2015; Simonyan and Zisserman,
2014; He et al., 2016], face recognition [Sun et al., 2014;
Schroff et al., 2015]. By building a neural network with con-
volution layer and pooling layer alternatively in a layer-wise
manner in Deep Convolutional Neural Networks (DCNN),
the learned feature demonstrates its robustness to transla-
tion, occlusion, scale, and rotation. In light of the suc-
cess of DCNN for feature extraction, it also has been intro-
duced to tackle hashing problem, thus deep hashing meth-
ods have been proposed [Lai et al., 2015; Li et al., 2016;
Zhuang et al., 2016; Liu et al., 2016; Yao et al., 2016;
Xia et al., 2014]. Usually, DCNN based hashing can be de-
composed into two modules: i) feature learning with DCNN;
and ii) feature quantization, i.e., making the DCNN features
be close to the binary hashing codes as much as possible.
However, As shown in Fig. 2, minimizing the feature quan-
tization error in hashing also changes the feature distribution,
thus inevitably reduces the discriminability of features. To
make features more discriminative, deeper and deeper net-
works have been adopted [Liu et al., 2016; Yao et al., 2016;
Simonyan and Zisserman, 2014], which in contrast brings ad-
ditional computational cost, which is against the motivation
of hashing.

For image retrieval, it is desirable that the hashing proce-
dure doesn’t change the pair-wise similarity between a query
and the retrieved images. Therefore it is natural to pre-
serve the pair-wise similarity rather than to minimize the fea-
ture quantization error. Motivated by this idea, we propose
a Locality-Constrained Deep Supervised Hashing (referred
to as LCDSH). Especially, we model the hashing problem
as maximizing the posterior probability of the pair-wise la-
bel given pair-wise hashing codes, which will be shown to
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be equivalent to preserve the pair-wise similarity meanwhile
make the DCNN features as discriminative as possible. Thus
our model is more suitable for image retrieval task than those
feature quantization based hashing methods. The main con-
tributions of this paper can be summarized as follows:

• Our study shows that feature quantization based hash-
ing will change the feature distribution, and makes the
feature less discriminative.
• We propose a LCDSH. Our strategy not only preserves

the discriminability but also preserves the pair-wise sim-
ilarity, thus our solution is more suitable for image re-
trieval task. Our solution greatly outperforms all exist-
ing methods in terms of both training time and accuracy.

2 Related Work
All existing hashing methods can be roughly categorized
as data-independent methods [Gionis et al., 1999; Andoni
and Indyk, 2006; Raginsky and Lazebnik, 2009] and data-
dependent methods [Gong and Lazebnik, 2011; Shen et al.,
2015]. Compared with the data dependent approaches, data-
independent ones usually need longer codes to achieve simi-
lar performance. Therefore, data independent methods don’t
work well in relative low bits quantization (e.g. 32 and
64 bits)[Andoni and Indyk, 2006]. To avoid the short-
comings of data independent methods, recent research pays
more attention to data dependent methods whose hash func-
tions are learned from training data via data-driven meth-
ods, which can be further divided into two categories: un-
supervised hashing [Gong and Lazebnik, 2011; Gong et
al., 2013] and supervised hashing [Lin et al., 2013; 2014;
Zhang et al., 2014; Shen et al., 2015; Wang et al., 2015].
Compared with unsupervised methods, the supervised meth-
ods are able to utilize class label information to learn more
compact hash codes. In the pipelines of most hashing meth-
ods for images, each input image is firstly represented by a
feature vector of some hand-crafted visual descriptors (e.g.,
GIST, HOG), followed by a separate projection module (with
or without label information) and a quantization module to
encode this vector with a binary code.

The label information in supervised hashing can be used in
the following three ways: point-wise labels, pair-wise labels,
and ranking labels. Representative point-wise label based
methods include CCA-ITQ [Gong and Lazebnik, 2011], su-
pervised discrete hashing (SDH) [Shen et al., 2015]. Rep-
resentative pair-wise label based methods include sequential
projection learning for hashing (SPLH) [Wang et al., 2010],
minimal loss hashing (MLH) [Norouzi and Blei, 2011], su-
pervised hashing with kernels (KSH) [Liu et al., 2012] two-
step hashing (TSH) [Lin et al., 2013], fast supervised hashing
(FastH) [Lin et al., 2014], latent factor hashing (LFH) [Zhang
et al., 2014]. As for the ranking label based method, rank-
ing preserving hashing (RPH) [Wang et al., 2015] is a very
representative one. However, all these methods are based on
hand-crafted features [Krizhevsky and Hinton, 2009; Chua et
al., 2009].

In light of the success of deep learning in many tasks,
including image classification [Krizhevsky et al., 2012;
Russakovsky et al., 2015; Simonyan and Zisserman, 2014;

Figure 1: The network architecture of our LCDSH

He et al., 2016], face recognition [Sun et al., 2014; Schroff
et al., 2015], it also has been introduced to tackle hashing
problem. More specifically, deep learning in hashing can
be applied in two ways in deep hashing: i) Deep learning
is used hashing function learning module, and the features
are still based on hand-crafted features. Since the nonlin-
earity property of deep learning, it has been adopted to ap-
proximate the hashing function. The representative work
in this category includes [Salakhutdinov and Hinton, 2009;
Erin Liong et al., 2015]. However, the hand-crafted features
may not be optimally compatible with the hashing module,
it is more natural to simultaneously learn the features and
hashing functions; ii)Deep learning is used for both feature
learning and hashing function. Specifically, [Xia et al., 2014;
Lai et al., 2015] have shown that both feature representation
and hash coding can be learned simultaneously, and these
methods have demonstrated state-of-the-art performance on
many benchmarks. However, a disadvantage of these meth-
ods is that the quantization error is not statistically minimized
hence the feature representation is not optimally compatible
with binary hash coding. Recently, some work has been done
along this direction, and these methods are usually based on
a siamese-liked DCNN architecture to learn features, specif-
ically, both [Li et al., 2016] and [Zhu et al., 2016] employ a
pair-wise cross-entropy loss [Zhang et al., 2014] while [Liu
et al., 2016] employs a contrastive loss [Chopra et al., 2005]
directly. In [Li et al., 2016], authors propose to impose a
Gaussian prior on quantization error which is easy to opti-
mize. Both [Zhu et al., 2016] and [Liu et al., 2016] propose
a Laplacian prior for quantization. Because Laplacian prior
is non-differentiable, [Zhu et al., 2016] adopts a smooth sur-
rogate of the absolute function while [Liu et al., 2016] uses
sub-gradients method to optimize the objective function.

3 Approach
3.1 Notation
Suppose there are n points: X = {xi}ni=1 and xi corresponds
to the feature of the i-th image, which can either be some
hand-crafted features or raw pixel values of the image. We
use S = {sij}ni,j=1 (i 6= j,sij ∈ {−1, 1}) to indicate whether
xi and xj belong to the same class: sij = 1 if xi and xj are
from the same class, and sij = −1 vice versus.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3568



Deep supervised hashing aims at learning a binary code
bi ∈ {−1, 1}` for each point xi, where ` is code length.
We use B = {bi}ni=1 to denote the hash codes correspond-
ing to points in X . For hashing task, it is desirable that
similar images should have similar binary codes. Further, if
sij = 1 which means xi and xj are from the same class,
it is desirable that the hamming distance between hashing
codes bi and bj is low. Otherwise, if sij = −1, the ham-
ming distance between binary codes bi and bj should be high.
In general, we can write the hash code as bi = h(xi) =
[h1(xi), h2(xi), . . . , h`(xi)]

T , where h(xi) is a hash function
to be learnt.

3.2 A Revisit of Feature Quantization Loss in Deep
Hashing

As many traditional hashing methods [Gong and Lazebnik,
2011; Gong et al., 2013], many deep hashing methods also
use binarization (feature quantization) to map the contin-
uous features u to hash code b, i.e., b = sgn(u). To
reduce the information loss in this binarization operation,
most methods minimize the feature quantization error. As
far as we know, there are two kinds of quantization min-
imization strategy in deep hashing: i) ‖sgn(u) − u‖22 [Li
et al., 2016]; and ii) ‖‖u‖ − 1‖1 [Zhuang et al., 2016;
Zhu et al., 2016]. The difference between them lies on the
assumption on the prior distribution of u, i.e., modeling the
distribution of each dimensionality of uwith a Gaussian Mix-
ture Model or a Laplacian Mixture model. However, such fea-
ture quantization loss changes the distribution of u (As shown
in Fig. 2), thus may affect the discriminability of the u. For
image retrieval, it is desirable that the retrieval results based
on b and u should be the same. In other words, the distribu-
tion of b and u should be similar in hashing. However, feature
quantization loss doesn’t agree with such objective very well.

3.3 Network Architecture of LCDSH
To preserve the pair-wise similarity (locality information)
and the discriminability of features in hashing, we propose
a Locality-Constrained Deep Supervised Hashing (LCDSH).
The network architecture of our LCSH is shown in Fig.1.
Specifically, we use a Siamese-liked DCNN, i.e., the two
DCNN’s are identical. We denote φ(xi; θ) as the output asso-
ciated with input xi with some DCNN architecture where θ
corresponds to the parameters in the feature learning part (pa-
rameters in CNN-F/M), φ(xi; θ) ∈ Rd. Here φ(x; θ) works as
a feature extractor and any deep learning architecture can be
adapted. In this paper we use CNN-F and CNN-M architec-
ture [Chatfield et al., 2014], which would be detailed in im-
plementation section. Then we add one more fully-connected
layer to get the feature u, i.e.,

ui = WTφ(xi; θ) + v (1)

where W ∈ Rd×` denotes a weight matrix, v ∈ R` is a bias
vector. To get the hash codes, we use bi = sgn(ui). So
the above equation bridges the feature learning part and the
hashing part. In training phase, all images are fed into our
network in a pair-wise manner with a pair-wise label (sij)
indicating whether the image pairs are with the same labels.
Our goal is to learn a network that maximizes the posterior

probability of P (S|B). Once the network is trained, in the
testing phase, we can just feed an image into the network and
get its hash codes with a forward pass.

3.4 Loss Function of LCDSH
Our LCDSH both preserves feature discriminative and the
locality between image pairs. Specifically, the objective of
LCDSH aims at maximizing the following posterior proba-
bility:

max P (S|B) = P (S|U)P (U |B) (2)
where maximizing P (S|U) makes the features as discrimina-
tive as possible and maximizing P (U |B) preserves the sim-
ilarity between the features in hashing. Next we will detail
these two terms, respectively.

Maximizing P(S|U). Given the features before the bina-
rization in hashing: U = {ui}ni=1, it is desirable that these
features should be as discriminative as possible. Based on
the pair-wise label S = {sij}, we define the probability
p(sij |ui, uj) = σ(sijΘij), where Θij = 1

2u
T
i uj and σ(x) =

1
1+e−x . To make DCNN features discriminative, we can max-
imize the following objective function:

max P (S|U) =
∏
i,j

σ(sijΘij) (3)

By taking the negative log-likelihood of the above equation,
we arrive at the following equation

min L1 = − logP (S|U) = −
∑
i,j

p(sij |ui, uj)

=
∑
i,j

log(1 + e−sijΘij )
(4)

We can see that the larger the inner product between ui and
uj is, the larger P (1|ui, uj) will be, implying that pair ui
and uj should be classified as a similar pair; otherwise, larger
P (−1|ui, uj) will imply that ui and uj should be classified
as a dissimilar pair.

Maximizing P(U|B). Other than learning discriminative
features, LCDSH also aims at preserving pair-wise similarity
between images. Thus we model P (U |B) based on the pair-
wise similarity between images as follows:

P (U |B) =
∏
i,j

P (σ(Θij)|σ(Θ̃ij)) (5)

where Θ̃ij = 1
2b

T
i bj ,Θij = 1

2u
T
i uj . It is desir-

able that σ(Θij) is close to σ(Θ̃ij), then we further let
P (σ(Θij)|σ(Θ̃ij)) be proportional to a Gaussian distribution
with variance α, i.e.:

P (σ(Θij)|σ(Θ̃ij)) ∝ exp(−‖σ(Θij)− σ(Θ̃ij)‖2

2α2
) (6)

By substituting equation (6) into equation (5) and taking the
negative log-likelihood of the equation, the maximizing of
P (U |B) is equivalent to the following equation:

min L2 =
∑
i,j

‖σ(
1

2
〈ui, uj〉)− σ(

1

2
〈sgn(ui), sgn(uj)〉)‖22

(7)
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(a) The DCNN (b) The deep hashing with ‖u − sgn(u)‖22
loss

(c) The LCDSH

Figure 2: The distribution of network outputs on the training set of CIFAR-10

Maximize P(S|B). By substituting equation (3) and equa-
tion (5) into equation (2), we arrive at the following equation:

max P (S|B) = P (S|U)P (U |B)

=
∏
i,j

P (sij |σ(θij))P (σ(Θ̃ij)|σ(Θij))

(8)

By taking the negative log-likelihood of P (S|B), the maxi-
mization of P (S|B) is equivalent to the following objective
function:

min L = L1 + λL2

=
∑
i,j

log(1 + e−sijΘij )

+ λ
∑
i,j

‖σ(
1

2
〈ui, uj〉)− σ(

1

2
〈sgn(ui), sgn(uj)〉)‖22

(9)

where λ is a trade-off parameter which balances the discrim-
inability and the locality constraint. Our LCDSH simultane-
ously learns discriminative features and preserves the simi-
larity of image pairs, therefore it is more suitable for retrieval
task.

The objective of LCDSH can be optimized efficiently
through the standard back-propagation (BP) algorithm. Espe-
cially, the gradient of L with respect to ui can be calculated
as follows:

∂L

∂ui
=
∂L1

∂ui
+ λ

∂L2

∂ui
(10)

where the two terms in equation (11) can be further calculated
as follows:

∂L1

∂ui
=

1

2

∑
i,j

−sijσ(−sijΘij)uj (11)

∂L2

∂ui
=

1

2

∑
i,j

(Θ̃ij −Θij)uj (12)

Remarks on Locality-Constraint (P(U|B)). The locality
constraint term has several characteristics. First, it plays sim-
ilar role as quantization in deep hashing. It can be easily
shown that that as the loss of L2 decreases, quantization loss
also decreases. For example, let ui = [4,−1, 1, 0]T , uj =
[−4,−1, 1, 0]T , and then Θij = σ( 1

2 〈ui, uj〉) ≈ 0 and

Θ̃ij = 0.6225. It is easy to be observed that 〈ui, uj〉 is good
enough to distinguish ui, uj if they are not with the same
labels but 〈sgn(ui), sgn(uj)〉 is not a desired distance to dis-
criminate these two embedded vectors.

Second, it is a more general formulation because we do
not encourage any prior on the distribution u compared with
[Zhuang et al., 2016; Li et al., 2016]. As shown in Fig.2, the
Fig.2(a) is the original features distribution of CNN. Basi-
cally, it follows a Gaussian distribution. If the feature quanti-
zation loss ‖sgn(u)−u‖22 is adopted in deep hashing, then the
distribution of u becomes Fig.2(b): two Gaussian distribution
centered at 1 and -1, which may affect the discriminability of
features. We show the feature distribution of our LCDSH in
Fig.2(c), we can see that the distribution of network output is
very similar to that of network without quantization loss. But
the zero point still can separate the codes as that quantization
loss.

Third, because of the sigmoid function, our locality
constraint is less sensitive to the large values in fea-
tures compared with other quantization loss functions.
Thus our solution preserves the feature distribution bet-
ter, and makes the feature more discriminative. For ex-
ample, if ui = [16,−1, 1, 1,−1,−1, 1,−1]T and uj =
[8,−1, 1, 1,−1,−1, 1,−1]T , then Θij = σ( 1

2 〈ui, uj〉) ≈ 1

and Θ̃ij = σ( 1
2 〈sgn(ui), sgn(uj)〉) = 0.997 This examples

shows that such a binary code is good enough to discriminate
two points although they have pretty big quantization errors,
which demonstrates the robustness of our method.

3.5 Implementation Details
A classical scheme in deep hashing is to fine-tune an image
classification model pre-trained on ImageNet by adding a new
full-connected layer before the softmax layer. Our model also
adopts the same strategy. More specifically, our model has
eight layers and the first seven layers are the same as those
in VGG-F and VGG-M [Chatfield et al., 2014], which are
termed as CNN-F and CNN-M, respectively, and the eighth
layer is a fully-connected layer which is used to generate
hash codes. The dimensionality of fully connected layer in
CNN-F/M (d) is 4096. It is worth noting that any DCNN ar-
chitecture can be adopted in our framework, but the model
of GPU used in our experiments is GTX980-Ti which only
has 6GB memory. Therefore we have to choose models like
CNN-F, CNN-M rather than VGG-16[Simonyan and Zisser-
man, 2014] used in [Liu et al., 2016] or VGG-19 used in [Yao
et al., 2016], which would cause out of memory issue. Our
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method is implemented with MatConvNet [Vedaldi and Lenc,
2015]. Our conjecture is that deeper architectures, including
VGG-16 and VGG-19, probably correspond to better perfor-
mance because the features learnt by these networks are more
discriminative.

CNN-F architecture is similar to the one used by
Krizhevsky et al. in [Krizhevsky et al., 2012]. It comprises
of 8 learnable layers, 5 of which are convolutional layers, and
the last 3 are fully-connected layers. CNN-M architecture is
similar to the one used in [Zeiler and Fergus, 2014]. It is char-
acterized with a larger stride and smaller receptive field in the
first convolutional layer, which was shown to be beneficial to
image classification on the ImageNet dataset. It is worth not-
ing that larger stride (2 pixels instead of 1 pixel) helps reduce
the computational cost and memory.

4 Experiments
4.1 Datasets
We compare our model with several baselines on two widely
used benchmark datasets: CIFAR-10 [Krizhevsky and Hin-
ton, 2009] and NUS-WIDE [Chua et al., 2009]. The CIFAR-
10 dataset consists of 60,000 32×32 color images which
are categorized into 10 classes (6000 images per class). It
is a single-label dataset in which each image belongs to
one of the 10 classes. The NUS-WIDE dataset has nearly
270,000 images collected from the web. It is a multi-label
dataset in which each image is annotated with one or multi-
ple class labels from 81 classes. Following [Li et al., 2016;
Liu et al., 2016], we only use the images associated with the
21 most frequent classes in our experiments, and the number
of images in each class is at least 5000 for these 21 classes.

4.2 Experimental Setup
We compare our method with several state-of-the-art hash-
ing methods. These methods can be categorized into three
classes: i) Unsupervised hashing methods with hand-crafted
features, including SH [Weiss et al., 2008] and ITQ [Gong
and Lazebnik, 2011; Gong et al., 2013]; ii) Supervised hash-
ing methods with hand-crafted features, including, KSH [Liu
et al., 2012], FastH [Lin et al., 2013], LFH [Zhang et al.,
2014], and SDH [Shen et al., 2015], sequential projection
learning for hashing (SPLH) [Wang et al., 2010]; iii) Deep
hashing methods, including CNNH [Xia et al., 2014], Net-
work in Network Hashing (NINH) [Lai et al., 2015], Deep
Binary Embedding Network (DBEN)[Zhuang et al., 2016],
Deep Supervised Hashing (DSH)[Liu et al., 2016], and Deep
pair-wise-Supervised Hashing (DPSH) [Li et al., 2016].

For hashing methods with hand-crafted features, we repre-
sent the image in CIFAR-10 [Krizhevsky and Hinton, 2009]
with a 512-dimensional GIST feature, and represent the im-
age in NUS-WIDE with a 1134-dimensional low-level fea-
ture vector, which is comprised of a 64-D color histogram, a
144-D color correlogram, a 73-D edge direction histogram,
a 128-D wavelet texture, a 225-D block-wise color moments
and a 500-D bag of words based on SIFT descriptions. All
these features are provided within the dataset [Chua et al.,
2009]. For deep hashing methods, we directly use the raw

image pixels as input. We adopt the CNN-F and CNN-M net-
works pre-trained on the ImageNet dataset [Russakovsky et
al., 2015] to initialize the first seven layers of our networks.
The Mean Average Precision (MAP) is used to measure the
performance of different methods.

4.3 Convergence Speed and Computational Cost
We test the performance of our method with CNN-F model
with respect to different number of iterations. We follow ex-
isting deep hashing methods [Liu et al., 2016; Zhuang et al.,
2016] to fine-tune the model pre-trained on ImageNet, our
network converges very fast. Empirically we find that the
model converges after about 30 iterations, as shown in Fig.
3-(a). Further, Fig. 3-(b) also shows that the MAP is sta-
ble after at about 60 iterations. It is also worth noting that
the convergence rate has little relevance to the length of the
hash code, and the possible reason is that the change of code
length from 12-bits to 48-bits doesn’t increase the number of
parameters significantly.

(a): The convergence rate w.r.t. different number of iterations.

(b): The MAP w.r.t. different number of iterations.

Figure 3: The convergence as well as MAP with respect to different
iterations on CIFAR10. Here we take CNN-F as an example.

Methods CIFAR10 NUSWIDE
Ours(CNN-F) 0.5 1.5
Ours(CNN-M) 1.5 4.5

DBEN[Zhuang et al., 2016] 15 32
NINH[Lai et al., 2015] 174 365

Table 1: Training time (hours) of different methods on CIFAR-10
and NUS-WIDE. We can see that our method is significantly faster
than others.

Table 1 shows the training time of different hashing meth-
ods with different code lengths on the CIFAR-10 and NUS-
WIDE datasets, respectively. Here we compare our mod-
els with two state-of-the-art methods, including DBEN and
NINH, by using the codes provided by authors. Since the
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codes of other deep hashing methods are not online available,
we don’t report the training time of those methods. We can
see that our model is more than 10× faster than the com-
pared methods. Further, as shown in Table 3 and Table 4,
our method achieves much higher MAP than these methods.
It is worth noting that our CNN-F model can process more
than 1200 images per second for feature extraction by using
a GTX980-Ti GPU.

4.4 Sensitivity to Hyper-Parameter λ
In Table 2, we show the performance of our model with re-
spect to different λ on CIFAR-10 dataset. Here we take CNN-
F as an example. We can see that different λ has little ef-
fect on the performance for hash codes with different lengths,
which validates the robustness of our model. Further, by com-
paring Table 2 with Table 3, we can find that our method al-
ways outperforms other deep hashing baselines even if we use
different λ, which validates the effectiveness of our method.

λ 12-bits 24-bits 32-bits 48-bits

0.2 0.752 0.775 0.794 0.799
0.4 0.746 0.780 0.801 0.810
0.6 0.742 0.794 0.797 0.808

Table 2: The effect of λ on CIFAR-10

Method 12-bits 24-bits 32-bits 48-bits

Ours(CNN-F) 0.752 0.794 0.801 0.810
Ours(CNN-M) 0.748 0.804 0.813 0.826

DPSH 0.713 0.727 0.744 0.757
DSH 0.616 0.652 0.643 0.621

DBEN 0.650 0.760 0.765 0.770
NINH 0.552 0.566 0.558 0.581

CNNH 0.439 0.476 0.472 0.489
FastH 0.305 0.349 0.369 0.384
SDH 0.285 0.329 0.341 0.356
KSH 0.303 0.337 0.346 0.356
LFH 0.278 0.435 0.518 0.561

SPLH 0.171 0.173 0.178 0.184
ITQ 0.162 0.169 0.172 0.175
SH 0.127 0.128 0.126 0.129

Table 3: MAP of different methods on CIFAR-10

4.5 Performance Evaluation
Following [Xia et al., 2014], we randomly select 1000 images
(100 images per class) as the query set in CIFAR-10. For the
unsupervised methods, we use the rest images as the training
set. For the supervised methods, we randomly select 5000
images (500 images per class) from the rest images as the
training set. The pair-wise label set S is constructed based on
the image class labels and two images will be considered to
be similar if they have the same class label.

In NUS-WIDE, we randomly sample 2100 query images
from 21 most frequent labels (100 images per class) by fol-
lowing the strategy in [Xia et al., 2014]. For the supervised

Method 12-bits 24-bits 32-bits 48-bits

Ours(CNN-F) 0.776 0.803 0.810 0.819
DPSH 0.752 0.774 0.794 0.804

DSH 0.548 0.554 0.523 0.562
DBEN 0.650 0.745 0.760 0.775
CNNH 0.611 0.618 0.625 0.608
NINH 0.674 0.697 0.713 0.715
FastH 0.621 0.650 0.665 0.687
SDH 0.568 0.600 0.608 0.637
KSH 0.556 0.572 0.581 0.588
LFH 0.571 0.568 0.568 0.585

SPLH 0.568 0.589 0.597 0.601
ITQ 0.452 0.468 0.472 0.477
SH 0.454 0.406 0.405 0.400

Table 4: MAP of different methods on NUS-WIDE

methods, we randomly select 10500 images (500 images per
class) from the rest images as the training set. The pair-wise
label set S is constructed based on the image class labels.
That is to say, two images will be considered to be similar if
they share at least one label. Following the strategy in [Xia
et al., 2014], we calculate the MAP based on the top 5000
returned neighbors on the NUS-WIDE dataset.

The MAP of different methods on CIFAR-10 is reported
in Table 3. We can see that our method greatly outperforms
other baselines, including unsupervised methods, supervised
methods with hand-crafted features, and deep hashing meth-
ods with feature learning. It is worth noting that both DPSH
and DSH are deep hashing methods with pair-wise labels and
feature quantization loss, and our method outperforms these
two methods by more than 6%, no matter the length of hash
code. In addition, our method even obtains better perfor-
mance than the method using very deep neural network model
[Zhuang et al., 2016]. Meanwhile, since our model benefits
from the not-so-deep architecture, the speed of feature extrac-
tion of our method is about 10× faster than that of [Zhuang et
al., 2016]. The MAP results of NUS-WIDE is reported in Ta-
ble. 4 1. We can see that our method always achieves the best
performance under all the settings. The good performance of
our method on these two datasets validates the effectiveness
of our method.

5 Conclusion

Realizing that preserving the locality information is more im-
portant in hashing, we propose a Locality-Constrained Deep
Supervised Hashing. Specifically, we simultaneously learn
discriminative features and preserves the similarity between
image pairs in DCNN based hashing. Extensive experimen-
tal results validate the effectiveness of our method in terms of
the MAP and training time for image retrieval.

1Here we don’t report the performance of CNN-M on NUS-
WIDE because the model would cause out of memory issue in our
experiments.
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